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Abstract. In object tracking, change of object aspect is a cause of failure due to
significant changes of object appearances. The paper proposes an approach to this
problem without a priori learning object views. The object identification relies
on a discriminative model using both object and background appearances. The
background is represented as a set of texture patterns. The tracking algorithm then
maintains a set of discriminant functions each recognizing a pattern in the object
region against the background patterns that are currently relevant. Object matching
is then performed efficiently by maximization of the sum of the discriminant
functions over all object patterns. As a result, the tracker searches for the region
that matches the target object and it also avoids background patterns seen before.
The results of the experiment show that the proposed tracker is robust to even
severe aspect changes when unseen views of the object come into view.

1 Introduction

In visual object tracking, handling severe changes of viewpoint or object aspect has
always been challenging. Change of aspect may be the result either of a self rotation
of the tracked object or of a change of camera position. In either case, it is difficult to
follow changing appearances of the object due to self-occlusion and disclosure at some
parts of the object, and due to the lack of a reliable way for recovering the 3D motion
parameters [1].

Current tracking methods handle viewpoint changes in two approaches: invariant-
based and view-based. In the invariant-based approach, object matching is performed
using appearance features invariant to viewpoint. The mean-shift tracking method [5], for
example, uses histograms which are invariant to some degree of viewpoint change. Me-
thods using a temporally smoothed and adaptive template also achieve some resistance
to slight changes of object orientation [13,11]. The invariant-based methods, however,
likely fail in case of severe changes of viewpoint, when a completely unseen side of the
object moves into view.

View-based methods use considerably more a priori knowledge on the object. Many
methods record a complete set of object views in advance [2,6,14]. An appearance
model is then learned from this set to recognize any possible view of the object. The
eigentracker by Black and Jepson [2], for example, extracts a few eigenimages from a
set of object views. During tracking, the object region is localized simply by minimizing
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the distance to the subspace spanned by the eigenimages. The disadvantage of the view-
based methods is that they need an a priori trained appearance model which is not always
available in practice. Some other methods construct the view set online [12]. They store
the key frames of the tracking results so as to recognize any previously seen object
view when it appears again. There is no guarantee, however, that an unseen view can
be identified. A fusion of offline and online learning of view information is proposed in
[15].

This paper aims for robust tracking under severe changes of viewpoints in the ab-
sence of an a priori model. We achieve this using background information. This is based
on the observation that even an unseen view of the object can still be identified if one
can recognize the background and surrounding objects. It also conforms to a similar
behavior of the human vision system where surrounding information is very important
in localizing an object. Background has been used in tracking mainly via background
subtraction, the well-known approach which works only for sequences with a stationary
background. In case of a moving background, most current methods use the appearance
information of the object only. Recent work by Collin and Liu [4] emphasizes the im-
portance of the background appearance. The paper proposes to switch the mean-shift
tracking algorithm between different linear combinations of the three color channels so
as to select the features that distinguish the object most from the background. The fea-
tures are ranked based on a variance test for the separability of the histograms of object
and background. Improved performance compared to the standard mean-shift has been
reported. Even so, color histograms have a limited identification power and the method
appears to work only in the condition that the object appearance does not change drasti-
cally over the sequence. For high dimensional features like textures, the large number
of combinations will be a problem for achieving real time performance.

In the presented approach, robustness to viewpoint change is attained by the discri-
mination of object textures from background textures. The algorithm should be working
under a moving background.

Section 2 presents our discriminative approach for the target detection. The section
discusses the representation of object appearance and how object matching is performed.
Section 3 describes the tracking algorithm, the online training of object / background
texture discriminant functions, and the updating of object and background texture tem-
plates. Section 4 shows the tracking results.

2 Discriminative Target Detection Using Texture Features

In the presented algorithm, the target object is detected by matching texture features.
The locality and high discriminative power of theses features makes it easier to classify
individual image patches as object or background.

