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Abstract. When comparing document images based on
visual similarity it is difficult to determine the correct
scale and features for document representation. We re-
port on a new form of multivariate granulometries based
on rectangles of varying size and aspect ratio. These
rectangular granulometries are used to probe the layout
structure of document images, and the rectangular size
distributions derived from them are used as descriptors
for document images. Feature selection is used to reduce
the dimensionality and redundancy of the size distribu-
tions while preserving the essence of the visual appear-
ance of a document. Experimental results indicate that
rectangular size distributions are an effective way to char-
acterize visual similarity of document images and provide
insightful interpretation of classification and retrieval re-
sults in the original image space rather than the abstract
feature space.

Key words: Mathematical morphology – Granulome-
tries – Document image understanding – Document genre
classification

1 Introduction

There are many applications in document image under-
standing where it is necessary to compare documents
according to visual appearance before attempting high-
level understanding of document content. Example appli-
cations include document genre classification, duplicate
document detection, and document image retrieval.

Genre classification is useful for grouping documents
for routing through office workflows as well as for identi-
fying the type of document before applying class-specific
strategies for document understanding [11]. Document
image retrieval systems are of particular interest in some
application areas [5]. Examples of such applications ar-
eas include digital libraries, ancient document collections,
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Fig. 1. Characterizing document images as a union of rect-
angles

and technical drawing databases. Given an example im-
age as a query, a document image retrieval system re-
turns a ranked list of visually similar documents from an
indexed collection. In some collections, automatic conver-
sion of documents to electronic formats is often expensive
or impossible. In such cases, image retrieval may be the
only feasible means of providing access to a document
database.

Whether document images are to be classified into a
number of known document genres or ranked by similar-
ity to documents in a document database, it is necessary
to establish meaningful measures of visual similarity be-
tween documents. To that end, we must first define an
appropriate document representation. Consider the doc-
ument shown in Fig. 1. The visual appearance of a doc-
ument is determined by the foreground and background
pixels in the document image. Document segmentation
techniques using structural decompositions of the back-
ground are common in the literature on document image
processing [1]. The background of a document image can
be represented by rectangular regions of various sizes.
Analysis of the structure of such rectangular decompo-
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sitions can be used to derive useful descriptors of the
appearance of document images.

Note that most of the visual content of a document
image can be described by analyzing the background in
this way; for some documents it is necessary to perform
the same type of decompositional analysis on the fore-
ground. The most obvious example of this are documents
containing reverse “video” regions.

Documents have an intrinsic multiscale nature. This
multiscale character is implicit in the scales distinguish-
ing characters, words, textlines, paragraphs, columns,
etc. The proper scale to use for document representation
depends on the application, and hence a generic repre-
sentation of visual content must be multiscale. Some re-
searchers, in fact, advocate exploration of an entire scale-
space of potential document segmentations before com-
mitting to a single one [3]. Most techniques based on a
single layout segmentation fail to take the multiscale na-
ture of visual perception into account.

Our approach for representing visual content is based
on morphological granulometric analysis of document im-
ages. A granulometry can be thought of as a morpho-
logical sieve, where objects not conforming to a partic-
ular size and shape are removed at each level of the
sieving process. They were first introduced by Math-
eron for characterizing the probabilistic nature of random
sets [9]. Granulometries, and the corresponding measure-
ments taken on them, have been applied to problems of
texture classification [8], image segmentation [6], and fil-
tering [7]. Recent work by Vincent has shown how gran-
ulometries can be effectively and efficiently applied, par-
ticularly in the binary image domain [12].

Traditional granulometries employ openings by ho-
mothetics, i.e., scaled versions, of a single structuring el-
ement to generate the filtered image at each level. Gran-
ulometries characterize the granular composition of im-
ages nicely when, as in the case of boolean random sets,
they are constituted of homothetic versions of a single
primary grain. While many natural textures fall into this
category, the structural composition of document images
is not so nicely captured by homothetic granulometries.
The background of a document image typically contains
rectangular regions of many different aspect ratios, and
any homothetic filtering process will fail to capture both
independent dimensions. For this reason, we propose a
new multivariate rectangular granulometry that can be
used to explore the entire space of rectangular image de-
compositions.

