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Abstract— This paper presents a method for dense optical
flow estimation in which the motion field within patches that
result from an initial intensity segmentation is parametrized with
models of different order. We propose a novel formulation which
introduces regularization constraints between the model parame-
ters of neighboring patches. In this way, we provide the additional
constraints for very small patches and for patches whose intensity
variation cannot sufficiently constrain the estimation of their
motion parameters. In order to preserve motion discontinuities
we use robust functions as a regularization mean. We adopt
a three frame approach and control the balance between the
backward and forward constraints by a real-valued direction
field on which regularization constraints are applied. An iterative
deterministic relaxation method is employed in order to solve
the corresponding optimization problem. Experimental results
show that the proposed method deals successfully with motions
large in magnitude, motion discontinuities and produces accurate
piecewise smooth motion fields.

Index Terms— Motion Estimation, Regularization, Intensity
Segmentation, Robust Regression

I. INTRODUCTION

Estimating dense optical flow fields in unknown scenes
has always been problematic due to the fact that the motion
estimation problem is ill-posed [26]. Over the years a number
of researchers attempted to overcome the ill-possedness by
imposing a variety of constraints on the spatial or tempo-
ral coherency of the motion field [19]. Block-based motion
estimators assume that the motion within rectangular blocks
follows a simple, most often translational, parametric model.
Regularization techniques assume a globally [15] or piecewise
[6] smooth motion field. Segmentation-driven methods [17]
assume that the scene can be decomposed into a relatively
small number of regions such that the motion of each region
can be described by a simple parametric model.

The block-based and the global smoothness based ap-
proaches obviously make unrealistic assumptions about the
structure of the motion field. On the other hand regularization
and segmentation based approaches are faced with the non
trivial problem of determining automatically the region of
support on which the coherency constraints should be imposed.
The realization that by relying on motion information alone
it is very difficult to obtain good localization of the region
of support has steered a number of researchers to hybrid
intensity/motion-based approaches. In Markov Random Field
formulations this is achieved by adapting the clique potential
to the presence of an intensity edge [13]. Similarly, [20] and
[1] adjust the smoothness constraint depending on the mag-
nitude and the direction of the image gradient. However, the
smoothness constraints they impose are weak in comparison to

parametric constraints. Other approaches [11] utilize an initial
intensity segmentation in order to apply smoothness [29] or
parametric constraints within each intensity segment. Such
approaches have given promising results for motion-based
segmentation but do not address inter-segment constraints.
This imposes an unnatural limitation to the extent of the
coherency region; usually regions with coherent motion extend
beyond the borders of a single intensity segment. Furthermore,
the estimation of the model parameters becomes difficult if the
intensity segment is small, especially in the presence of motion
with large magnitude. This poses an initialization problem
to methods that iteratively a) merge intensity segments (e.g.
[9]) based on their motion parameters and b) reestimate the
motion parameters at the union of the merged regions. In
order to overcome this problem Black and Jepson [5] utilize
a dense optical-flow field to obtain an initialization of the
motion parameters of the initial segments. However, such an
initialization depends on the quality of the initial motion field
which could be low at motion discontinuities or at areas with
low intensity variation.
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Fig. 1. Outline of the proposed method

In [23] we presented a method that addresses inter-segment
constraints in the context of motion-based segmentation. In this
paper, an early version of which appears at [24], in the context
of motion estimation, we propose a framework that exploits the
benefits of both the pixel-based robust regularization methods
and the region-based motion estimation methods. In a first
phase (Fig. 1) we apply an intensity-based segmentation to de-
compose the current frame into a number of intensity segments
(hereafter called patches). In the second phase (Fig. 1), we



treat each patch as a site in an iterative relaxation scheme that
estimates simultaneously the parametric models that describe
the motion of the patches. In contrast to the methods in the
literature, we address inter-segment constraints by applying
robust regularization in the space of the motion parameters.
This can sufficiently constrain the estimation of the parameters
even for very small patches, provide coherent parameters for
neighboring patches and at the same time preserve the motion
discontinuities.

The remainder of the paper is structured as follows. In
Section Il we formulate the motion estimation as an opti-
mization problem and in Section Il describe the optimization
procedure. In Section IV we present experimental results and
finally in Section V conclusions are drawn.

Il. PROBLEM FORMULATION
A. Patch Models

The essence of our method is that the problem of esti-
mating a dense motion field is formulated as the problem
of estimating a number of local parametric models, each of
which describes the motion field at a local image patch. These
patches are extracted at the first phase of our method (Fig. 1)
by performing an initial intensity-based segmentation. The
current frame, is first simplified with morphological operators
(opening and closing by reconstruction) and, subsequently,
pixels whose intensity differs less than a threshold T are
grouped together. This segmentation method, which can be
replaced by any other similar method, attempts to decompose
the current frame into patches whose edges do not violate
motion discontinuities and, at the same time, group in the
same patch pixels that by themselves yield unreliable motion
constraints due to low intensity variation around them. While
a single frame intensity-based segmentation cannot, in general,
respect motion discontinuities it has long been argued [5] [13]
[20] [1] [11] [29] [9] that it can be very useful since a) in
many scenes, especially in man-made environments, motion
discontinuities usually do coincide with intensity edges and
b) intensity edges can be much easier and better localized
than motion discontinuities. In practice, the goals of a) not
violating motion discontinuities and b) deriving patches with
sufficient intensity variation are conflicting and the balance
between them is controlled by the size of the morphological
operators and the threshold T'. In our scheme, which degrades
gracefully to pixel-based methods when the patches contain a
single pixel, we use a very conservative initial segmentation
(1 < T < 3) typical results of which are depicted in Fig. 4
and Fig. 5. Let us also note that our method does not consider
the break up of patches at a later stage. Therefore, if the
initial intensity contains patches which strive over motion
discontinuities or, in general, patches whose motion cannot be
described by the parametric models that we use, the motion
field within the patches in question will be also partially
erroneous.