2.1 Object Appearance Representation

Let us first consider the representation of object textures. Let I(p) denote the intensity
function of the current frame. Assume that the target region is mapped from a reference
region Ω via a coordinate transformation ϕ with parameters θ. Object textures are then
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Fig. 1. Illustration for the representation of object appearance.

analyzed for the transformation compensated image I(ϕ(p; θ)) using Gabor filters [10].
These filters have been used in various applications for visual recognition [7,9] and
tracking [3]. Each pair of Gabor filters has the form:

Gsymm(p) = cos
(p

r
· nν

)
exp

(
−‖p‖2

2σ2

)

Gasymm(p) = sin
(p

r
· nν

)
exp

(
−‖p‖2

2σ2

)
(1)

where σ, r and ν denote the scale, the central frequency and orientation respectively,
and nν = {cos(ν), sin(ν)}. Setting these parameters to different values creates a bank
of filters. Denote them G1, . . . , GK . Object texture at pixel p ∈ Ω is characterized by
vector f(p) ∈ R

K which is composed of the response of image I(ϕ(q; θ)) to the Gabor
filters:

[f(p)]k =
∑
q∈R2

Gk(p − q)I(ϕ(q; θ)) (2)

where [f(p)]k denotes the kth component of f(p), 1 ≤ k ≤ K. When necessary,
we also use the notation f(p; θ) to explicitly indicate the dependence of f on θ. The
appearance of a candidate target region is represented by the ordered collection of the
texture vectors at n sampled pixels p1, . . . ,pn ∈ Ω, see Figure 1:

F = {f(p1), . . . ,f(pn)} (3)

As f(p) governs the information of an entire neighborhood of p, there is no need to
compute the texture vector for all pixels in Ω. Instead, p1, . . . ,pn are sampled with a
spacing.

2.2 Object Matching

The target detection amounts to finding the parameters θ that give the optimal F . This
is based on the two criteria:
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Fig. 2. Illustration of the target detection using object/background texture discrimination.

1. The similarity between F and a set of object template features:

O = {x1, . . . , xn}, xi ∈ R
K (4)

There is a correspondence between the vectors in F and O, that is, f(pi) should
match xi, since both of them represent the texture at pixel pi. This valuable infor-
mation is ignored in the related approach [4], as it is based on histogram matching.
The object templates are updated during tracking to reflect the most recent object
appearance.

2. The contrast between F and a set of background template features:

B = {y1, . . . , yM}, yj ∈ R
K (5)

These are the texture vectors of background patterns observed so far in a context
window surrounding the object, see Figure 2. The modelling of the background
through a set of local patterns is mainly to deal with the difficulty in the construction
of a background image. It is desired that every f(pi) is distinguished from all yj . As
the background moves, B is constantly expanded to include new appearing patterns.
On the other hand, a time-decaying weighting coefficient αj is associated with every
pattern yj . The coefficient enables the tracker to forget patterns that have left the
context window.

We optimize F by maximizing the sum of a set of local similarity measures each
computed for one vector in F :

max
θ

n∑
i=1

gi(f(pi; θ)) (6)

Here, gi(f(pi; θ)) is the local similarity measure for object texture at pixel pi. We choose
gi to be a linear function:

gi(f) = aT
i f + bi (7)
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Fig. 3. The illustration of the tracking algorithm.

where ai ∈ R
K , bi ∈ R are the parameters. Furthermore, to satisfy the two mentioned

criteria, gi is chosen to be a discriminant function. Specifically, gi trained to respond
positively when f = xi and negatively when f ∈ B, see Figure 2. Note that in case
where f(pi; θ) represents an unseen object pattern, it may not match xi but does not
belong to B either. In this case, gi(f(pi; θ)) likely has a value around zero, which is still
higher than a mismatch. As such, by avoiding the background patterns the tracker is still
able to find the correct object even in case of an aspect change.

In eq. (6), only the directions ai matter. The value of bi does not affect the maxi-
mization result. Using eq. (2), eq. (6) is rewritten as:

max
θ

∑
q

I(ϕ(q; θ))w(q) (8)

where

w(q) =
n∑

i=1

K∑
k=1

aikGk(pi − q) (9)

and aik denotes the kth component of ai. As observed, (8) is the inner product of image
I(ϕ(q; θ)) and function w. In particular, if only the translational motion is considered,
ϕ(q; θ) = q + θ, and hence, object matching boils down to the maximization of the
convolution of the current frame I(q) with function w which is regarded as the target
detection kernel.