The rest of this paper is organized as follows. In
the next section, we introduce the concept of document
genre, which provides a context for understanding docu-
ment similarity. We discuss the theory of granulometric
analysis and the specifics of our multivariate extension to
rectangular granulometries in Sect. 3. Next, a description
of our representation of document images derived from
measurements on these granulometric filters is described.
We also show how these measurements may be used to
interpret the important features that distinguish visually
distinct document classes. To illustrate the effectiveness

Genre

Text

Genre

ReaderAuthor
Fig. 2. Genre as mediator. Knowledge of a genre, by both au-
thor and reader, create communication pathways for specific
message components

of our representation, we have applied our technique to
the problems of document genre classification and doc-
ument image retrieval. The results of these experiments
are given in Sect. 5.

2 Document genre

Humans rarely read documents outside of a specific con-
text influencing their interpretation. Such contextual in-
fluences can be partially characterized by the concept
of genre. Abstractly, document genre acts as a medi-
ating factor between author and reader. Figure 2 illus-
trates this concept. Document genre consists of medium-
specific rules or conventions that allow elements of an au-
thor’s message to be effectively encoded within a medium.
Knowledge of a specific genre allows an author to effec-
tively encode a message and a reader to decode it. For
example, when presented with an unknown business let-
ter, most people can easily decode the visual and typo-
graphical cues in it to identify the sender and recipient
without the need to actually read any of the content. It
is knowledge of the genre of business letters that makes
this possible.

We can narrow this rather abstract conception of
genre by adopting the following definition:

Definition 1. A document genre is a category of doc-
uments characterized by similarity of expression, style,
form, or content.

Through these four elements document genre creates an
implicit contract between author and reader. This con-
tract manifests itself as expectation in the reader, ex-
pectation that specific components of the message are
presented through known rules of expression, style, form,
and content. In the semiotic research community, analy-
sis of such structures is sometimes described as the study
of how symbols mean as opposed to what they mean [4].

There are three major components of document genre
for machine-printed texts:

– visual genre, which dictates the overall appearance
of a document
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– typographical genre, which determines the charac-
teristics of the various font styles, sizes, and forms of
emphasis applied to different information components

– textual genre, which consists of the rules of expres-
sion, terminology, and rhetorical devices used to ex-
press linguistic content

Written communication is highly structured, and doc-
ument typesetting systems exploit this in organizing log-
ical content into a physical realization of that content
in geometric layout structures. Document understanding
systems likewise exploit this structure in decomposing
document images into typographically homogeneous re-
gions before attempting high-level understanding. Just
as genre plays a key role in mediating author/reader
communication, it can play a similar role in document
understanding systems. Figure 3 illustrates the concep-
tual pipeline of processing steps in a document under-
standing system and indicates the genre characterization
stages inserted along the processing flow. Immediately
after scanning, the visual components of a document’s
genre can be analyzed. After layout analysis, the typo-
graphical constructs can then be characterized. Lastly,
the textual components of genre can be extracted from
the text extracted by an OCR system. All of these compo-
nents of genre are finally indexed in a document retrieval
system.

Note the bidirectional communication between the
logical analysis stage and the retrieval system. Logical
analysis algorithms may utilize genre characterization by
exploiting genre-level similarity with known documents
already indexed in the system. As shown in Fig. 3, this
work focuses on the characterization of visual compo-
nents of document genre. In the following sections, we
detail our approach to characterizing the visual appear-
ance of documents.

3 Granulometries

The visual appearance of a document is wholly deter-
mined by the foreground and background pixels in the
document image. While complete, this representation is
cumbersome due to the enormous semantic gap between
the sensor space, i.e., the field of pixels acquired by the
document scanner, and the conceptual space in which
documents are interpreted. Documents are intrinsically
multiscale, and their multiscale nature is evident in the
scales distinguishing characters from words, words from
textlines, textlines from paragraphs, etc. A multiscale ap-
proach is consequently an obvious choice for a genre char-
acterization technique. Out approach is based on mul-
tiscale decompositions of the background of document
images. We can imagine a document image being de-
composed into a collection of maximal rectangles that
“fit” into the background of the image, as shown in
Fig. 1. Such decompositions supply information about
the information-bearing portions of a document or class
of documents. In this and the following section, we show
how such decompositions may be constructed and ana-

lyzed in order to characterize visual similarity between
document genres.