Let us denote with S the set of patches s that are extracted
by the initial intensity-based segmentation, with (s) the set
of pixels z in patch s and with N the set of neighbors of the
patch s. Finally, let us denote with (s, s') the set of pixels

along the border between neighboring s and s’ and define
bss: = |Q(s, s")| as the corresponding common border length.
We introduce strong constraints for the pixels that belong to
the same patch by assuming that the motion field u, (where
x is a pixel) within each patch s can be described by an
(unknown) parametric model 6,. That is
ug(6s) = mZ(w)Hsa z € Q(s) 1
where m4(x) is the motion model matrix that relates (linearly)
the motion parameters 6, of the patch s to the motion vector
ug at the pixel z. The motion model matrix for the affine
model is, for example:

@

where i(z) and j(z) are the coordinates of pixel z.

We handle patches of different size and shape by allowing
models of different order (depending on the size and on the
shape of the patches). Given the usual maximum patch size
that our intensity segmentation yields, the highest order of the
model that we use is the affine model. Lower order models are
assigned to certain patches s by restricting certain parameters
of 8, to be zero. These constraints are applied in the estimation
phase as described in Section I11-C.

Finally, we address occlusions by considering correspon-
dences for each pixel 2 in both temporal directions (backward
and forward) and to a different degree in each direction. The
degree to which correspondences are sought in each direction
is encoded in an unknown field O = {0, € [0...1] : 2 € G},
where with G we denote the set of pixels in the image grid.
Therefore, o, varies between 0 and 1 to the degree that data
constraints are derived from the previous and the next frame
respectively. The direction field O is introduced in order to
derive valid data (i.e. photometric) constraints in the areas
where these are mostly needed; near motion discontinuities.
Indeed, motion discontinuities create always occlusions, let
these be in the next frame, in the previous frame or, in the
worst case, at both. Classical motion estimators keep the
direction fixed (e.g. backward) and address the occlusions
implicitly or explicitly [25] as data outliers. In this way at
occlusions a) the data constraints (i.e. constraints derived
from establishing correspondences between the current and
the previous frame) are not valid and b) it is unlikely that
the regularization constraints (i.e. constraints derived from the
motion field estimated in the neighborhood) give correct cues
since it is unknown in advance where the discontinuity lies.
As a result, in the estimated motion field, the discontinuity is
placed within the occluded area. In contrast, the introduction
of the direction field allows for valid data terms as long as
valid correspondences exist at least in one of the neighboring
frames. Therefore, it provides an elegant solution for occlu-
sions either in the previous or in the next frame which are,
by far, the ones most often encountered. Another three frame
approach, which chooses the direction (backward or forward)
with the larger cross-correlation match, is adopted by [10].
In contrast to our approach it makes binary decisions and is
incorporated in a tensor-based framework. Finally, let us here



denote with O, the direction field at all pixels that belong to
segment s, that is O; = {o, : 2 € Q(s)}.

B. Motion Estimation as an Optimization Problem

We seek the minimization of a cost function with respect to
the unknowns ©® = {#, : s € S} and O = {0, : z € G}. We
incorporate our work in the robust regularization framework
and let the cost function consist of a data term that expresses
the dependencies between the data and the unknowns and
two regularization terms that express the interdependencies
between the unknowns. More specifically the cost function
is defined as follows:

C(0,0) = A1) ful0s;05,8) + X Y D fel0s,0s,5,5)

seS s€S s'eN,

+ A Z Z fo(0z,041)

zeG z'EN,

where Ag, A\. and ), are constants whose ratio controls the
relative importance of the data term, the motion regularization
term and the direction regularization term. In what follows,
we explain these terms.

1) Dataterm: The data term (first term of eq. (3)) expresses
how consistent the motion parameters © and the direction field
O are with respect to the observed image intensities. It is
defined as the summation of local data terms, f4(ds, Os, s),
each one of which is defined on the basis of a patch s. Each
local data term expresses how well the patch in question can
be reconstructed, given the image intensities in the previous
and in the next frame and an estimation of the unknowns that
are related to patch s (i.e. 8, and O,). Thus, in the local data
term, f4(6s,0s,s), we encode the evidence the image data
provide us about the motion of patch s. More specifically,

fa(65,05,8) = > p(ra(0s,00,))

z€Q(s)

©)

(4)

where p(r) is a robust error function [16] which in our
experiments was taken to be the Lorentzian (i.e. p(r) =

log (1 +1 (5)2)) and

®)

is the data residual at point z. It is defined as a linear com-
bination of the forward (r,’; (65, )) and backward (r%(6s,z))
motion-compensated intensity differences at pixel z. The for-
ward motion-compensated intensity differences is rg; 0s,z) =
I(z + u(0s,2),t + 1) — I(z,t) (and similarly 74(6s,2) =
I{z,t) — I(x — u(fs,z),t — 1)). Note that o, controls the
balance between the backward/forward data constraints at
pixel z. The hope is that o, can be estimated simultaneously
with the motion parameters so that its value reflects the degree
to which pixel z is visible at the previous and at the next frame.

