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Abstract—We propose a new method for object tracking in image sequences

using template matching. To update the template, appearance features are

smoothed temporally by robust Kalman filters, one to each pixel. The resistance of

the resulting template to partial occlusions enables the accurate detection and

handling of more severe occlusions. Abrupt changes of lighting conditions can also

be handled, especially when photometric invariant color features are used. The

method has only a few parameters and is computationally fast enough to track

objects in real time.

Index Terms—Object tracking, occlusions, appearance tracking, robust Kalman

filter.
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1 INTRODUCTION

THIS paper is concerned with tracking rigid objects in image
sequences, using template matching. In essence, object tracking is
the process of updating object attributes over time. The complete set
of attributes include position, motion, shape, and appearance. The
appearance is comprised of a set of photometric features represent-
ing the object region in a frame. To suppress noise and to achieve
tracking stability, the attributes are smoothed by a temporal filter
like the Kalman filter or Monte Carlo filters.

Many existing methods smooth the position and motion of the
object only [1], [2], [3]. In such an approach, the benefit of the
Kalman filter is just the smoothing of the object trajectory [1], [2].
Smoothing by a Monte Carlo filter is useful in dealing with the
problem of background clutter as it allows for the tracking of
multiple hypotheses [3]. In both cases, however, the temporal filter
has no effect on improving the object localization, the main task of
the tracking. The object has to be detected by an independent
technique that may be based on edge detection [1], a domain
specific method [3], or matching with a fixed template acquired
from the first frame [4], [5]. Note that such an approach requires a
reliable a priori object appearance model.

In the absence of an a priori object appearance model, such a
model has to be learned on the fly during tracking. In such an
approach, the algorithm needs a memory to store the learned
appearance. This memory serves as a template for the object
localization in the next frame. The template is normally initialized
by the user and then updated over time. The updating is necessary
because the object appearance can change. The fast updating
scheme that acquires the template from the preceding frame [6],
[2], [7], [8] will fail at the presence of occlusions or abrupt changes
in lighting condition. To make the tracking robust to these factors,
an appropriate temporal smoothing of appearance is needed. The
smoothing should provide a more persistent template updating
scheme which would be insensitive to sudden changes of the object
appearance and, at the same time, be able to adapt to slow changes.

Based on our previous preliminary presentations [9], [10], this
paper presents a new template updating algorithm that satisfies
the two qualities: simplicity and robustness. Simplicity implies that
the algorithm is easy to implement and has the minimum number

of parameters. Robustness implies the ability of the algorithm to
track objects under difficult conditions which include:

1. severe occlusions and lighting changes,
2. changing of object orientation or viewpoint,
3. background clutter and the presence of other moving

objects in the scene,
4. a moving camera, and
5. nontranslational object motion like zooms and rotations.

To reduce complexity, we restrict ourselves to motion types
where the deformation of the object shape in the image plane is
described by a global transformation like the affine transformation.
This assumption is justified for a large range of tracking
applications where the object motion is rigid or the object is
sufficiently distant from the camera. By doing so, we do not need a
separate model for the object shape since this can be determined
from the object motion.

Thepaper is structuredas follows: Section2providesanoverview
of the relatedmethods. Section 3 is themain section,which describes
the template matching and the tracking of pixel appearance features
using the Kalman filter. This section also presents a method for
parameter tuning. The handling of severe occlusions is discussed in
Section 4. Section 5 shows experimental results.

2 RELATED WORK

Some recent methods for object tracking also smooth the object
appearance [11], [12], [13], [14]. The feature type ranges from gray
value of pixels [11], phase data from wavelet filters [13], to global
statistics like mean color [12] or histogram [14].