As mentioned above, the intrinsic multiscale nature
of documents lends itself well to multiscale analysis tech-
niques. Morphological scale-spaces possess conceptual
and practical advantages that make them particularly
suitable in the document image domain. In this section,
we first introduce some necessary concepts and terminol-
ogy from mathematical morphology and then describe
the specific extensions we use to measure visual struc-
ture in document images.

We are primarily concerned with scanned, binary doc-
ument images, and all of our morphological operations
will be defined on subsets of the Euclidean plane, or con-
stant Euclidean images in morphological parlance. All of
our notation and conventions follow those of Serra [10].

The basic operations in mathematical morphology are
the erosion and dilation. An erosion of image S by struc-
turing element B is defined in terms of Minkowski sub-
traction:

eB(S) =
⋂

y∈B

S−y = S � B̌

where S−y denotes the translate of S by −y, and B̌ de-
notes the reflection of B about the origin. All of the ero-
sions we will discuss use symmetric structuring elements,
and we will therefore denote erosion simply as S � B.
Dilation is similarly defined in terms of Minkowski addi-
tion:

dB(S) =
⋃

y∈B

Sy = S ⊕ B

Note that erosion and dilation are dual with respect to
complementation, i.e., Sc ⊕ B = (S � B)c.

Combinations of erosions and dilations can be con-
structed that perform more elaborate transformations of
images. The most basic of these are the opening and clos-
ing operations. The opening of an image by structuring
element B is:

S ◦ B = (S � B)⊕ B

and the closing

S • B = (S ⊕ B)� B

One of the most useful tools in mathematical morphol-
ogy is the granulometry, which is constructed through
sequential opening of an image.

Formally, a granulometry on P(R × R), where P(X)
is the power set of X and R is the set of real numbers, is
a family of operators:

Ψt : P(R × R) −→ P(R × R)

satisfying for any S ∈ P(R × R)

A1: Ψt(S) ⊂ S for all t > 0 (Ψt is antiextensive)
A2: For S ⊂ S′, Ψt(S) ⊂ Ψt(S′) (Ψt is increasing)
A3: Ψt ◦ Ψt′ = Ψt′ ◦ Ψt = Ψmax(t,t′) for all t, t′ > 0
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Fig. 3. Characterizing document
genre along the way. At each stage in
the document analysis process some
type of genre characterization may be
performed. Genre information is then
indexed in a document retrieval sys-
tem along with the extracted logical
information

Of particular interest are granulometries generated by
openings by scaled versions of a single convex structuring
element B, i.e.,

Ψt(S) = S ◦ tB

Maragos [8] has described two useful measurements
on granulometries, the size distribution and the pattern
spectrum. The size distribution induced by the granu-
lometry G = {Ψt} on image S is:

ΦG(t, S) =
A(S)− A(Ψt(S)))

A(S)
(1)

A(X) denoting the area of set X. ΦG(t, S) is a cumulative
probability distribution. The pattern spectrum is defined
as the derivative of the size distribution and is a proba-
bility density function. Intuitively, the pattern spectrum
represents the frequency of grain sizes occuring in the im-
age, where the grains are defined as scaled versions of the
convex structuring element used to construct the granu-
lometry. Figure 4 provides an example size distribution
and pattern spectrum for a synthetic image.

Univariate size distributions, i.e., size distributions
constructed from granulometries with a single scale pa-
rameter as in Eq. 1, are generally incapable of capturing
all of the free variables controlling grain placement and
orientation. All of the example abstract images shown in
Fig. 5 generate identical size distributions. For document
images such discriminations are vital, as the arrangement
of both vertically and horizontally aligned rectangles is
key to background decomposition. In such cases, multi-
variate granulometries are more appropriate [2].