2) Motion regularization term: An optimization with re-
spect to the data term alone results in a region-based motion
estimation scheme similar to, for example, the work of Odobez
and Bouthemy [21]. However, the implicit assumption that the
data term can provide sufficient and correct constraints cannot
be guaranteed due to classical problems in motion estimation,
such as the aperture problem and occlusions. Such problems

ra(0s,05,7) = 0,77 (85, ) + (1 — 0,)r% (85, 7)

can deteriorate the motion estimation even of large patches but
are particularly acute when the size of the patch is small.

The motion regularization term (second term of eq. (3))
provides the additional constraints that are essential in the
absence of sufficient or reliable data constraints. It introduces
interdependencies between the motion parameters 65 and 6
of neighboring patches s and s’ by penalizing motion param-
eters that are dissimilar. We do so by defining the motion
regularization residual r.(6s,0s,(s, s")) as the discrepancy
between the motion fields generated by 6, and 6, in an area
Q(s, s"). Similar measures have been use in the context of
motion-based region merging by, for example, Gelgon and
Bouthemy [11]. Clearly, small values of the regularization
residual r.() indicate a smooth motion field, while large values
of r.() indicate motion discontinuities. The later are tolerated
by the use of a robust function p(). More specifically, the local
costs f.(0s,0s,5,s")’s that comprise the regularization term
are defined as follows

fc(osa Oy, s, SI) = bss’p(Tc(o-h Oy, Q(Sa Sl))) (6)

where the use of factor b,,, which is the length of the common
border between patches s and s', implies that in our for-
mulation the larger the common border between neighboring
patches the larger the penalty we introduce. Finally, p() is
a robust function and r.(6s,6s,(s,s')) the regularization
residual. The latter, is defined as follows

1

TC(95705/,Q(8,SI)) = 1Q(s, s')|

Z lluz (0s) — uz(6s)]]?

z€Q(s,8")
(@)

where the role of |Q(s, s')| is to scale the motion residual 7.
so that the same robust function p() can be used at eq. (6) for
all patches s. Using some algebra and eq. (1) we can express
the motion residual as

re(8s,05,9Q(s,s") = \/(03 —0y)T M5 (05 — 0s1) (8)

where

1
Mgy = m Z Mg (m)mz;’ (ZE) (9)

z€Q(s,8")

Eq. (8) is a compact form of eq. (7) which expresses the square
of the motion residual as a quadratic function of the motion
parameters. This allows easy differentiation with respect to
the motion parameters and will be used in all subsequent
derivations.

3) Direction field regularization term: The third term in
eg. (3) imposes regularization constraints on the direction
field O itself by introducing interdependencies between the
values of the direction field at neighboring pixels. This aims
at obtaining a piecewise smooth direction field which is in ac-
cordance to where the correspondences lie in image sequences
depicting moving opaque objects. Regularization constraints
are particularly important for the iterative optimization scheme
that we introduce, particularly at the first iterations when the
motion parameters are not near their true values. Ignoring the
regularization constraints at this point might lead to a direction
field that points at arbitrary directions, thus, deprive us from



valid data constraints. The direction field regularization term
is a classical pixel-based regularization term in which the local
costs f,(0g,0,) are defined as a function of the residual
between the values of the field in two neighboring pixels z
and z'. More specifically,

fo(0z,041) = p(0z — 041) (10)

An important issue in the patch-based regularization scheme
that we propose is the balance between the data and the
regularization constraints which is controlled by A4, A. and
Ao More specifically, the ratio i—d controls the smoothness
of the motion field while the ratio ’A\—d the smoothness of the
direction field.

Looking at the local costs to which each set of motion pa-
rameters 6, participates, it becomes apparent that the data term
is of the order of the size of the patch s (i.e. EzEQ(s) p0),
while the motion regularization terms are of the order of the
perimeter of the patch (3_,, cn, bss'p()). Their ratio depends
naturally on the patches shape but, in general, the larger the
patch the larger the ratio between the data and the motion
regularization term. Thus, the larger the ratio j\\—d the smaller
the patches for which a normalization between the data and the
motion regularization terms is achieved. Roughly, the choice of
the ratio i—d should be in the order of magnitude of the square
root of the size of the segments for which such a normalization
is desired.

Looking at the local costs to which each o, participates it
becomes apparent that the ratio between the local data and
direction regularization terms are of constant order, that is of
WTH' This is a classical regularization term and in all of our
experiments we have chosen for values of large values of A,
in order to obtain a rather smooth direction field.

