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Abstract—The watershed algorithm from mathematical morphology is powerful for segmentation. However, it does not allow
incorporation of a priori information as segmentation methods that are based on energy minimization. In particular, there is no control of
the smoothness of the segmentation result. In this paper, we show how to represent watershed segmentation as an energy minimization
problem using the distance-based definition of the watershed line. A priori considerations about smoothness can then be imposed by
adding the contour length to the energy function. This leads to a new segmentation method called watersnakes, integrating the strengths
of watershed segmentation and energy based segmentation. Experimental results show that, when the original watershed segmentation
has noisy boundaries or wrong limbs attached to the object of interest, the proposed method overcomes those drawbacks and yields a
better segmentation.

Index Terms—Watershed segmentation, energy-based segmentation, topographical distance, snakes.
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1 INTRODUCTION

SEGMENTATION is a fundamental problem in image analysis.
It should yield a partitioning of the image into disjoint

regions, uniform according to some feature such as gray
value, color, or texture. The segmentation process can rely
both on the uniformity of the feature within the regions or on
edge evidence. In both cases, the result should be a balance
between adherence to the possibly noisy and incomplete data
and smooth segmentation results suited for further analysis.

There are two major approaches in segmentation: energy-
based and watershed-based. In the first approach, the
segmentation is obtained as result of the minimization of a
so-called energy function. The second approach is mainly
based on the watershed algorithm from mathematical
morphology. This paper investigates the relation between
these approaches.

A large number of segmentation methods in literature use
the first approach [1], [2], [3], [4], [5]. To balance data
adherence and smoothness, the energy is composed of a
data-driven term and a regularization term. The purpose of
the second term is to impose a priori knowledge, usually
smoothness of the region contour, on the segmentation result.

The data-driven terms used in literature can be classified
into two classes: contour-based (or snake-based) and
region-based.

Snake-based methods, as originally defined by Kass and
Witkin [4], use gradient information as input data. A contour,
balancing maximal edge evidence with minimal curvature
and curve length is found. The contour representation used in
this method, may encounter problems with topological
changes, like self-intersections [6], during optimization. To
avoid these problems, Osher and Sethian proposed a level set
approach [6]. The contour is represented as a level curve of a

3D surface or boundary of a growing region. As the
representation is intrinsic, topological changes can be
handled. The level set method has also been used in the
geodesic model of Caselles et al. [5] and the bubble model of
Tek and Kimia [7]. Other common issues that need to be
addressed in the snake-based methods are: the decision when
to stop moving the contour, overcoming gaps between broken
edges, and the selection of the initial contours. The geodesic
model deals well with gaps, while the bubble model offers a
solution for initial contour selection by randomly initializing
a large number of seeds that grow and merge afterwards. In
both models, the criterion to stop contour motion, however,
depends on a predefined parameter. As a consequence, the
contour may converge to nonsignificant edges.

The region-based methods use a global energy function,
computed for the entire area of the regions, rather than their
boundaries only. The earliest models are the Bayesian
segmentation of Geman and Geman [8] and the one proposed
in Mumford and Shah [1]. In [3], Leclerc suggests a
segmentation approach based on the minimum description
length criterion. In [2], Zhu and Yuille considered this
criterion in the continuous domain and proposed a segmen-
tation method named region competition. In all existing
region-based methods, the uniformity in a region is described
using a parameterized probability distribution of intensity.
The energy yields a trade-off between how well the models
describe the region and the smoothness of the contours. Since
parameters of the distributions are unknown, the algorithm
needs to go back and forth between the determination of the
region parameters and the determination of the region labels.
The methods, therefore, are complex and computationally
expensive.

Apparently, the watershed algorithm from mathematical
morphology takes a very different approach, compared to
the energy-based methods described. The input is a relief
function representing edge evidence, where the morpholo-
gical gradient is a common choice for computing such a
relief. By viewing this function as a mountain landscape,
object boundaries are determined as watershed lines.

In [9], [10], the watershed algorithm is implemented via
region growing, where seeds are the regional minima of the
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relief. To prevent oversegmentation due to a possibly large
number of minima in the original edge evidence function, the
watershed algorithm from selected markers is usually
employed [9], [11]. This technique selects markers from
significant minima and modifies the relief accordingly such
that nonsignificant minima are filled up. The markers are
usually extracted as low gradient zones in the image,
smoothed by a morphological filter such as opening by
reconstruction [12].