To capture the vertically and horizontally aligned re-
gions of varying aspect ratios, we use multivariate, rect-
angular granulometries to characterize document images.
Let H and V be horizontal and vertical line segments of
unit length centered at the origin. We define each opening
in the rectangular granulometry as:

Ψx,y(S) = S ◦ (yV ⊕ xH)

The above definition makes use of the fact that any
rectangle may be written as a dilation of its orthogonal
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Fig. 5a,b. Ambiguity in size distributions. All of the images
in a generate the size distribution shown in b. In many cases,
univariate size distributions are incapable of capturing all of
the degrees of freedom associated with grain sizing and orien-
tation
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Fig. 6. Some examples of Ψx,y(S) for a document S for var-
ious values of x and y. The multiscale nature of documents
is evident in the different structural relationships emerging
at different levels in the granulometry: characters are merged
into words, words into lines, and lines into text blocks. Even-
tually the margins are breached and the entire document is
opened

horizontal and vertical components. Note that any in-
creasing function f(x) induces a univariate granulometry
{Ψx,f(x)} satisfying A1–A3. The extension to rectangu-
lar openings allows us to capture the information from
all rectangular granulometries in a single parameterized
family of operators. Figure 6 gives some example open-
ings of this type for a document image.

4 Document representation

In this section, we describe our method for representing
document images using measurements taken on rectangu-
lar granulometries. Note that it is not the filtered versions
of the image S that are of most interest in describing the
visual appearance of document images, but rather the
measurements taken on the filtered images Ψx,y(S).

4.1 Rectangular size distributions

The size distributions and pattern spectra introduced by
Maragos [8] have been subsequently extended to multi-
variate granulometries [2]. The rectangular size distribu-
tion induced by the granulometry G = {Ψx,y} on image
S is:

ΦG(x, y, S) =
A(S)− A(Ψx,y(S)))

A(S)

A(X) denoting the area of set X. ΦG(x, y, S) is also a cu-
mulative probability distribution, i.e., ΦG(x, y, S) is the
probability that an arbitrary pixel in S is opened by a
rectangle of size x × y or smaller.

As mentioned in the introduction, documents with re-
gions containing reverse video text, i.e., white text on a
black background, are not thoroughly captured by the
openings Ψx,y. To account for this, we extend the rectan-
gular size distributions downward to include openings of
the foreground. The definition becomes:

ΦG(x, y, S) =

{
A(S)−A(Ψx,y(S)))

A(S) if x, y ≥ 0
A(Sc)−A(Ψx,y(Sc)))

A(Sc) if x, y < 0
(2)

The pattern spectrum is defined as the derivative of
ΦG(x, y, S), for which we have two choices in the case of
rectangular granulometries. For document images there
is no a priori evidence for preferring either horizontal
or vertical directional derivatives, e.g., for preferring em-
phasis on intercolumn gap over interline spacing, and for
now we concentrate on using the size distribution as our
document representation.

Figure 7 gives two example size distributions. In these
examples, we only plot the size distribution in the first
quadrant, i.e., for x, y > 0. We see that the rectangular
size distribution captures much information about the
document image. Of specific interest are the plateau re-
gions in the size distribution, which indicate islands of
stability most likely corresponding to specific typograph-
ical features such as interline spacing, paragraph spacing,
and intercolumn gap.

4.2 Efficiency

It is not feasible to exhaust the entire parameter space
for rectangular size distributions in a näıve way. This
is especially true for document images, which tend to
be large. We can take advantage of several properties of
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Fig. 7. Example rectangular size distributions for two documents from different genres in our test database. Note the prominent
flat plateau regions indicating regions of stability in the granulometry. These most likely correspond to typographical parameters
such as margin width, interline distance, etc. The size distribution on the left is constructed from the document shown in Fig. 1
and the one on the right from the document used to construct the example openings in Fig. 6

S Dv Dv(S) S � yV

⊗ fv[x, y]
gv[x, y] =

Dv(S)>y−→

❄
S � yV Dh Dh(S � yV ) (S � yV )� xH

⊗ fh[x, y]
gh[x, y] =

Dh(S�yV )>x−→

Fig. 8. Efficient computation of an arbitrary rectangular opening. Distance transforms are used to effectively encode all possible
vertical and horizontal erosions. By thresholding these distance images we can obtain each desired erosion. The ⊗ operator is used
above to indicate the application of the recursive filters described in Eqs. 4 and 5. The first part of the opening, (S � yV )�xH,
is illustrated above. The opening is completed by performing the same steps on ((S � yV ) � xH)c

rectangular granulometries and size distributions in order
to make their computation more tractable.