3 Algorithm Description

Based on the matching method described above, we propose a tracking algorithm whose
data flow diagram is given in Figure 3. This section addresses the issues that remain,
including the construction of discriminant functions gi and the updating of object and
background templates.
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3.1 Construction of Object / Background Discriminant Functions

In principle, any linear classifier from pattern recognition can be used for training gi.
However, in view of the continuous growth of the set of background patterns, the sel-
ected classifier should allow for the training in the incremental mode, and should be
computationally tractable in real time tracking. To this end, we adapt the LDA (Linear
Discriminant Analysis) [8]. Function gi minimizes the cost function:

min
ai,bi

(aT
i xi + bi − 1)2 +

M∑
j=1

αj(aT
i yj + bi + 1)2 +

λ

2
‖ai‖2 (10)

over ai and bi. The weighting coefficients αj are normalized so that
∑M

j=1 αj = 1. The

regularization term λ
2 ‖ai‖2 is added in order to overcome the numerical instability due

to high-dimensionality of texture features. The solution of eq. (10) is obtained in closed
form:

ai = κi[λI + B]−1[xi − ȳ] (11)

where

ȳ =
m∑

j=1

αjyj (12)

B =
m∑

j=1

αj [yj − ȳ][yj − ȳ]T (13)

κi =
1

1 + 1
2 [xi − ȳ]T [λI + B]−1[xi − ȳ]

(14)

As observed, the discriminant functions depend only on the object templates xi, the
mean vector of background textures ȳ and the covariance matrix B. These quantities can
efficiently be updated during tracking.

Note that the background is usually non-uniform and therefore its textures are hardly
represented just by one mean pattern ȳ. Instead, the diversity of background patterns is
encoded in the covariance matrix B.

3.2 Updating Object and Background Templates

As we are dealing with sequences with severe viewpoint changes, the object templates
need to be updated constantly to follow up varying appearances. On the other hand, a
hasty updating is sensitive to sudden tracking failure and stimulates template drift. So,
the updated template should be a compromise between the latest template and the new
data. For this purpose, sophisticated temporal smoothing filters have been proposed [13].
In this work, however, for the implementation simplicity, we use the simple averaging
filter:
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x(t)
i = (1 − γ)x(t−1)

i + γf(pi; θ) (15)

where the superscript (t) denotes the time, and 0 < γ < 1 is a predefined coefficient.
During object motion, constantly new patterns enter the context window and some

other patterns leave the window. The background representation should be updated ac-
cordingly. It would be difficult to track reliably a background pattern from the moment
of entering until its leaving. So, we keep all the observed patterns and gradually decrease
the coefficients αj that control the influence of the patterns in eq. (10). In this way, the
tracker can forget the outdated patterns.

At every tracking step, the Gabor filters are applied for image I(p) at m fixed
locations in the context window, yielding m new background texture vectors denoted
yM+1, . . . , yM+m. The weighting coefficients are then distributed over the new and old
elements in B so that the total weight of the new patterns amounts to γ while that of
the old patterns is 1 − γ. Therefore, each new pattern is assigned an equal weighting
coefficient αj = γ/m. Meantime, the coefficient of every existing pattern in B is re-
scaled with the factor 1 − γ. Let ȳnew = 1

m

∑M+m
j=M+1 yj . The update equations for ȳ

and B are:

ȳ(t) = (1 − γ)ȳ(t−1) + γȳnew (16)

B(t) = (1 − γ)B(t−1) + (1 − γ)ȳ(t−1)ȳ(t−1) T − ȳ(t)ȳ(t) T

+
γ

m

M+m∑
j=M+1

yjyT
j (17)

4 Experiment

We have performed several experiments to verify the ability of the proposed tracking
algorithm in handling severe viewpoint changes. In the current implementation, only
translational motion is considered. For the extraction of texture features, the algorithm
uses a set of twelve Gabor filters created for scale σ = 4 and r = 2.0 and six directions of
ν equally spaced by 30o. The target region is set to a rectangle. Object pixels p1, . . . ,pn

are sampled with a spacing of 4 pixels between each other in both horizontal and vertical
axes. The same spacing is applied for the background pixels in the context window. For
the updating of the object and background texture templates, we have set the weighting
coefficient γ = 0.2.

