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Abstract

The paper is concerned with two-class active
learning. While the common approach for col-
lecting data in active learning is to select samples
close to the classification boundary, better per-
formance can be achieved by taking into account
the prior data distribution. The main contribution
of the paper is a formal framework that incorpo-
rates clustering into active learning. The algo-
rithm first constructs a classifier on the set of the
cluster representatives, and then propagates the
classification decision to the other samples via a
local noise model. The proposed model allows
to select the most representative samples as well
as to avoid repeatedly labeling samples in the
same cluster. During the active learning process,
the clustering is adjusted using the coarse-to-fine
strategy in order to balance between the advan-
tage of large clusters and the accuracy of the data
representation. The results of experiments in im-
age databases show a better performance of our
algorithm compared to the current methods.

1. Introduction

In recent years, research interest has been attracted to semi-
supervised learning or learning in the condition that only a
small initial amount of data is labeled while the majority
of the data remain unlabeled. While many methods focus
to improve the supervised learning by using the informa-
tion from unlabeled data (Seeger, 2001), another important
topic is a good strategy in selecting the data to label, con-
sidering that labeling data is a time-consuming job. The
topic is known asactive learning(Lewis & Gale, 1994).

Consider the problem of learning a binary classifier on a
partially labeled database

� � ���� � � � ���� 	 
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��
be the labeled set in which every sample is given a la-

bel � � ������, and
�� � � � ��

. The active learning
system comprises two parts: a learning engine and a se-
lection engine. At every iteration the learning engine uses
a supervised learning algorithm to train a classifier on

��
.

The selection engine then selects a sample from
��

and re-
quests a human expert to label the sample before passing it
to the learning engine. The major goal is to achieve a good
classifier as best as possible within a reasonable number of
calls for labeling by human help.

Current methods on active learning can be characterized by
their base learning algorithms which include probabilistic
naive Bayes (Nigam et al., 2000; Roy & McCallum, 2001),
combination of naive Bayes and logistic regression (Lewis
& Gale, 1994), and the Support Vector Machine (SVM)
(Campbell et al., 2000; Tong & Koller, 2001; Schohn &
Cohn, 2000). The naive Bayes classifier suffers from two
problems. First, the classifier assumes the independence
between the component features of�. This assumption is
often violated. The second problem is that naive Bayes is
a generative model for which training relies on the estima-
tion of the likelihood������. This estimation is inaccurate
in the case of active learning since the training data are not
randomly collected. The paper focuses on discriminative
models including logistic regression and SVM. These mod-
els aim to estimate the posterior probability��� ���. They
are less sensitive to the way the training data is collected,
and hence, are more suitable for active learning. A more
theoretical consideration is given in (Zhang & Oles, 2000).

It is crucial to choose the most “valuable” training samples.
Many methods choose the most uncertain samples which
are closest to the current classification boundary. We name
this approach the closest-to-boundary criterion. This sim-
ple and intuitive criterion performs well in some applica-
tions (Lewis & Gale, 1994; Tong & Chang, 2001; Schohn
& Cohn, 2000; Campbell et al., 2000). Some other crite-
ria have been proposed specifically for SVM. In (Camp-
bell et al., 2000), it is proposed to select the sample that
yields the largest decrease of the margin between the two
classes. The method of (Tong & Koller, 2001) selects the



sample that halves the permitted region of the SVM param-
eters in the parameter space. Both (Campbell et al., 2000)
and (Tong & Koller, 2001) need to predict the values of
the SVM parameters for every possible case where a can-
didate sample might be added to the training set. Since it
is hard to do this efficiently, the references finally resort to
the closest-to-boundary criterion.

The closest-to-boundary methods ignore the prior data dis-
tribution which can be useful for active learning. In (Cohn
et al., 1996), it is suggested to select samples that minimize
the expected future classification error:�

�� ������� ������� ��������� (1)

where���� is the true label of� and ����� is the classifier
output.������ denotes the expectation over��� ���. Due to
the complexity of the integral, the direct implementation of
eq. (1) is usually difficult. However, it shows that the data
uncertainty should be weighted with the prior density����.
If ���� is uniform or unknown, the expectation under the
integral is the contribution by a sample into the classifica-
tion error. The expectation can then be used to measure the
value of the sample in the condition that the computation of
the integral is complex. Under the assumption that the cur-
rent classification boundary is good, it is easy to show that
the error expectation is maximal for the samples lying on
the classification boundary, see section 3.3. When���� is
known and non-uniform, the information about the distri-
bution can be used to select better data. In this paper����
is obtained via clustering which can be done offline without
the interaction with human. The clustering information is
then useful for active learning in two ways. First, the rep-
resentative samples located in center of clusters are more
important than the other, and should be selected first in la-
beling. Secondly, samples in the same cluster are likely to
have the same label, (Seeger, 2001; Chapelle et al., 2002).
This assumption should be used to accelerate active learn-
ing by reducing the number of labeling samples from the
same cluster.