Finally, let us note that our formulation is a generalization
of pixel-based regularization methods and region-based motion
estimation methods. Indeed, both can be derived from eq. (3)
with the appropriate choices for the parameters \., for the
motion models m, and for the initial patches. With A, = 0
and fixed direction field O we derive a classical region-based
motion estimation scheme such as the one of Odobez and
Bouthemy [21]. With each patch containing a single pixel,
a translational motion model m, for each patch/pixel and
a fixed direction field O we derive a classical pixel-based
regularization scheme similar to the one that was introduced
by Black and Anandan [6]. Furthermore, let us note that our
formulation bears similarities with the method of Memin and
Perez [18] in which local parametric models have been also
proposed. However, their work relies on motion information it-
self for detecting motion discontinuities and does not consider
backward/forward correspondences.

I1l. OPTIMIZATION

The minimization of eq. (3) is a multidimensional non-linear
optimization problem of a function with interdependencies
between the unknowns and local minima. Such problems are
traditionally solved using iterative deterministic (e.g. [6]) or
stochastic (e.g. [12]) methods. For computational efficiency
we adopt a deterministic approach which iterates through three

main stages as these are outlined in Table I. The first stage
is the optimization with respect to the direction field. At this
stage we visit each pixel z and optimize the cost function
with respect to o, keeping all the other parameters frozen.
The optimization with respect to o, is achieved by solving an
equivalent weighted Least Squares problem. The second stage
consists of making a linear approximation of the data residual
with respect to the motion parameters. Finally, the third stage
is the optimization with respect to the motion parameters. At
this stage we visit each patch s and optimize the cost function
with respect to 6, keeping all the other parameters frozen.
The optimization with respect to 6, is achieved by solving
an equivalent weighted Least Squares problem. Our scheme
iterates a fixed amount of times within the third stage.

In order to overcome local minima and to estimate motions
large in magnitude we a) incorporate our method in the
multiscale framework using a Gaussian image pyramid [2] and
b) reduce gradually (at each iterations &) the scale parameters
o4 and o, in the robust function p(). The latter is common
practice in reconstruction problems that involve preservation
of discontinuities and is in the same lines with the “Graduated
Non Convexity” algorithm by Blake and Zisserman [8]. Let us
note here, that the choice of the values of the scale parameters
depends on the robust function p() and on our choice of
the value 7 above which a residual should be consider as
an outlier. A good discussion can be found in [6] which
derives that for the Lorentzian the scale parameter o should
be chosen as o = 7/+/2. In our experiments we adopted a
linear reduction scheme [6].

For a fixed number of iterations
A: Visit each pixel
Optimize cost w.r.t. o by solving an equivalent weighted LS problem
B: Make a linear approximation of the data residuals with respect to the
motion parameters
C: For a fixed number of iterations
Visit each patch s
Optimize cost w.r.t. 85 by solving an equivalent weighted LS problem
Goto C

Reduce o4 and o
Goto A

TABLE |
OUTLINE OF THE OPTIMIZATION SCHEME

In what follows we will explain in more detail the different
stages of our optimization scheme.

A. Optimization with respect to the direction field

At the minimization of the cost function with respect to the
o, at iteration k+ 1 we keep all the other unknowns frozen as
these were estimated in the previous iteration. Then each site
z is visited and updated. Formally, we seek o, that minimizes
the local cost:

Lo(0z) = Xap(ra(0%, 0, 2)) + Ao ZP(% — o) (11)
z'€N,
= /\dP(Osz; (Gﬁ,x) +(1- Oz)rg(afax)) + )‘OZP(O:E - 051)
z' €N,
(12)



under the constraint 0 < o, < 1.

We make a substitution that comes from the field of robust
statistics and turns the optimization of eq. (11) into a weighted
Least Squares problem. In schemes like ours, the minimization
of a cost function that is the summation of “robust” terms p(r)
(w.r.t. the residuals r) can be shown to be equivalent (for a
detailed discussion see [7] [14]) to a scheme which at iteration
k 4+ 1 minimizes the summation of weighted squares 75412
of the residuals r. The equivalence between the minimization
schemes holds for weights [k+1 that are defined as [*+! =
%. Since ¥+ is in fact a function of ~*, in the subsequent
derivations we will use the notation I(r*) when referring to
it. Finally, let us note that the above derivations are valid only
for robust functions p() that satisfy certain conditions [7]. In
our experiments p(r) was taken to be the Lorentzian function
(i.e. p(r) = log (1 +1 (5)2))

Then, the equivalent weighted Least Squares problem is the
minimization, with respect to o,, of

Nala(ra(6%, 08, 2))ra (0% 0p, )2+ N, Z l,(0F —ok)) (0, —0F))?

Z'IENz
(13)
under the constraint

0<o, <1 (14)

Eq. (13) is quadratic with respect to o, therefore of the form

a0 + o, + 7, (15)

where the coefficients «, 8 and « can be obtained by sub-
stituting eq. (5) in eq. (13) and after some algebra. Omitting
the derivations and the functional dependencies for notational
simplicity, we give the coefficients as:

a=Nla(r] —rh)>+ X > L (16)
z'EN,
B =2xalarly(r] —rh) —2X, > l,0k (17)
' €N,
2 2
v=Xala (rh)" + X0 > 1o (o%) (18)
z'EN,

The quadratic eq. (15) has a global minimum at —%. It can
be easily shown (we omit the proof) that under the constraint
of eq. (14) the global minimum is at

oftl = mw{o,min{l,—%}}.