The method of [11] proposes a MAP framework for tracking a
set of attributes of video layers, including motion parameters, layer
labels, and intensities. In particular, the intensity of each layer is
updated using a weighted sum between the old template and the
current observation data, with the weights being the posterior
probabilities of layer labels. The method can be powerful for the
segmentation of an entire video frame into moving layers, but is
expensive for the tracking of a single object. Furthermore, we
remark that, while there is a clear dependence between motion,
shape, and location, there is very little dependence between those
attributes and appearance. We can therefore separate the filtering
of appearance from the filtering of motion and velocity to get a
much simpler model formulation without losing much of tracking
performance. This separation is actually the case for the other
methods [12], [13], [14], [9].

The method in [12] uses a particle filter to track global statistics
of object shape and color. Inserting color to the state of the particle
filter yields robustness to background clutter and occlusions.
Sampling in the state space, however, is rather expensive. In fact,
the clutter problem can also be overcome by using a more
discriminative appearance model, for example, the collection of
pixel features as used in this paper.

While [11], [12] use a single Gaussian to model the object
appearance, a more sophisticated model is used in [13]. The model
is a mixture of three Gaussians. The first one corresponds to stable
image structures. The second Gaussian takes care of changes in
segmentation labels, whereas the third Gaussian allows for control
over the filter adaptability. Although the mixture model gained in
expressibility over the one Gaussian, the optimal state has to be
estimated via an iterative EM algorithm, requiring many more
computations, as is also the case for [14].

In [15], the Kalman filter is used to track the pose and pixel
intensity of a image patch. The approach is somewhat similar to
our previous work [9]. The essential difference, however, is that
the paper does not address occlusions. In particular, while the
standard Kalman filter is able to adapt the template to changes of
object appearance, it is vulnerable to outliers caused by occlusions.
Reference [15] also does not give a recipe for setting the parameters
of the Kalman filter.
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In general, the above models indeed offer flexibility for the
tracker to cope with partial occlusions and sudden changes in
illuminating conditions and object pose. The flexibility, however, is
at the cost of more computationally expensive schemes for model
estimation. The number of magic parameters is usually large. And,
the methods in the references handle partial occlusions only,
failing for severe or complete occlusions.

3 TRACKING A MULTIVALUE TEMPLATE

3.1 The Appearance Model

Themajor idea of the presented approach is to keep track of an object
appearance model defined as the collection of photometric feature
vectors for pixels inside the target region. As the image region of
rigid moving objects can be obtained from a fixed template region�
via a coordinate transformation, it is convenient to map the feature
vector at a point ~xx in the target region at time t to the template feature
vector fftðxÞ defined for the corresponding point x 2 �.

The components of the feature vector may be the RGB intensity
values:

ffRGBt ðxÞ ¼ RtðxÞ; GtðxÞ; BtðxÞ½ �T : ð1Þ

If one wishes to make an intensity independent tracker, the color
invariants proposed in [16] can be used. A fast implementation can
be achieved as follows [17]:

ffc1c2c3 ¼ R

maxfG;Bg ;
G

maxfR;Bg ;
B

maxfR;Gg

� �T
: ð2Þ

In a special case, the vector can be reduced to a scalar being the
pixel gray value:

ffI ¼ 1

3
RþGþ B½ �: ð3Þ

3.2 Temporal Estimation of Object Appearance Model

This section presents a robust Kalman filter for estimating the
template feature vectors.

The feature vectors are tracked independently by individual
temporal filters. As the temporal filter is described for one pixel,
through the section we use fft instead of fftðxÞ.

Following the Bayesian approach, the feature vector fft is
estimated by maximizing its posterior probability pðfftjzz1:tÞ condi-
tioned on the history of measurements zz1:t ¼ fzz1; . . . ; zztg. As will be
explained in Section 3.3, the measurement zzt is obtained by
matching the recent template to the current image. Under the
Markov assumption on the state process, the estimation is possible
if the following two probabilistic models are given: the prediction
model pðfftjfft�1Þ and the observation model pðzztjfftÞ.