The watershed algorithm has been proven powerful for
contour detection [13], [14] as well as image segmentation
[9], [11]. Compared to the other methods mentioned, the
watershed has several advantages, including the proper
handling of gaps and the placement of boundaries at the
most significant edges (see Section 4).

It is difficult, however, to impose a priori information, in

particular smoothness, on the watershed lines. As the

algorithm relies purely on the edge evidence, the boundaries

between regions may be noisy. A simple postprocessing

smoothing of the watershed line does not take into account

the observed information and, therefore, important corners

with high edge evidence may be lost. So, the question is

whether we can represent the watershed segmentation as the

result of the minimization of an energy function. If so, a priori

information can be imposed by adding appropriate regular-

ization terms to the energy. This is achieved in this paper,

leading to a new method called watersnakes.
The paper is organized as follows: Section 2 provides the

necessary background on watershed segmentation. In

Section 3, we derive the cost function, whose minimization

is equivalent to the watershed segmentation. We then add

the contour length to this function to produce a segmenta-

tion with smooth boundaries. Section 4 derives properties of

watersnakes, including a detailed comparison with the

above energy-based methods. Section 5 develops algo-

rithms for the implementation. Finally, Section 6 shows

experimental results.

2 DEFINITION AND PROPERTIES OF

THE WATERSHED

Several distance-based definitions of the watershed have
been proposed by Meyer in [15], Najman and Schmitt in
[13], and Preteux in [16]. Although the definitions are
slightly different, all papers show that, with an appropriate
measure of the distance traveled over the relief, the
watershed line is the set of points equidistant to the
regional minima of the relief function. The definitions are
valid for both the continuous and the discrete case. In this
section, we briefly consider the definitions and results
needed for this paper.

2.1 The Topographical Distance

The heart of the distance-based definition of the watershed
is the concept of topographical distance.

Suppose the watershed is defined for a given relief
function fðxÞ : X7!IR on some domain X � IR2.

Definition 1. For any smooth function f , the topographical
distance between two points x and y is a spatial distance
weighted with the gradient norm jrf j:

Lðx;yÞ ¼ inf

2½xe>y�

Z



jrfð
ðsÞÞjds; ð1Þ

where ½xe>y� denotes the set of all possible paths from x to y.

As indicated, the above definition is valid for smooth
functions only. When the function is nonsmooth, the topo-
graphical distance is defined in a more complicated way [15].

For the case where f is defined on a digital grid:X � ZZ2, a
discretized version of (1) has been proposed by Meyer in [15]:

~LLðx;yÞ ¼ min
�

Xn
i¼2

rðtiÿ1; tiÞ:distðtiÿ1; tiÞ; ð2Þ

where distðÞ denotes the Chamfer distance [17]. The mini-
mum is taken over all possible paths of adjacent pixels � ¼
t1; t2; . . . ; tn from x to y, where t1 ¼ x, tn ¼ y, and ti; tiþ1 are in
the same Chamfer neighborhood. Here, rðtiÿ1; tiÞ is an
approximation of the gradient norm. Based on the work by
Meyer in [15], we propose to computerðtiÿ1; tiÞ as follows:

rðtiÿ1; tiÞ ¼
LSðtiÞ if fðtiÿ1Þ < fðtiÞ
LSðtiÿ1Þ if fðtiÿ1Þ > fðtiÞ
minfLSðtiÞ; LSðtiÿ1Þg if fðtiÿ1Þ ¼ fðtiÞ;

8<: ð3Þ

where LSðxÞ is the lower slope at x [15]. The definition is
identical to the one of Meyer in [15] except when
fðtiÿ1Þ ¼ fðtiÞ. As we have shown in [18], (3) is advanta-
geous over the definition in the reference in cases where the
latter leads to the shifting of the watershed line.

2.2 The Watershed Line

Now, suppose the function f has a finite number of distinct
regional minima [9], denotedM1; . . . ;MK . Let �i be the level
of f on Mi. For each regional minimum, we consider the
corresponding topographical distance transform:

LiðxÞ ¼ Lðx;MiÞ ¼ inf
y2Mi

Lðx;yÞ: ð4Þ

For each point, K values of distance to the regional minima
are obtained. The catchment basins and the watershed line
are then defined as:

Definition 2. The catchment basin CBi of a regional minimum
Mi is defined by:

CBi ¼ fx 2 Xj 8j 6¼ i; 1 � j � K :

�i þ LiðxÞ < �j þ LjðxÞg:
ð5Þ

Definition 3. The watershed line of the function f is the set of
points not belonging to any catchment basin:

WSðfÞ ¼ X n
[
i

CBðMiÞ: ð6Þ

In case all regional minima are at the same level, the
watershed is the topographical SKIZ (skeleton by zones of
influence [19]) of the regional minima.