First, each rectangular opening may be decomposed
into linear erosions and dilations as follows:

Ψx,y(S) = S ◦ (yV ⊕ xH)
= (S � (yV ⊕ xH))⊕ (yV ⊕ xH)
= (((S � yV )� xH)⊕ yV )⊕ xH (3)

This eliminates the need to directly open a document
image by rectangles of all sizes. Instead, the opening is
incrementally constructed by the orthogonal components
of each rectangle, which are increasing linearly in size
rather than quadratically.

Next, we can eliminate the need to erode and dilate
the image by structuring elements increasing linearly in
size. Using linear distance transforms for vertical and
horizontal directions we can generate all needed erosions
and dilations for each rectangular opening. The horizon-
tal distance transform of an image S is defined as:

Dh(S, x, y) = min{∆x | (x ± ∆x, y) ∈ S}
and the vertical distance transform as:

Dv(S, x, y) = min{∆y | (x, y ± ∆y) ∈ S}
These transforms can be efficiently performed using the
following recursive forward/backward filter pairs defined
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Fig. 9. Recursive exploration of the rectangular parameter
space. If ΦG(w0, h0, S) = ΦG(w1, h1, S), then every opening
in the rectangle defined by these points will open the same
area. If not, the same strategy is applied recursively on the
four subrectangles

on image S:

Dh

{
fh[x, y] = min{f [x − 1, y] + 1, S(x, y)}
gh[x, y] = min{f [x, y], g[x+ 1, y] + 1} (4)

Dv

{
fv[x, y] = min{f [x, y − 1] + 1, S(x, y)}
gv[x, y] = min{f [x, y], g[x, y + 1] + 1} (5)

The use of these distance transforms to generate erosions
of the original image represents a significant savings in
computation time. To generate a vertical or horizontal
erosion of arbitrary size we only have to apply two fixed-
size recursive neighborhood operations rather than erod-
ing by structuring elements increasing in size. In this way,
each opening can be incrementally constructed, as illus-
trated in Fig. 8. The computational complexity of this
algorithm, for the computation of a single opening, is lin-
ear in the number of pixels in the image. Since the total
number of openings computed for a rectangular size dis-
tribution is typically a linear function of the size of the
image (e.g., a linear subsampling of all possible widths
and heights), the total running time of the algorithm is
O(n2), where n is the number of pixels in the image.

Lastly, since rectangular size distributions are mono-
tonically increasing in both parameters, i.e., if x′ ≥ x and
y′ ≥ y, then ΦG(x′, y′, S) ≥ ΦG(x, y, S), we can recur-
sively search the parameter space, eliminating the need
to explore large, flat regions. The recursive decomposition
process is illustrated in Fig. 9.

4.3 Feature space reduction and interpretation

The multiscale representation developed in the previ-
ous two subsections captures much structural information
about document images, and we have also shown how the
computational complexity of computing rectangular size
distributions can be reduced. However, the complexity of
the representation itself remains unchanged. To that end

we describe in this subsection our approach to dimension-
ality reduction, which also leads to interesting qualitative
interpretations in the original document image space.

The dimensionality of the entire size distribution is
too large to be applied effectively in a statistical pattern
recognition setting. Some feature selection or reduction
strategy must be applied. Principal Component Analy-
sis (PCA) is a well-known approach to feature reduction
and can be applied to rectangular size distributions to
reduce the dimensionality of our document representa-
tion while preserving the maximum amount of variance
in a document collection. The principal component map-
ping defines a rotation of the original feature space using
the eigenvectors of the covariance matrix of the dataset.
Since each eigenvector is of the same dimensionality as
the original feature space, we can visualize them individu-
ally in the same way as size distributions. Figure 10 shows
the coefficients of the first principal component computed
for a two-class subset of our four document genres (see
Sect. 5 for a description of the document collection used
in our experiments).