As the object photometry slowly changes over time, we assume
that thepredicted state remainsunalteredapart fromGaussiannoise:

pðfftjfft�1Þ � N ðfft�1;WWÞ; ð4Þ

where Nðfft�1;WWÞ denotes the Gaussian distribution with the
mean fft�1 and the covariance matrix WW . This matrix measures the
fluctuation of appearance features, which depends mostly on
camera and surface reflection noise as well as changes in
appearance due to object movement with respect to the camera
and the light source. As the object points have similar motion,WW is
set the same for all template pixels.

The observation model should be able to cope with outliers
which are assumed to be caused by occlusion. In this case, the
Gaussian observation model of the standard Kalman filter could
lead to a wrong estimation of the template appearance. To limit the
impact of the outliers we replace the square in the Gaussian
distribution with a robust error norm. First, we define the
measurement error as the Mahalanobis distance between the state
and the measurement:

�ðzzt; fftÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½zzt � fft�TRR�1½zzt � fft�

q
; ð5Þ

where RR is the scale matrix. Again, we use the same RR for all
template pixels. Estimation of RR will be discussed in Section 3.4.
The observation model is defined as:

pðzztjfftÞ ¼ ��1jRRj�1=2 expf��ð�ðzzt; fftÞÞg; ð6Þ

where � ¼
R
expf��ð

ffiffiffiffiffiffiffiffi
�T �

p
Þgd� is the normalization constant, and

jRRj denotes the determinant of RR. Here, � is the robust function.
We use Huber’s function:

�ð�Þ ¼ �2=2 if j�j < c
cðj�j � c=2Þ otherwise;

�
ð7Þ

where c is the cutoff threshold. Since (6) is identical to the Gaussian

distribution for j�j < c, we should set c to the value where the

measurement distribution deviates from the Gaussian distribution.

To do this, note that, if zzt was normally distributed, the squared

norm �2 would have a chi-square distribution with d-degrees of

freedom,where d is the dimensionality of zzt. Thus, we set c ¼
ffiffiffiffiffiffiffiffi
�2
d;�

q
,

where �2
d;� is the �th quantile of the chi-square distribution with d

degrees of freedom and � is the level of significance, typically set to

0.99. If the measurement error exceeds this threshold, it is likely that

zzt falls in the non-Gaussian part of the distribution and, therefore,

the squared error needs to be replaced by the linear norm.
Having defined the two models, the posterior probability of fft

is calculated via the recursive formula:

pðfftjzz1:tÞ / pðzztjfftÞpðfftjzz1:t�1Þ

/ pðzztjfftÞ
Z
fft�1

pðfftjfft�1Þpðfft�1jzz1:t�1Þ: ð8Þ

As the observation model pðzztjfftÞ is non-Gaussian, the standard
Kalman filter no longer applies. Moreover, it is difficult to derive
an analytical solution for fft. We present here an approximation
solution by approximating pðfftjzz1:tÞ by a Gaussian, while preser-
ving the non-Gaussian form of pðzztjfftÞ. This results in a robust
Kalman filter.

Suppose the previous output distribution pðfft�1jzz1:t�1Þ is
approximated by a Gaussian with mean f̂ffft�1 and covariance
CCt�1. The approximation is reasonable in most cases where
pðfft�1jzz1:t�1Þ is unimodal. Then, the distribution of the predicted
state has a Gaussian form also:

pðfftjzz1:t�1Þ ¼
Z
fft�1

pðfftjfft�1Þpðfft�1jzz1:t�1Þ

¼ N ðf̂ffft�; CCt�Þ;

ð9Þ

where

f̂ffft� ¼ f̂ffft�1 and CCt� ¼ CCt�1 þWW: ð10Þ

Substituting (6) and (9) into (8) yields:

pðfftjzz1:tÞ /jRRj�1=2jCCt�j�1=2 expf��ð�ðzzt; fftÞÞ

þ 1

2
ðfft � f̂ffft�ÞTCC�1

t� ðfft � f̂ffft�Þg:
ð11Þ

The optimal value of fft is obtained from minimizing the function

SðfftÞ ¼ �ð�ðzzt; fftÞÞ þ
1

2
ðfft � f̂ffft�ÞTCC�1

t� ðfft � f̂ffft�Þ ð12Þ

over fft. Setting the derivatives of S to zero, we find the update
equation for fft:

f̂ffft ¼ ½ ð�̂�ÞRR�1 þ CC�1
t� �

�1½ ð�̂�ÞRR�1zzt þ CC�1
t� f̂ffft��; ð13Þ

1100 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 8, AUGUST 2004



where �̂� ¼ �ðzzt; f̂ffftÞ and  � �0ð�Þ=� is the influence function. Unlike
the standard Kalman filter, (13) is to be iterated until stability.  ð�̂�Þ
is 1 if j�̂�j � c and is c=j�j if j�̂�j > c. So, if the measurement error � is
below the threshold, the standard Kalman equations are applied.
Otherwise, the measurement is downweighted.

It remains to find a Gaussian approximation of pðfftjzz1:tÞ, which
will be used in the next tracking step. The mean of this Gaussian is
f̂ffft. An obvious choice of the covariance matrix is the inverse of the
Hessian of S at f̂ffft. The latter is approximated as  ð�̂�ÞRR�1 þ CC�1

t� ,
where the derivative of  is neglected. The update equation for the
covariance matrix is:

CCt ¼ ½ ð�̂�ÞRR�1 þ CC�1
t� �

�1 ¼  ð�̂�Þ�1RR½ ð�̂�Þ�1RRþ CCt���1CCt�: ð14Þ

Equations (10), (13), and (14) in their order constitute the complete
set of the update equations for the appearance tracking filter.

3.3 Template Matching

So far,wehavenotdiscussedhowmeasurements areobtained. So, let
us take a step back to the point before the appearance updating takes
place. Given the collection of the predicted appearance feature
vectors f̂ffft�ðxÞ, these vectors are matched to the current image in
order to determine the measurement for the appearance filter at
time t. Another goal of the matching is to locate the current object
position.

Let ’ be the transformation from the template region � to the
object region and aat be the parameter vector of this transformation
at time t. x0 ¼ ’ðx; aatÞ then denotes the transformation of the point
x 2 �. We consider: translation, rotation, and scaling, so vector aa
has four components a1; . . . ; a4. The transformation equation can
be written as:

x01
x02

� �
¼ ð1þ a4Þ

cos a3 � sin a3
sin a3 cos a3

� �
x1
x2

� �
þ a1

a2

� �
: ð15Þ

The matching is performed by finding the image region that yields
the maximal likelihood with respect to the distribution of fft�. This
is achieved with the minimization:

âaaat ¼ argmin
aa

X
x2�

� � IItð’ðx;aÞÞ; f̂ffft�ðxÞ
� �� �

; ð16Þ

where IItð’ðx;aÞÞ is the feature vector observed in the current image
at the point ’ðx;aÞ. Target matching using robust error functions
has been used in [4] and has been more heavily studied in [18]. The
minimization is efficiently performed by the gradient descent
algorithm in a coarse-to-fine manner. However, as this algorithm
finds a local minimum only, it may result in a wrong location when
the translation is large. To overcome this shortcoming, the gradient
descent algorithm is repeated with a set of initial values of aa with
different translation vectors and the best resulting location is
selected. Once âaaat has been obtained, the measurement of the
appearance filter is defined as zztðxÞ ¼ IItð’ðx; âatÞÞ.

Note that, to prevent sudden changes of at between successive
frames, one could smooth at found in (16) by a Kalman filter
together with the object velocity.

3.4 Scale Tuning

This section considers the setting of the scaling matrix RR. It is
important to set the matrix properly since it decides whether a
pixel is an outlier. Tuning RR is necessary also because the matrix
may vary with time and we should tune the filter accordingly. For
tuning parameters of dynamical systems, powerful EM algorithms

have been developed, see, for example, [19], [20]. However, these
approaches are not efficient in online tracking as they require
iteration over past frames.