It is important to note that the function f can be fully
reconstructed from the distances to the regional minima as
follows: [20], chapter 5], [21]:

fðxÞ ¼ min
1�i�K

f�i þ LiðxÞg: ð7Þ
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As illustrated in Fig. 1, �i þ LiðxÞ equals fðxÞ within the
catchment basin CBi. When the pixel moves beyond the
catchment basin, for the 1D case �i þ LiðxÞ is the reflection
of fðxÞ with respect to the horizontal line passing through
the watershed point. For the 2D case, a similar behavior of
�i þ LiðxÞ can be observed, except that the reflection is far
more complicated as the watershed line has varying height.

The watershed line may be thick, i.e., have a nonzero area.
It may also have so-called barbs which are branches of zero
area with an end point [13]. Several approaches have been
proposed to define a thin watershed line [11], [16], [22]. These
methods add the geodesic distance to the topographical
distance. This makes the definition much more complicated.
In addition, we notice that the geodesic SKIZ itself may also be
thick (see Appendix A). As a consequence, the referenced
approaches yield a thinner watershed line, compared to the
one in Definition 3, but they cannot guarantee a watershed
line of zero area.

2.3 The Watershed from Selected Minima

In practice, to prevent oversegmentation, the watershed line
is constructed from a given set of regions called markers. A
modification of the relief function is required [11]. First, all
points in the markers are given a lowest value, say, 0. A new
relief is constructed by the recursive conditional erosion:

gnþ1 ¼ maxff; "gng; ð8Þ

where g0ðxÞ is the function, which has the value 0 on the
markers and1 otherwise, and "gn denotes the erosion of gn
with a minimum disk. The watershed transformation is then
applied to g1 which has the markers as its sole minima. The
classical watershed line of g1 is a subset of the watershed
line of the original function f with the most significant edges
retained.

We add another interpretation of g1 that has a generic
property with respect to (8). Let Sm be the set of markers.
Given a path � from x to Sm. Let

Cð�Þ ¼ max
z2�

fðzÞ: ð9Þ

In [16], Cð�Þ is called the connection cost of �. Here, we
show that it can be used to define the reconstructed relief.

Proposition 1. g1ðxÞ can be interpreted as the maximal level the
water from the markers has to reach before flooding x:

g1ðxÞ ¼ min
�2½xe>Sm�Cð�Þ; ð10Þ

where ½x e>Sm� denotes the set of paths, thus linking x and Sm.

The proof is given in [18].
Another point of view on g1, which also does not require

recursion, has recently been given by Meyer in [23].
We have described in this section the distance-based

definition of the watershed line. We have modified the
definition of the topographical distance in a discrete grid [15].
The modified definition guarantees the placement of the
watershed line at ridgelines of the relief and the possibility to
recover the relief from the topographical distance to regional
minima. We also give a new and more generic definition for
the reconstructed relief in the watershed algorithm from
markers. This new definition does not require the recursive
erosion as in the traditional approach [11]. The definition of
the watershed, based on the topographical distance, is needed
in the remaining part of the paper for the investigation of the
relation between the watershed and the energy minimization.

3 WATERSHED AS A MINIMIZATION PROBLEM

In this section, we establish the relation between watershed
and energy-based minimization.

3.1 The Energy Function

Unless stated otherwise, the notations in this subsection are
used for both the continuous and the discrete case.

Let us first define segmentation as a partition of the
image space:

Definition 4. A partition of the image space X is a set of
connected regions 
1; . . . ;
K such that

aÞ
[K
i¼1


i ¼ X ;

bÞ 8i 6¼ j : 
i \ 
j ¼ ;;
cÞ Intð
iÞ ¼ 
i;

ð11Þ

where IntðRÞ denotes the interior of set R and R its closure.
The last condition is meaningful only in the continuous
case. It ensures that the boundaries of the regions do not
have barbs. This is equivalent to saying that each boundary
segment must separate at least two different regions.

Definition 5. A partition 
1; . . . ;
K is called a watershed
segmentation if

8x 2 
i : �i þ LiðxÞ ¼ min
1�j�K

f�j þ LjðxÞg: ð12Þ

Considering (7), the right-hand side of (12) actually
equals fðxÞ.