B. Linear approximation of the data residual

At the second stage of our method we make an approxi-
mation of the data residual that is linear with respect to the
motion parameters. We do so by taking a first order Taylor
expansion of the data residual 74(65,0%,2) around g, = 6*.
Using eq. (5) this leads to

id(omoﬁaw) = vz;Td(éSJOgaw)(as_és)_FTd(éS:OI;J'7/')- (20)

(19)

This approximation is central to our estimation scheme. In
particular the gradient of the data residual with respect to
the motion parameters (i.e. Vg ,74) is the main ingredient

of the subsequent derivations. In Appendix A we derive it
analytically, in terms of the motion model matrix m and the
image gradient V,I. More specifically, in Appendix A, we
show that

Vora(0, o’;, x) = mgy(0, o’;, x). (22)

where g, (6, 0", z) is a linear combination of the spatial image

Yz

gradient in the previous and in the next frame, that is

9:(0,08, 2) = ok, I(z + mT6,t +1)

+ 1=V I(x—mTo,t—1) (22

Furthermore, in Appendix A, we show that eq. (20) is a form
of the residual of the optical flow equation (i.e. (VoI)Tu+1I;).
More specifically, in Appendix A, we show that

Fd(awozax) = gm(HAs,o;“,x)u(@s—és,w)—krd(és,o’;,x) (23)

C. Optimization with respect to the motion parameters

Clearly, the optimization of eq. (3) with respect to the
motion parameters of patch s (i.e. 85) keeping all the other
parameters frozen is equivalent to the optimization of the local
cost

LEY(05) = Aafa(0s,08,8) + Ac D fel(0s,0%,5,5") (24)

s'ENs

which, using eg. (4) and eq. (6),

=M\ Z p(Fd(osa 027 27)) + }‘Czbss’p(rc(asaaf’aﬂ(& sl)))
z€Q(s) s'E€EN,
(25)

where 74(05, 05, 2) is as defined in eq. (20).

Subsequently, as in section IlI-A, we turn the optimiza-
tion of eq. (25) into a weighted Least Squares problem by
substituting, at iteration k + 1, the robust function p(r) by
the quadratic function I(r*)r2. The equivalent weighted Least
Squares problem that results is the optimization, with respect
to 4,, of

~ ~ ~ 2
Na D LaFa(0, 05, 2) (Vra(Bss 08, ) 05 — 6) + 146y, )
z€Q(s)
+ e D bawle(re(65,0%))(6, — 05)7 M,y (6, — 05)

s'ENs
(26)

The minimum of eq. (26) with respect to 6, is at the solution
of the linear system

[Ad + Ac] 65 = Bd + Bc (27)
with

Ag=Xg Y 1aVrqV'rg (28)
z€Q(s)

Ac =X Z lebgs Mgy (29)
s'€ENs

Bi=Xa Y. la[VraV7rad, —raVra)  (30)
z€Q(s)

Bo=MAc Y lebsy Myy6%, (31)
s'€ENs



(a) Original frame

(b) Intensity segmentation

(c) Model order

(d) Direction field (og)
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(e) Estimated motion field (10x)

Fig. 2.
parameter motion model, a grey indicates a four parameter motion model
and white the full affine motion model. The initial intensity segmentation is
obtained with no morphological simplification and 7' = 5.

“yosemite” sequence. In Fig. 2(c) a black value indicates a two

where the functional dependencies of the terms that comprise
eg. (28) - eq. (31) are omitted for notational simplicity. In the
linear system of eq. (27) the role of the data and the motion
regularization constraints is apparent. This linear system is
straightforwardly solved, that is

O+ = [Aq+ Ac] " [Ba+ B (32)
where [44 + A.] ™" is the covariance matrix of our estimation.
Models of variable order are treated by considering only the
relevant rows and columns in eq. (32).

IV. EXPERIMENTAL RESULTS

We have applied our method in a number of synthetic and
real image sequences and here we summarize the results. The
synthetic image sequences are the well-known “yosemite” im-
age sequence as well as a number of image sequences in which
a rectangular is translated and rotated in a static background.
We also present results for two real image sequences, namely
the “jardin” image sequence, that contains complex articulated

(f) Error motion field (10x)

human motion in a moving background and the “calendar” im-
age sequence that contains rigid objects that translate and ro-
tate in a moving background. In all of the experiments, patches
were extracted with the segmentation scheme described at
Section 1I-A. Typical segmentation results are depicted in
Fig. 4 and Fig. 5, where the degree of oversegmentation is
obvious. For all of the experiments (except of one experiment
for the “yosemite” sequence) we used a 5 x 5 square structuring
element for morphological operations (opening and closing by
reconstruction). The order of the models that were used for
each patch were chosen depending on the dimensions of the
patch in question. Segments with width (height) smaller than a
threshold (set to 35 pixels throughout all of our experiments)
are constrained to parametric models that are constant with
respect to i(z) (i(y) respectively). For all of our experiments
we kept the scale parameter o4 of the data residual constant
(64 = 10/+/2) and we adopt the linear reduction scheme
of Black and Anandan [6] for the scale parameter o. of the
motion residual between the values of 1.5/+/2 and 1/2v/2. All
the results were obtained with a 3 level multiscale framework
with 20 iterations (an iteration here is a full cycle through
the steps A, B and C of Table I) at each level except of the
results obtained for the “jardin” image sequences for which
10 iterations were used at each level. Finally, for all the