For comparison, we also applied an intensity SSD tracker using an adaptive template.
In every frame this algorithm recalculates the template as a weighted average between the
latest template and new intensity data, where the weight of the new data is γ = 0.2. This
averaging results in a smoothed template which is also resilient to viewpoint changes
in some degree. Unlike the proposed approach, this algorithm does not use background
information.

Figure 4 shows an example of head tracking. Initially the head is at the frontal view
pose. The background is non-uniform, and the camera is panning back and forth, keeping
the head in the center. The guy turns to the sides and even to the back, showing completely
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a) frame 1 b) frame 26 c) frame 52 

d) frame 129 e) frame 248 f) frame 455

Fig. 4. Head tracking results under severe viewpoint changes by the proposed algorithm. The
outer rectangle indicates the context window.

a) frame 1 b) frame 26 c) frame 52 

d) frame 129 e) frame 248 f) frame 455

Fig. 5. Tracking results for the same sequence in Figure 4 by the SSD tracker using an adaptive
template.

different views of the head. As observed, the proposed tracker could capture even the
back view of the head which is unseen previously and is rather different from the initial
frontal view. Figure 5 shows the tracking results for the same sequence but with the SSD
tracker. This tracker also exhibited a robust performance under slight pose changes of
the head, but it gave wrong results when the head pose changed severely as in Figure 5b
and c. Nevertheless, the SSD tracker did not lose track and well recovered from the drift
when the head returned back to the frontal view. This success can be explained by the
uniqueness of the black hair in the scene.

A clear example where the proposed algorithm outperforms the SSD tracker is shown
in Figure 6 and Figure 7. The figures show the tracking results by the two trackers res-
pectively for a sequence where a mousepad is rotated around its vertical axis, switching
between the blue front side and the completely black back side. As we expected, the SSD
tracker drifted off at the first transition of view, see Figure 7b. This is easily explained
by the similarity between the color of the front side of the mousepad and the color of the
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a) frame 1 b) frame 33 c) frame 34 

d) frame 37 e) frame 103 f) frame 120 

Fig. 6. Tracking results by the proposed algorithm.

a) frame 1 b) frame 33 c) frame 34 

d) frame 37 e) frame 103 f) frame 120 

Fig. 7. Tracking results for the sequence in Figure 6 by the SSD tracker using an adaptive template.

wall. In contrast, the proposed algorithm recovered perfectly when the unseen dark side
comes into view, see Figure 6d. It could also successfully lock back on the front side as
in Figure 6f. The results prove that the proposed tracker rather chooses an unseen object
region instead of a background region.

Figure 8 shows another head tracking result by the proposed algorithm for a movie
clip. In this sequence, the camera pans fast to the left. The background is cluttered and
contains several other moving objects. The results show the success of the proposed
algorithm in tracking the head through several severe pose changes, as well as the
robustness to the background motion and clutter.
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a) frame 1 b) frame 109 c) frame 119 

d) frame 136 e) frame 208 f) frame 272 

Fig. 8. Tracking results by the proposed algorithm with a fast moving and cluttered background.

5 Conclusion

The paper has shown the advantage of the background information for object tracking
under severe viewpoint changes, especially when an unseen aspect of the object emerges.
We have proposed a new tracking approach based on the discrimination of object textures
from background textures. The high dimensionality of texture features allows for a good
separation between the two scene layers. While the representation of the background
by a set of patterns is robust to background motion, weighting the patterns in a time-
decaying manner allows to get rid of outdated patterns. The algorithm keeps track of
a set of discriminant functions each separating a pattern in the object region from the
background patterns. The target is detected by the maximization of the sum of the
discriminant functions, taking into account the spatial distribution of object texture.
The discriminative approach prevents the tracker from accepting background patterns,
and therefore enables the tracker to identify the correct object region even in case of
substantial changes in object appearance.

For future work, we plan to improve several issues. We plan to test other more sophi-
sticated classifiers to improve the accuracy of the target detection. The algorithm can also
be extended to the multiscale mode with the propagation of the tracking result through
the scales of the Gabor filters. Finally, more accurate models for the representation and
updating of object and background template patterns will be considered.
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