The idea to combine clustering and active learning has ap-
peared in previous work. In (McCallum & Nigam, 1998),
a naive Bayes classifier is trained over both labeled and
unlabeled data using an EM algorithm. Under the con-
dition that the overwhelming majority of the data is un-
labeled, that training algorithm amounts to clustering the
data set, and the role of the labeled data is for initializa-
tion only. Clustering information also contributes to the
selection where an uncertainty measure is weighted with
the density of the sample. The referenced approach does
not match, however, the objective of this paper to combine
clustering with a discriminative model. Several other active
learning schemes also weigh the uncertainty with the data
density (Zhang & Chen, 2002; Tang et al., 2002). Some

methods put more emphasis on the sample representative-
ness by selecting cluster centers from a set of most interest-
ing samples. In the representative sampling by (Xu et al.,
2003), the algorithm uses the k-means algorithm to clus-
ter the samples lying within the margin of a SVM classifier
trained on the current labeled set. The samples at cluster
centers are then selected for human labeling. The method
of (Shen & Zhai, 2003) has a similar idea, but applies the k-
medoid algorithm for the top relevant samples. In general,
heuristic methods have been proposed to balance between
the uncertainty and the representativeness of the selected
sample. They encourage the selection of cluster centers.
However, no measure has been taken to avoid repeatedly
labeling samples in same cluster. In addition, there are im-
portant questions that remain open, namely, how to adapt
the classification model for a training set that contains only
cluster centers? and, how to classify samples that are dis-
puted by several clusters? This paper presents a solution
for these issues using a mathematical model that explicitly
takes clustering into account.

The organization of the paper is as follows. Section 2 de-
scribes the incorporation of the clustering information into
the data model, and provides the theoretical framework for
the data classification. Section 3 presents our active learn-
ing algorithm. Section 4 shows the results of the algorithm
for the classification of images in test databases.

2. Probabilistic framework

2.1. Data model

In the standard classification, data generation is described
by the joint distribution������ of the data� and the class
label � � ����	��. The clustering information is ex-
plicitly incorporated by introducing the hidden cluster la-
bel 
 � ��� � � � ���, where� is the number of clusters in
the data. 
 indicates that the sample belongs to the
-th
cluster. Assume that all information about the class label
� is already encoded in the cluster label
. This implies
that once
 is known,� and� are independent. The joint
distribution is written as:

������
� � ��� ���
�� ���
�� �
� � ��� �
�� ���
�� �
�
(2)

The simple Bayesian belief net representing the model is
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Figure 1. The Bayesian net for the data model.

depicted in Figure 1.



Before giving the specific form for the three distributions
in eq. (2) we remark that a similar scheme has been pro-
posed for the passive semi-supervised learning (Miller &
Uyar, 1996; Seeger, 2001). The conceptual difference,
however, between their approach and ours is in the defi-
nition of��� �
�. In the references,��� �
� is defined within
individual clusters. As a consequence, the estimation of the
parameters of��� �
� can be unreliable due to insufficient
labeled data in a cluster. In our model,��� �
� is defined for
all clusters with the same parameters.

We use logistic regression for��� �
�:
��� �
� �

�
�	 ��������� ��	 ��� (3)

Here,�� is a representative of the
-th cluster which is de-
termined via clustering.� � 
� and� � � are the logistic
regression parameters. In essence,��� �
� is the label model
for a representative subset of the database.

In the ideal case where data is well clustered, once all the
parameters of��� �
� are determined, one could use this
probability to determine the label of the cluster representa-
tives, and then assign the same label to the remaining sam-
ples in the cluster. In practice, however, clustering can be
inaccurate and we will have problems with classification of
samples at border between the clusters. To achieve better
classification for those samples, we use a soft cluster mem-
bership which allows a sample to be connected to more than
one clusters (representatives) with a probability. The noise
distribution����
� is then used to propagate information of
label� from the representatives into the remaining major-
ity of the data, see Figure 2. We use the isotropic Gaussian
model:

����
� � ��	�
����
� ����� ���� 
� � ��
�� (4)

where
��

is the variance assumed to be the same for all
clusters.

representatives

representatives
classifier for the

actual classifier

−

+

+

Figure 2. The classification model

Let ��
� � ��. Then,���� is a mixture of� Gaussians
with the weights

��.