We adopt a simpler method which is based on matching the
covariances of the innovation rrt ¼ zzt � fft with their prediction
([21], chapter 10). First, let us calculate the predicted distribution
for the measurement zzt:

pðzztjzz1:t�1Þ ¼
Z
fft

pðzztjfftÞpðfftjzz1:t�1Þ

/ jRRj�1=2jCCt�j�1=2

Z
fft

expf�SðfftÞg;
ð17Þ

where S is given in (12). Again, we approximate this likelihood by
a Gaussian. The Taylor expansion of S around f̂ffft allows us to
integrate the quadratic part of fft to obtain

pðzztjzz1:t�1Þ / ð�̂�Þ�d=2j ð�̂�Þ�1RRþ CCt�j�1=2�
jCCtj1=2 expf�Sðf̂ffftÞg:

ð18Þ

Note that Sðf̂ffftÞ depends on zzt. Let GðzztÞ ¼ Sðf̂ffftÞ. It can be
shown that GðzztÞ attains its minimum at zzt ¼ fft� and the Hessian
matrix of GðzztÞ is approximated by  ð�̂�Þ�1RRþ CCt�. Therefore, (18)
can be approximated by Nðfft�;  ð�Þ�1RRþ CCt�Þ. A good parameter
setting then should satisfy:

ðzzt � ff�t Þðzzt � ff�t Þ
T �  ð�̂�Þ�1RRþ CCt�: ð19Þ

Since CCt� ¼ CCt�1 þWW , (19) relates the two matrices RR and WW .
Assuming that WW is known, we can therefore adjust the matrix RR.
Furthermore, the result is averaged over all pixels in the template
region and over the last k frames, yielding:

RR � 1

kN

Xk
i¼t�kþ1

X
xx2�

 ð�̂�ðxx; iÞÞ½rrirrTi � CCi�ðxxÞ� ð20Þ

Here,N is the number of pixels in the template.We have used k ¼ 25
frames. Note that, in the first tracking steps, RR should be made
positive-definite as a reliable estimate of CCt is not yet available.

4 SEVERE OCCLUSION HANDLING

One major goal of our algorithm is to handle occlusions, the most
unwanted events that often happen in video. The robust Kalman
filter described in Section 3 makes the template resistant against
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Fig. 1. The data flow diagram of one tracking iteration.

TABLE 1
Statistics of the Tracking Results for a Test Data Set

The data set consists of 25 clips containing 29 complete occlusions. The average
duration for each clip is 150 frames.



short-time partial occlusions. It will, however, fail at severe and

complete occlusions where the number of outliers is high. In this

case, it is better to turn off the tracking for the entire template. A

template pixel is regarded as outlier if the measurement error "

exceed the threshold c defined in Section 3.2. An occlusion is

declared when the fraction of outliers exceeds a predefined

percentage �. During the occlusion, the template and parameters

are not updated.
An important point is how to detect the end of the occlusion.

For short-time complete occlusions, this relies on the assumption

that the maximal duration of the occlusion is limited to L frames.

Let to be the time the occlusion is detected. The template is then

matched with the frames from to to to þ L. The end of the occlusion

is the frame, yielding the minimum cost in (16). Since the object

appearance can change a lot after the occlusion, it is appropriate to

reinitialize the template from the observation data, once the end of

occlusion has been determined.
The proposed algorithm handles short-time occlusions. In

general, handling long-time occlusions is difficult. When a partial

occlusion lasts for a long time, the temporal filter will slowly

accept the data at the occluded area. At a long time complete

occlusion, the object can be recaptured only with more powerful

tools for object recognition.

5 EXPERIMENTS

The data flow diagram for one tracking iteration is shown in Fig. 1.
We have implemented the algorithm for three kinds of features:

1) image intensity as in (3), 2) the ðR;G;BÞ vector as in (1), and 3) the

color invariant features c1c2c3 as in (2). These versions are namedA,
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Fig. 2. Tracking results with several kinds of appearance changes. Gray value was used, (3). The current template is shown at the upper left corner and the outlier map is
shown middle left. Outliers are indicated by black.