From inspection of the plot on the left in Fig. 10 it
is evident that it is not necessary to sample much of the
parameter space in order to account for most of the vari-
ance in the entire sample. In particular, most of the large
openings do not contribute at all to the variance in the
first principal component mapping. By selecting a coef-
ficient of high magnitude in the first principal compo-
nent, we can compute the corresponding opening Ψx,y(S)
on document images from our test sample. This allows
us to interpret features important for distinguishing be-
tween documents in the original image space. The open-
ing shown in Fig. 10b emphasizes the presence of the
logotype appearing in the upper right corner of Topology
articles, while in Fig. 10c the differences in margins are
emphasized.

The principal component mapping is also useful for vi-
sualizing an entire genre of document images. Figure 11
shows a sample class of document images (from the Jour-
nal of the ACM) after mapping to the first two prin-
cipal components. The clusters in the low-dimensional
space represent the gross typographical differences be-
tween document images from this class. In this case, clus-
ters indicating the paper size and gutter orientation are
clearly defined. The outliers in this plot are page images
not conforming to the standard layout style for articles,
such as errata pages and editorials.

5 Experimental results

To illustrate the effectiveness of rectangular granulome-
tries, we have applied the technique to the problems of
document genre classification and document image re-
trieval. A total of 537 PDF documents were collected
from several digital libraries. The sample contains docu-
ments from four different journals that determine the gen-
res in our classification problem and the relevance for doc-
ument retrieval. Table 1 gives an overview of the journals
comprising our dataset. Note that these genres are not
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Table 1. Journals sampled for our dataset along with the ab-
breviations used throughout the experimental results section
and the number of articles in each class

Journal Abbrev # in class

Int J Netw Management IJNM 132
Journal of the ACM JACM 147
Standard View STDV 109
Topology TOPO 149

necessarily determined by visual similarity. Since we are
using an inherently logical definition of document genre,
i.e., coming from the same publication, there may be
significantly different visual subgenres within each genre
(see Fig. 11). However, this does give us a nonsubjective
division of our document collection.

We consider only the first page of each document,
as it contains most of the visually significant features
for discriminating between document genres. The first
page of each PDF document was converted to an image
and subsampled to 1/4 of its original size. The rectan-
gular size distribution described in Sect. 3, Eq. 2 was
then computed for each image. Each quadrant of the size
distribution is then sampled to form a rectangular size
distribution of size 41× 61. The resulting dimensionality
of our feature space is 5002.

5.1 Genre classification

Table 2 gives the estimated classification accuracy for
a training sample of 30 documents selected randomly
from each document genre, with the remaining docu-
ments used as an independent test set. Estimated classi-
fication accuracy is shown for five, seven, and ten princi-
pal components computed from the training sample and
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Fig. 11. The first two principal components for two document
classes

for a 1-nearest neighbor, quadratic discriminant, and lin-
ear discriminant classifier. These results indicate that,
even with relatively few principal components, rectangu-
lar granulometries are capable of capturing the relevant
differences between document genres.

5.2 Document image retrieval

For our document image retrieval experiments, a single
document image is given as a query, and a ranked list of
relevant documents is returned. We use the rectangular
size distributions described above as the representation
for each document. Document ranking is computed us-
ing the Euclidean distance from the size distribution of
the query document to each document in the database.
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Fig. 12. Average precision and recall plots for each genre in the test database. Results on the entire feature space and with 5,
10, and 20 principal components are shown. The graphs on the left show the precision and recall for each individual class, while
the plot on the right gives the overall average precision and recall

Table 2. Genre classification results for 30 training samples
per class and various numbers of principal components. Clas-
sification accuracy is estimated by averaging over 50 experi-
mental trials. The PCA is performed independently for each
trial

# PCs

Classifier 5 7 10

1-Nearest neighbor 94% 95% 98%
Quadratic discriminant 93% 94% 98%

Linear discriminant 76% 80% 93%

For evaluation, a document is considered relevant if it
belongs to the same genre as the query document (i.e., it
is from the same publication). Note that this definition
of relevance does not take into account the existence of
visually distinct subclasses within a single publication.

Precision and recall statistics can be used to measure
the performance of retrieval systems. They are defined
as:

Precision =
# relevant documents retrieved

# documents retrieved

Recall =
# relevant documents retrieved

# relevant documents

Rather than computing the overall precision, it is more
useful to sample the precision and recall at several cutoff
points. For a given recall rate, we can determine what
the resulting precision is, that is, the number nonrelevant
documents that must be inspected before finding that
fraction of relevant documents.