In the presented method, the parameters��, ��, � and� are
estimated from the data. The scale parameter

��
is given

initially. It can be changed during active learning when a
different clustering setting is needed.

2.2. Data classification

Given the above model, one calculates��� ���, the posterior
probability of label of a sample as follows:

��� ��� � ������ ���
 ��� � ������ �� �
�� �
 ��� (5)

where��
 ��� � ����
�� �
������.
Data are then classified using the Bayes decision rule:

����� � � �
if ��� � ���� ��� ��� � ��� � ����� ��� �����
otherwise

(6)
where��� �� denote the current estimates of the parameters.

Observe from eq. (5) that the classification decision is a
weighted combination of the classification decision for the
representatives. Well clustered samples will be assigned
the same label as the nearest representative. Samples dis-
puted by several clusters, on the other hand, will be as-
signed the label of the cluster, which has the highest con-
fidence. Note that the weights��
 ��� are fixed unless the
data are re-clustered whereas��� �
� is updated upon the
arrival of new training data.

3. Description of algorithm

The parameters of the model proposed in section 2.1 are
estimated via likelihood maximization. The data likelihood
comprises two parts: the likelihood of the labeled data and
the likelihood of the unlabeled data:� � ����� ������ ����	 ����� ������� (7)

where�� and�� denote the set of indices of labeled and
unlabeled samples respectively. Expanding������ ���� as
the sum of������� and������ ����, the likelihood (7) can
be written with explicit dependence on the parameters as
follows:����� � � � ��� ���� � � � ��� ��� �� ��������� ������ � ��� � � � ��� ���� � � � ����	

����� ������ ��� � ��� � � � ��� ��� �� (8)

As the amount of the unlabeled data is overwhelming
over the labeled data, the parameters��� � � � ��� and



��� � � � ��� are determined mainly by maximizing the first
term in eq. (8). The maximization of each term can there-
fore be done separately. The clustering algorithm maxi-
mizes the likelihood of the data samples to obtain the clus-
ter representatives and the cluster prior. The maximization
of the label likelihood follows to estimate the parameters�
and�.

(section 3.2)

Initial clustering
(section 3.1)

unlabeled sample, eq. (30)
Selecting and labeling an

Calculating p(y|x)
eq. (5)

Cluster adjustment

STOP?
YES

END

NO

Estimating p(y|k)

data samples

(section 3.4)
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Figure 3. The proposed active learning algorithm.

The block scheme of the algorithm is illustrated in Figure 3.

3.1. Initial clustering

In the presented algorithm, the goal of clustering is data
representation rather than data classification. We therefore
use the�-medoid algorithm of (Kaufman & Rousseeuw,
1990). The algorithm finds� representatives��� � � � ���of the data set��� � � � ��� so as to minimize the sum of the
distance from the data samples to the nearest representa-
tive. See (Struyf et al., 1997) for the detailed implementa-
tion.

The �-medoid algorithm is computationally expensive
when either� or � is large. In practical applications both
numbers are very large indeed. The following simplifi-
cations are employed to reduce computations. First, the
data set is split into smaller subsets. The�-medoid algo-
rithm is then applied to cluster every subset into a limited
number�� of clusters. Clustering is continued by subse-
quently breaking the cluster with the largest radius�� into

two smaller ones with:�� �������� ��� � �� � (9)

where�� denotes the set of indices of the samples in the
-th cluster. The process of cluster fission is completed
when: ���� �� � �� (10)

where� is a predefined constant. We have used� � �
.

Thus, the cluster size and the final number of clusters� is
controlled by the scale parameter

�
.

Once the cluster representatives��� � � � ��� have been de-
termined, the cluster prior

�� is obtained by iterating the
following two equations until stability:

��
 ���� � �� ����� ���� 
�� � ��
�������� ��� ����� ���� 
�� � ��� 
��(11)

�� � �� ����� � �
 ���� (12)

3.2. The estimation of the class label model

This section presents the estimation of the distribution
��� �
� based on the maximization of the second likelihood
in eq. (8). Fixing the cluster representatives��, the likeli-
hood depends only on the parameters� and�:������ ����� ������ ��� ��� �� (13)

From eq.(5),���� ��� ��� ��can be written as a mixture of�
logistic distributions���� �
��� ��with the weights��
 ����.
In case the dimensionality

�
is higher than the number of

the labeled samples, the optimization in (13) is numerically
unstable. The conventional approach to overcome the prob-
lem is to add a regularization term

���
�
� where� is a
predefined parameter. This leads to the minimization of the
following objective function:���� �� � ���
�
� � ����� ��

� ������ �
 ����� ��� �
��� �� 
(14)

Remark that eq. (14) is the extension of the regularized
logistic regression (Zhang & Oles, 2001; Zhu & Hastie,
2001) for the mixture of the logistic distributions.