It follows from Definition 5 that each region of a watershed
segmentation contains one and only one catchment basin and
the borders of the regions lie within the possibly thick
watershed line (see Fig. 2). Note that the inverse statement is
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true only in case of a thin watershed line. When the watershed
is thick, one can find a partition for which the region
boundaries lie in the watershed region but (12) does not hold.

An important question is whether a watershed segmen-
tation actually exists. The existence is obvious in case of thin
watershed lines. However, when the watershed region is
thick, it is not clear how to assign pixels in the watershed
region to the catchment basins such that Definitions 4 and 5
are satisfied. To this end, we have proven the following.

Proposition 2. Every catchment basin CBi is a connected set.

See [18] for a proof. This proposition is then needed for the
proof of the following theorem.

Theorem 1. For a smooth function f , defined on an open,
bounded, and connected domain X , there always exists at least
one watershed segmentation.

Proof. See Appendix A. The main idea is to assign all pixels
in the watershed region to one catchment basin unless
(12) or the requirements of a partition are violated. tu
Although we prefer to accept the fact that the watershed

line can be thick, the proof of Theorem 1 actually specifies a
way to construct a watershed line, which has zero area, no
barbs, and at the same time, satisfies (12). As noted in the
previous section, none of the existing approaches can
guarantee a watershed segmentation with an ideal thin
watershed line.

Given Theorem 1, we can now take a next step by

proving:

Theorem 2. A partition 
1; . . . ;
K minimizes the following

function:

Eð
1; . . . ;
KÞ ¼
XK
i¼1

Z

i

Z
f�i þ LiðxÞgdx ð13Þ

if and only if it is a watershed segmentation.

The proof is given in Appendix B.
Looking at (13), we see that in case �i ¼ 0, EðÞ is actually

the sum of the volumes of the topographical distance function
over the regions. We remark that, in fact, SKIZ with respect to
any distance measure can be obtained by minimizing a cost
function similar to (13). In our case, the minimization of E
yields the SKIZ with respect to topographical distance, which
is the watershed line. We call the function E energy as this is
the common term for a cost function whose minimization
yields a desired segmentation.

In conclusion, Theorem 2 states the equivalence of the

watershed to energy minimization.

3.2 Watershed and PDEs—Imposing Smoothness

A PDE form of the watershed line can be obtained by

considering the minimization of the energy E in (13) along

the steepest descent direction.
The differentiation of the area functional

R R

i
f�i þ

LiðxÞgdx with respect to a deformation of the border @
i

of 
i results in the equation @x@
@t ¼ f�i þ Liðx@Þg~nni, where x@

is a point on @
i and ~nni is the unit normal vector of @
i

pointing inwards into 
i [2]. Thus, the value �i þ Li plays

the role of a “force” compressing the region 
i from its

boundary. A boundary point adjacent to two regions 
i and


j is under two forces ð�i þ LiÞ~nni and ð�j þ LjÞ~nnj. Since

~nnj ¼ ÿ~nni, the motion is given by

@x@
@t
¼ fð�i ÿ �jÞ þ ðLi ÿ LjÞg~nni: ð14Þ

Thus, x@ moves as long as it still resides inside one of the

catchment basins where ð�i ÿ �jÞ þ ðLi ÿ LjÞ 6¼ 0 and stops

when this value equals zero. In the end, the boundary

resides in the watershed line.
Having represented the watershed segmentation as an

energy minimization, the smoothness of the region bound-

ary is now achieved by adding the boundary length to the

energy function

Eð
1; . . . ;
KÞ ¼
XK
i¼1

Z

i

Z
f�i þ LiðxÞgdxþ �

Z
@
i

ds

0B@
1CA; ð15Þ

where � is the weighting coefficient.
We call the segmentation method based on the mini-

mization of this energy function watersnake in order to

distinguish it from the original watershed. In this case, the

compressing force acting on a point x@ at the border of a

region 
i is ð�i þ Li þ ��iÞ~nni, where �i denotes the

curvature of @
i at x@ . When two regions 
i and 
j are

neighbors, we have �i ¼ ÿ�j ¼ � on their common bound-

ary. The motion of the boundary is then caused by the

vector sum of the two compressing forces

@x@
@t
¼ ð�i ÿ �jÞ þ ðLi ÿ LjÞ þ 2��
� 	

~nni: ð16Þ

Some other PDE-based formulations for the watershed

line have been used in literature. In [7], Tek and Kimia

notice that the watershed algorithm on a relief function f

can be implemented by the evolution equation @x@
@t ¼ 1

f
~nn.