Fig. 3. Tracking results with a cluttered background and complete occlusions. RGB values were used, (1). Note the insensitivity of the template at the start of the occlusions.



B, and C, respectively. They were applied for tracking objects in 25
video clips selected from TV news and movies. We deliberately
selected clips that include the difficult conditions mentioned in the
introduction, especially those with complete occlusions. For the
comparison, we also used two other tracking algorithms. The
algorithm D uses a template constructed from the most recent
frame. The algorithm E on the contrary fixes the template as in the
first frame of the sequence. The algorithms D and E localize the
target by minimizing the sum of squared intensity differences
between the template and image data.Occlusions are declaredwhen
the average residual exceeds 2.5 times the average residual over the
last 25 frames.

The tracking results for the five algorithms were collected in
Table 1. A lost track is declared when the target occupies less than
25 percent of the region found by the algorithm. As observed in the
table, algorithms A, B, and C outperform the algorithms D and E
regarding the number of lost tracks. Algorithm B that uses RGB
appears to be the most successful despite the high number of
falsely detected occlusions. In fact, false occlusion alarms are not a
serious problem. They only slow the algorithm but they do not
cause the tracking failure.

The method has only a few parameters, which are set as follows:

1. The state transition noise covariance WW ¼ 5II, where II
denotes the identity matrix,

2. the maximal outlier percentage in partial occlusions
� ¼ 30%, and

3. the maximal duration of a severe occlusion L ¼ 25 frames,
which is sufficient for most videos we have.

Some results are shown in Figs. 2, 3, and 4 to provide insights to
the tracking performance. Fig. 2 illustrates the tracking perfor-
mance, including changes of object orientation and lighting,
zooms, and partial occlusions. At the start, the target is in a dark
area due to shadow. As the man enters the room, he turns left and
shows his zoomed side-view. In addition, his face becomes
strongly illuminated. The man still changes the orientation of his
face a few more times. In the second half of the sequence, the
lighting gradually decreases. The camera pans to the right. At
some moment, the face is partially occluded by the hand. The
algorithm E lost track in this sequence since the target appearance
has totally changed in comparison with the first frame. The success
of the Kalman-based templates was due to the ability to adapt to
new appearances of the target. On the other hand, the Kalman
filters do not accept outright the sudden changes due to the partial
occlusion. This can be observed in Fig. 2e, where the hand is not
included in the template but it appears in the outlier map.

Fig. 3 illustrates the tracking performance under the condition
of a cluttered background and severe occlusions. The algorithm
tracks two pedestrians crossing a street. The background is
cluttered and contains many other moving objects with diverse
motion directions. During the sequence, the objects are occluded
completely three times. All the occlusions have been detected and

handled successfully. Algorithm D lost track at the first occlusion
due to the hasty adaptation.

Fig. 4 illustrates the tracking performance under abrupt
changes of the lighting conditions. The sequence contains one
occlusion and several abrupt changes of the lighting condition
created intentionally by turning one of the light sources on and off.
While algorithms A and B successfully detected and handled the
occlusion, they lost track at the moment of the lighting change, see
Fig. 4d. Algorithm C is the only one that succeeded in following
the object till the end in this case. Note, however, that the color
invariants have an inferior performance compared to RGB over the
entire data set, as shown in Table 1. The reason is that the
invariants throw away some information of object appearance.

6 CONCLUSION

This paper proposes a method for tracking objects in image

sequences using template matching. It has revealed that tracking

on object appearance rather than geometry is easier due to better

identification power of appearance features. The multivalue

appearance template is smoothed temporally by robust Kalman

filters during tracking. In particular, outliers due to partial

occlusions are downweighted by an observation model using a

robust error norm and the Mahalanobis distance. The residual

information is exploited to tune the scale parameters automati-

cally. When photometric invariants are used, the method can

achieve the insensitivity to shadow and abrupt changes of

illumination conditions.
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