The minimization of
�

is implemented using Newton’s al-
gorithm which guarantees to find a local minimum. Fur-
thermore, since

�
is convex, it has only one local minimum

which is also the global minimum.

Starting with an initial guess�� and ��, the parameters�
and� are updated iteratively. At each iteration, the param-



eter increment in the steepest direction is:������ � ��
��� (15)

where
��

is the Jacobian of
�

, and
�

is a positive definite
approximation of the hessian matrix of

�
. Using eq.(3), it

can be shown that:�� � ��������� � � � ���� � �������
���� � (16)

where

�� � ����� ������ �
��� ���� ����� �
��� ��� ��
 ����
� ��� ��� ��� ��

(17)
For the hessian matrix, the following approximation can be
used:

� � � �	 �� �� 	 ����� 
�
������ ����� � � (18)

where
	

is the identity matrix and:


� � ��������� �
��� ��� �� ����� �
��� ��� ��
 ����
� ��� ��� ��� ��

(19)
To get more insight into eq.(15), let:

� � ����� 
���� ����� 
� (20)
 � ��
���� � � � ��
���� (21)� � 

� 	 �	 (22)

Here,



is the
��� matrix whose columns are the vectors�
���. One can show that:�� � ��
� ����� � � ���� � (23)�� � ���
� ����� � ����� � � ������ 
�

���� (24)

If
�

is high, it is efficient to invert
�

using the Woodbury
formula: �
� � �� �	 �
��	 	
�
�
�
� � (25)

If all 
� are non-zero, the size of

�


is � ��. Since�
is large, the inverting of

�
as in eq. (25) would be computa-

tionally expensive still. However, remark that for a sample�� there are only few values of
 such that��
 ���� is differ-
ent from zero, especially if�� is a cluster representative. In
the latter case, the sample typically belongs to one cluster

only. As will be seen in the next subsection, the presented
algorithm tends to select the training data from the cluster
representatives. The number of non-zero
� is then small,
approximately the same as the number of labeled samples.
The computation of

�
� in eq. (25) can then be done effi-
ciently by suppressing the columns in



which correspond

to 
� that equal to zero.

3.3. Criterion for data selection

The selection criterion gives priority to two types of sam-
ples: samples close to the classification boundary and sam-
ples which are cluster representatives. Furthermore, within
the set of cluster representatives, one should start with the
highest density clusters first.

We have noted that the computation of the future classifica-
tion error in eq.(1) is complicated. So, instead of choosing
the sample that produces the smallest future error, we se-
lect the sample that has the largest contribution to the cur-
rent error. Although such approach does not guarantee the
smallest future error, there is a good chance for a large de-
crease of the error. The selection criterion is:� � ���������� � ����� ����� ��������� (26)

where� denotes the index of the selected sample.

The error expectation for an unlabeled�� is calculated over
the distribution���� ����:
� ����� ����� ����� ���� � ��������� � ��� 	���� � ���������� 	 ���� � � ������ ��� � ����� ����� � ������� (27)

It should be noted that the probability���� � ����� is un-
known and needs to be approximated. An obvious choice is
to use the current estimation���� � ���� � ��� ���, assuming
��� �� are good enough. Letting� ���� � ���� � ���� � ��� ��� ����� � ����� � ��� ��� (28)

it follows from eq. (5) that:

� ����� ����� ���� � ��� � �� ������ (29)

Observe that if�� lies on the current classification bound-
ary, the quantity�� ����� is minimal, and hence the expected
error is maximal.

Eq. (26) becomes:� � ���������� �� � �� ������� ���� (30)

where

����� � ������� �����
���� 
�� � ��
�� (31)



Figure 4.Example view of images in the first database.

The resulting criterion indeed satisfies the demands put in
the beginning of the subsection. The term�� � �� ������
gives priority to the samples at the boundary. Meantime,
����� gives priority to the representatives of dense clusters.