(2) Intensity segmentation
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(b) Error motion field (10x)

Fig. 3. “yosemite” sequence. Results obtained with an intensity segmentation
using a 5 x 5 structuring element for morphological simplification and 7" = 2.

experiments the motion parameters were initialized to zero (i.e.
6s = 0) and the direction field at each pixel was initialized to
0.5 (i.e. 0, = 0.5) so that at the beginning of the optimization
procedure the backward and the forward constraints have equal
significance. Typical execution times are around 90 seconds on
a 2Ghz Pentium for a 320 x 250 image.

The results for the “yosemite” image sequence are sum-
marized in Fig. 2 and in Table II. In Fig. 2 we present the
original frame, the initial intensity segmentation, the order
of the parametric model of each patch, the estimated direc-
tion field, the estimated motion field and the error in the
estimated motion field (omitting the sky region). The initial
intensity-based segmentation was obtained without an initial
morphological simplification and with 7" = 5. Note the degree
of oversegmentation in Fig. 2(b) (a large number of patches
contain single pixels) which clearly demonstrates the ability
of the proposed method in dealing with patches of different
sizes. The structure of the motion field is accurately recovered
and there is little structure in the true error except around
the image borders. It is also clear that the direction field is
quite well estimated, with lower values at areas near the image
borders that are visible only at the previous frame and average

values at the areas at the rest of the image that are visible
at both frames. The true angular error (Table II, last row)
remains low and comparable with the best results obtained
so far by other researchers in the field®. We have obtained
an average error (last row of Table I1) which is lower than
the method of Black and Jepson [5] that does not impose
inter-patch constraints, but higher than the method of Memin
and Perez that perform adaptive motion-based segmentation.
Our method suffers mainly at the lower left corner where the
initial intensity segmentation cannot produce larger patches.
Therefore, at these areas, the benefits of the initial intensity
segmentation are limited.

Technique Average error | Std. deviation | Density
Szeliski & Coughlan [27] 2.45° 3.05° 100%
Szeliski & Shum [28] 2.20° 5.87° 23.1%
Black [4] 3.52° 3.25° 100%
Black & Anandan [6] 4.46° 4.21° 100%
Black & Jepson [5] ° °
(Parametric) 2.9 3.2 100%
Black & Jepson [5] 2.29° 2.25° 100%
Bab-Hadiashar & Suter [3] 1.97° 1.96° 100%
Memin & Perez [18] 1.58° 1.21° 100%
sel =5x5T=2 2.73° 1.99° 100%
Patch 0 =1,T=5 2.70° 2.13° 100%
Motion| 0, =0, T =35 2.37° 2.94° 100%
T=5 2.24° 1.81° 100%
TABLE 1l
COMPARATIVE ANGULAR ERROR ON “YOSEMITE” SEQUENCE (WITHOUT
SKY REGION)

For the same sequence, in Table Il we summarize the results
obtained for three additional number of settings. In order to
illustrate the influence of the initial intensity segmentation,
we present results obtained with the “standard” parameters
for our initial intensity segmentation, that is with a 5 x 5
structuring element for morphological simplifications and with
T = 2. Such an initial intensity-based segmentation produces
smaller patches for the facet of the mountain (Fig. 3(a)) which
results in a larger angular error at that area (Fig. 3(b)) in
correspondence to the one obtained when a large patch covers
most of facet of the mountain (Fig. 2(b)). This seems to
be the main reason for a relatively higher average angular
error (row 9, Table II). In order to illustrate the influence of
the direction field we summarize the results obtained with
fixed values of the direction field that correspond either to
backward only (o, = 0) or to forward only (o, = 1) motion
estimation. As expected, since the “yosemite” is a sequence
with zoom and thus with occlusions mainly in the next frame,
the worst performance is obtained with the forward only
motion estimation while the backward only motion estimation
produced comparable results (rows 10-11, Table II).

We have also generated six synthetic image sequences
namely r1-r4 and t1-t2 in which we translate/rotate a rectangle
in a static background. The rectangles contain different degree
of texture. In sequences r1-r4 we use as the rectangle a frame
from the “rubic” image sequence, which has large areas with
low intensity variation and in sequences t1 and t2 we use a

IMore results can be found in [22]