Figure 12 gives the average precision/recall graphs
for each document genre in our database. The graphs
were constructed by using each document in a genre as a
query, ranking all documents in the database against it,
and computing the precision at each recall level. These
individual precision/recall statistics are then averaged to
form the final graph.

The graphs in Fig. 12 give a good indication of how
well each individual genre is characterized by the rectan-
gular size distribution representation and also indicates
the overall precision and recall for the entire dataset. The
overall precision/recall graph is constructed by averaging
the precision and recall rates over all classes. This graph
indicates that, on average, 50% of all relevant documents
can be retrieved with a precision of about 80%.

All of the precision/recall graphs have a characteris-
tic plunging tail, indicating that there are some queries
where relevant documents appear near the end of the
ranked list. It is illustrative to examine some specific ex-
amples of this phenomenon. Figure 13 gives some exam-
ple query images along with the highest-ranked relevant
document returned, excluding the query document itself,
and the lowest-ranked relevant document returned. In
most cases, these low-ranking relevant documents repre-
sent pathologically different visual subclasses of the doc-
ument genre.

Another interesting phenomenon in graphs of Fig. 12
is the presence of the nonmonotonic regions in the TOPO
class. This occurs only when there is a dramatic change
in the recall rate. In this case, the TOPO class contains
articles with styles similar to those in the other classes.
It is common in the ranked retrieval lists to encounter
ranges of nonrelevant documents from another class fol-
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Fig. 13. Some illustrative query examples. A sam-
ple query image for each genre is shown along with
the highest-ranked and lowest-ranked relevant im-
ages from the relevant genre. In most cases, the least
relevant document is pathologically different from
the query

lowed by a range of TOPO documents. Essentially, the
TOPO class does not have as much internal layout con-
sistency as the other classes.

6 Conclusions

We have reported on an extension to multivariate gran-
ulometries that uses rectangles of varying scale and as-
pect ratio to characterize the visual content of document
images. Rectangular size distributions are an effective
way to describe the visual structure of document im-
ages, and with morphological decomposition techniques
they can be efficiently computed. Experiments have also
shown that rectangular size distributions can be used to
discriminate between specific document genres. Further-
more, principal component analysis can be used to re-
duce the dimensionality of multivariate size distributions
while preserving their discriminating power. One of the
attractive aspects of rectangular size distributions is the
ability, even under dimensionality reduction, to interpret
significant features back in the original image space.

Document retrieval experiments also indicate the ef-
fectiveness of rectangular size distributions for captur-
ing visual similarity of documents. For our document
database, 50% of relevant documents can be retrieved
with a precision of approximately 80%.

Principal component analysis has proved useful for ac-
centuating the important features in size distributions. A
nonlinear PCA approach that maximizes interclass vari-
ance while minimizing intraclass variance will certainly
improve both the classification and retrieval results.

We plan to elaborate further on feature selection ap-
proaches in the near future. The entire parameter space
for rectangular size distributions is too expensive to sam-
ple for document images. Feature selection, as opposed
to feature reduction such as PCA, is more desirable be-
cause of this. Feature subsets are also more natural to
interpret in terms of the original document images. Re-

search is currently focused on feature selection strategies
that also (re-)introduce spatial information into the size
distribution representation.

The effects of noise on rectangular granulometries re-
mains an important open question. All of the document
images considered in our experiments are clean images,
generated directly from a PDF source. While the feature
reduction techniques discussed in Sect. 4.3 will compen-
sate for noise to a certain degree, it is unknown what
precise effect noise will have on the resulting size distri-
butions. A systematic theoretical and experimental in-
vestigation is still needed.

It should be noted that the techniques presented
in this paper are not limited solely to visual similar-
ity matching but rather constitute a general approach
to multiscale analysis. As such, the granulometric ap-
proach may prove useful for applications such as table
decomposition, text identification, and layout segmenta-
tion. A systematic study of the effects of noise on the
representation is essential to establishing the widespread
applicability of the granulometric technique to document
understanding.
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