3.4. Coarse-to-fine adjustment of clustering

The labeling of high density clusters promises a substantial
move of the classification boundary. It is therefore advanta-
geous to group the data into large clusters in the initial clus-
tering. This is achieved by setting a high value for the ini-
tial scale parameter

��. When the classification boundary
reaches the border between the global clusters, a finer clus-
tering with smaller cluster size is better to obtain a more
accurate classification boundary. The maximum in eq. (30)
can be used as the indication for the need to adjust the clus-
tering. If this quantity drops below a threshold��:������� �� � �� ������� ���� � �� (32)

the scale parameter is decreased:���� � ����� (33)

where
� � � � �

. The data set is then re-clustered. The
parameters�� and

�
are predefined. We have used�� � ���

and
� � ���. Note that clustering the data set with different

scales can be done offline. Furthermore, change of the scale
takes place not in every iteration, but only few times during
the learning process.

4. Experiments

We have performed two experiments to test the perfor-
mance of the proposed algorithm. In the first experiment,
the algorithm is applied to find human face images in a
database containing 2500 images of size

�� � ��
. See

(Pham et al., 2002) for details on how the images were cre-
ated. Example views of some images are shown in Figure 4.
In the second experiment, a test database was made of im-
ages of handwritten digits taken from the MNIST database

(http://yann.lecun.com/exdb/mnist/). The size of imagesis�� ���
. The objective is to separate the images of a given

digit against the other nine.

In the experiments the following setting was used. The im-
ages are considered as the vectors composed of the pixel
grey values which range from 0 to 255. The initial train-
ing set contains equal numbers of object and non-object
images. The initial size of this set was

����� and was in-
creased to	�
�� during active learning, where� is the
number of samples in the database. For clustering, the
databases were split into subsets per 1250 samples. The�-medoid algorithm was applied for each subset with the
initial number of clusters�� � ��

. The initial value of�
was

�� � ���� where
�

is the number of pixels in one
image. For the estimation of the class label distribution, we
use the regularization coefficient� � ��

.

Every time a new training sample is added, the classifier
is re-trained and tested on the rest of the database. The
classification error is calculated as the sum of the missed
positives and false alarms relative to�. The performance
evaluation is based on the decrease of the classification er-
ror as the function of the amount of training samples.

For comparison, we have also implemented three other
active learning algorithms. They use the standard linear
SVM for classification. The first algorithm selects training
data randomly. In the second algorithm, data are selected
according to the closest-to-boundary criterion. The third
algorithm uses the representative sampling of (Xu et al.,
2003) which selects the medoid centers in the SVM margin.
As we select one sample per iteration, this leads to selec-
tion of the most representative sample among the samples
in the margin.

Figure 5 shows the result of the first experiment for differ-
ent proportions between the numbers of face and non-face
images in the database. Figure 6 shows the result of the
second experiment for the different sizes of the database.
Both figures show the average of the classification error
obtained by repeating the experiments with three different
initial training sets that are picked up randomly. The results
of Figure 6 are also an average over the ten digits.

The proposed algorithm outperforms all three other algo-
rithms. The most significant improvement is observed in
Figure 5a with equal numbers for object and non-object
samples in the database. The improvement decreases when
the amount of the object samples is small relative to the
non-object samples, see Figure 5c. In this case, since there
are no clusters of the object class, the proposed algorithm
is not advantageous over the closest-to-boundary algorithm
in finding object samples. Nevertheless, the proposed algo-
rithm remains better as it still benefits from the clustering
of non-object samples. Representative sampling turns out
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Figure 5.The results for the classification of face images.�� and �� are the number of face and non-face images in the databases
respectively.
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Figure 6.The classification results of handwritten digits from the MNIST database.� is the database size.

to perform better only than random sampling. A possible
reason could be the undervaluation of the uncertainty and
the lack of a proper classification model.

5. Conclusion

The paper has proposed a formal model for incorporation
of clustering into active learning. The model allows to
select most representative training examples as well as to
avoid repeatedly labeling samples in same cluster, leading
to better performance than the current methods. To take
the advantage of the similarity between the class label of
data in the same cluster, the method first constructs a clas-
sifier over the population of the cluster representatives. We
use regularized logistic regression which is a discrimina-
tive model with state-of-the-art performance and which is
naturally fitted into a probabilistic framework. The gaus-
sian noise model is then used to infer the class label for
non-representative samples. New training data are selected
from the samples having the maximal contribution to the
current expected error. In addition to closeness to the clas-
sification boundary, the selection criterion gives priority
also to the representatives of the dense clusters, making the
training set statistically stable.

The method was restricted to linear logistic regression as

the main purpose of the paper is to show the advantage of
using clustering information. We have succeeded in that
goals for the given datasets.
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