(a) 2nd frame of t1-t2

(d) 2nd frame of r1-r4

(c) 3rd frame of t2

(e) Detail of the intensity segmentation

Fig. 4. “Synthetic” image sequences: Translating/rotating rectangulars
Seq. mean o Vectors with error less than (%)
) _ 10 20 3° 59 10°
frame for the “trees” image sequence. The first frames for ri | 0.82° | 7.05° | 95.76 | 97.43 | 98.17 | 98.58 | 98.86
each group of sequences, the corresponding initial intensity fg (1)-‘;?° Z-gg" gg-;g gg-ig 22'33 g;-gg ggéi
. r .71° .82° . . . . .
segmen_tatlon_s a_nd the second frame of_sequences r4 and_ t2 7 187 =535 1 8327 | 5688 | 83.78 | 90.88 | 9485
are depicted in figure 4. In Table 111 we give the corresponding 1 0.30° | 4.07° | 9843 | 98.71 | 98.94 | 9929 | 99.44
translation and rotation parameters. 2 [ 0.91° | 6.09° | 9371 | 9456 | 95.19 | 95.84 | 97.48
ri[6] | 7.29° | 16.99° | 77.14 | 80.63 | 82.35 | 83.76 | 84.72
Sequence T > T 3 A& 1 r216] | 5.00° | 12.87° | 75.63 | 79.27 | 81.23 | 82.94 | 84.24
(w,v, ) (5,2,0°) (10,2,0°) (5,1,0°) (5,2,5°) (5,2,10°) 3 [6 2.03° 7.93° 78.05 | 82.74 | 86.40 | 91.96 | 96.45
= = = = = = r4 [6] | 5.46° | 15.78° | 77.60 | 80.78 | 82.70 | 84.90 | 88.00
TABLE III t1[6] | 2.06° | 8.64° | 9154 | 92.36 | 92.77 | 93.25 | 9351
TRANSLATION AND ROTATION PARAMETERS FOR THE SYNTHETIC IMAGE t2[6] | 1.52° | 7.99° | 91.26 | 92.44 | 93.15 | 94.25 | 96.59
SEQUENCES
TABLE IV
.. COMPARATIVE RESULTS FOR SYNTHETIC IMAGE SEQUENCES: ANGULAR
The results for the synthetic image sequences are sum- ERROR

marized in Table IV where the average error, the standard
deviation and the percentage of motion vectors whose angular
error is smaller than certain thresholds are presented for
the proposed method and the pixel-based method presented
in [6]. The proposed method consistently outperforms the
method in [6]. More interestingly, the larger differences in
the performance are recorded for the sequences r1-r4 which
contain large areas with low intensity variation. In the pro-
posed scheme, such areas form large patches (fig. 4(e)) which
makes it possible to derive data constraints that can support
the estimation of the few parameters of their motion model.
In comparison, the data constraints of pixel-based methods are
completely unreliable within such areas.

Note that the synthetic image sequences contain both areas
that are occluded at the next frame and areas that are occluded
at the previous frame. In order to illustrate the positive
influence of the direction field in such a setting, we provide
in Table V comparative results with forward only motion
estimation (i.e. o, = 1). It is clear that the backward/forward
motion estimation consistently outperforms the one direction
motion estimation especially for the sequences that the motion
is rather large in magnitude.

In order to demonstrate the behavior of our method in
an image sequence with a more challenging motion we



Sequence rl r2 tl
(1, o) full method | (0.82°,7.05°) (1.45°,9.96°) (0.30°,4.07°)
(1,0), 00 =1 (0.81°,7.47°) | (1.76°,11.63°) | (0.48°,5.84°)
Sequence r3 r4 t2
(p, o) full method | (0.71°,4.82°) (1.87°,7.58°) (0.91°,6.09°)
(1,0), 00 =1 (0.81°,5.00°) | (2.65°,13.16°) | (1.01°,7.03°)

TABLE V
COMPARATIVE RESULTS WITH THE FULL METHOD (I.E. WITH ESTIMATION
OF 0) AND WITH FORWARD ONLY MOTION ESTIMATION (I.E. WITH A
FIXED DIRECTION FIELD 0z = 1) FOR THE SYNTHETIC SEQUENCES

(b) Intensity Segmentation

Fig. 5. “Jardin” sequence. Two walking men in a moving background

present results for the image sequence “Jardin” that depicts
two walking men in a moving background. In Fig. 5 we
present the first frame of the sequence and the correspond-
ing intensity segmentation while Fig. 6 depicts the motion
field and its horizontal and vertical components as these
were estimated by the proposed method. It is clear that the
motion field is estimated rather well, the discontinuities are
well preserved and, although the size of the patches vary
considerably (Fig. 5(b)), the motion field is not noisy. The
largest inaccuracies take place at the area between the first
man and the left border of the image in which there is not
much information about the horizontal motion, and at very
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Fig. 6. Results for“Jardin” sequence with the proposed method. First row:
Horizontal motion component. Second row: Vertical motion component. Third
row: Full flow.

thin areas such as the stick of the broom that the second man
carries. Furthermore, the “textured” motion of the water of the
fountain is oversmoothed. However, our method constitutes an
improvement over pixel-based methods such as [6] (Fig. 7).
Indeed, it is clear that the discontinuities are better preserved,
the motion of the legs of the two men is better recovered and
the motion field is in general less noisy. Although the noise in
the motion field estimated by the pixel-based method [6] can
be probably reduced by applying the patch-based improvement
described in [5], the motion of the legs of the first man
would never be recovered since the initialization is far from the
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Fig. 7. Results for “Jardin” sequence with the method of Black [4]. First
row: Horizontal motion component. Second row: Vertical motion component.
Third row: Full flow.

correct motion field. These are better illustrated in Fig. 8, in
which we present details of the horizontal motion component
(first row, Fig. 6 and Fig. 7). Finally, in Fig. 8(c) we present
a detail of the estimated direction field and in Fig. 8(d) a
detail of the the horizontal motion component that is estimated
for a fixed direction field (o, = 0). Although the direction
field is not perfectly estimated, in rough lines it corresponds

@ (b) © (d

Fig. 8. “Jardin” sequence. (a)-(b) detail of the horizontal component of the
estimated motion field (c) detail of the estimated direction field o, and (d)
detail of the horizontal component of the estimated motion field for backward
only estimation (with fixed o, = 0).

to the direction at which the true correspondences lie?. In
comparison, when the direction field is fixed (o, = 0) the
motion estimation is clearly deteriorated at areas that are
occluded at the previous frame, such as the area behind the
leg of the man.

Finally, in Fig. 9 we summarize the results for the “cal-
endar” image sequence in which a number of rigid objects
translate/rotate in front of moving background. Our method
was able to recover well the structure of the motion of the
scene and at the same time localize quite well the motion
discontinuities. The most obvious errors are in the area in
front of the ball which could be probably due to its shadow
and at the thin area under the train where the motion field
seems oversmoothed.

V. CONCLUSIONS

In this paper we have presented a method for the estimation
of dense motion fields which is based on the application of
strong parametric constraints on the motion field within image
patches and weak smoothness constraints on the motion field
along the edges of neighboring patches. We have expressed the
motion estimation as an optimization problem and solved it in
an iterative scheme for the motion parameters of the patches.

The advantages of the proposed method can be summarized
as follows:

« The initial intensity segmentation groups in advance areas
with low intensity variation into larger patches that ex-
hibit larger intensity variation and which, in general, yield
more reliable data constraints. Furthermore, by utilizing
the initial intensity segmentation we enforce that in the
estimated motion field motion discontinuities (if any) will
coincide with intensity edges.

« Motion estimation and regularization at patch level are
expressed in a single framework. Our framework is

2|t is also interesting to note that it is rather textured at areas that the motion
estimation is not very accurate, especially if a small regularization coefficient
Ao IS chosen.



Fig. 9. “calendar” sequence: From left to right and top to bottom: Original
frame, estimated motion field, horizontal motion component and vertical
motion component.

general enough to contain pixel-based motion estimation
schemes and region-based motion estimation schemes as
special cases. Moreover, our formulation uses parametric
models of different order for each patch, depending on
their size and shape, and can deal successfully with
patches of different, even very small, size.

Results were presented for both synthetic and real image
sequences. We were able to obtain accurate piecewise smooth
motion fields in the presence of motion large in magnitude
and motion discontinuities.

VI. APPENDIX A

In this appendix we will derive eq. (21) and eq. (23).

Eqg. (5) defines the data residual at z as a linear combination
of the forward and backward data residuals. Let us derive the
gradient of the forward data residual 7. In order to do so,
we will change slightly the notation, so that it is a function of
u(9), that is r£ (u(8,z),z). Then,

r}(u(®,2),2) = I(z +u(6,2),t +1) = I(z,t)  (33)

implies that
Vor) (u(6,2),z) = Vo(I(z +u(b,z),t + 1) — I(=,t))
(34)
=Vol(z+m"0,t+1) (35)
=mV I(z +mT0,t+1). (36)

Similarly the gradient of the backward data residual is given
as,

Vorb(u(®,z),z) = mV I(x —mT6,t — 1) (37)

Then, the gradient of the data residual (eq. (5)), is a linear
combination of the gradients of rg (eq. (36)) and ¥ (eq. (37)),
that is

V9Td(u(07$)7 OI;,SC)
= OI;VGT(‘; (u(aa CE), l’) + (1 - OI;)VQTZ(U(H,II)),.'I))

(38)
(39)

=ofmV, I(z +mT0,t+ 1)+ (1 - o )mV, I(x —mT0,t - 1)

(40)

Rearranging the terms of eq. (40) and defining g, according
to eq. (22) we arrive at eq. (21), which concludes the proof.



Under this expansion it is clear how to construct the linear
system of eq. (27) which is the core of our estimation scheme.
Note that eq. (21) is derived for a general motion model matrix
m. In order to make the derivation more clear we derive
analytically the gradient of the data residual (with respect to
the motion parameters) in the case of the affine motion model.
We do so by substituting the affine motion model matrix m
(eg. (2)) in eq. (21). That is,

Vg’rd(u(ea CL'), SL‘)
= [9i(e) 1(2)9i(x) 1(@)9i(z) 9j(a) 1()Gj(a) 1(Y)Gj(x)]
(41)
where (9i(z), 9j(z))" = 9a-

In order to derive eq.23 we simply substitute eq.21 in eq.20.
Then,

~

F(esax) = vglrd(u(ésaw)ax)(es - és) + rd(u(esax)am)
(42)
= (mg.)" (65 = 05) + ra(u(s, @),z (43)
= g7 (m" (05 — 65)) + ra(u(bs, ), ) (44)
=gl u(, — As,a:) + rd(u(és,m),x) (45)
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