In [24], Maragos and Butt give another equation:
@x@
@t ¼ 1

jrfj~nn. Both these equations describe the evolution

of marker contours before the markers meet, i.e., when

the contours reside within the corresponding catchment

basins only. Our PDE (14), in contrast, describes the

motion of an arbitrary contour toward the watershed line.

The formulation in [7] and [24] can be used for

computing the original watershed line. However, in case

the evolution equation also contains the regularization

term, these approaches are not appropriate.
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4 COMPARISON OF WATERSNAKES WITH

ENERGY-BASED SEGMENTATION METHODS

In this section, we compare watersnakes with other energy-
based segmentation methods.

It is clear from (15) that the energy function of water-
snakes belong to the region-based group (see Fig. 3). In
particular, it can be compared to the energy used by Zhu
and Yuille in [2]. The latter energy is defined as follows:

min
XK
i¼1

Z

i

Z
ÿ logP ðIxjaiÞdxþ �

Z
@
i

ds

0B@
1CA; ð17Þ

where P ðIxjaiÞ denotes the probability density of the
measured intensity at pixel x under the assumption that
the pixel belongs to the region 
i and ai denotes the
parameter vector of this distribution.

It can be observed that the energy function of watersnake in
(15) and the energy function of the region competition method
in (17) are similar except that the topographical distance �i þ
LiðxÞ in (15) replaces the termÿ logP ðIxjaiÞ in (17). Both these
terms measure the homogeneity within region 
i but the
topographical distance has the major advantage that it does
not contain any parameters. The watersnake does not have to
go back and forth between updating region parameters and
updating pixel’s labels. The minimization procedure is
therefore simpler than those in the region competition and
other methods using region-based energy.

The watersnake model has also advantageous properties
over the snake-based methods:

1. While the snake-based methods [4], [5], [7] might
converge to weak edges, depending on the tuning of
parameters, the watershed line always corresponds to
the most significant edges between the markers.
When the smoothing term is present, the watersnake
deviates from the watershed line to reduce the local
curvature until ð�i ÿ �jÞ þ ðLi ÿ LjÞ is compensated
with 2��. The smoothing effect is inversely propor-
tional to the sharpness of edges since the value of

ð�i ÿ �jÞ þ ðLi ÿ LjÞ increases faster for sharp edges
when the contour moves away from the watershed
line.

2. In case evidence for edges between the markers is low,
the resulting contours still lie between the markers.
The watersnake is therefore able to fill the gaps
between broken edges.

In conclusion, the watersnake is a fusion of energy-based
segmentation and morphology-based segmentation and
combines the advantages of these two approaches.

5 IMPLEMENTATION

There are two possible approaches for implementing the
minimization of the energy (15) in the discrete domain. The
first approach takes the motion (16) as its starting point.
Discretization of this equation requires a discrete estimator
of curvature. The second approach discretizes the energy in
(15) and defines a method for minimizing it. This approach
requires a discrete estimator of contour length.

These two approaches are investigated in detail in the
two sections that follow.

5.1 Algorithm Based on Region Growing

For the discretization of PDEs of contour motion depending
on curvature, the well-known level set method of Osher and
Sethian in [6] can be applied. This method is appropriate for
solving (16) in case of two markers. The method would,
however, grow expensive in case of multiple markers. We
have to keep track of every boundary between every pair of
potentially adjacent regions each with its own PDE. At the
same time, we would have to take care that the topology of the
entire partition is preserved.

A simpler approach is to modify the region growing step
of the original watershed algorithm such that the region
borders are kept smooth during growth. Starting from a set
of markers, the algorithm iteratively adds to the markers the
pixels connected to their border. For the pixel selection, the
growing process takes into account the value of the
compressing force �i þ Li þ ��i at each boundary pixel.
The part of the border, where this force is weakest, is
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propagated in the outward direction first. The curvature �i
at a pixel is computed from the local boundary pixels [25].
Every time a pixel is added to the markers, the curvature at
the boundary pixels in the neighborhood is recomputed.

A similar idea has been proposed in the segmentation
methods of [26] and [27]. In [26], the criterion for adding a
pixel to a marker is based on both contrast and contour
complexity. The latter term is defined as the number of
contour points added to the marker contour when the pixel in
consideration is added to the marker. This approach is then
extended in [27] for region growing applied to flat zones.

Note that, although the intuitive approach of keeping
region contours smooth during growth yield smooth
resulting boundaries in many practical situations, it does
not guarantee to yield a solution of (16). As a consequence,
we do not consider this algorithm any further in the paper.
We now concentrate on (15).

5.2 Intermezzo: Local Contour Length Estimate

Before describing in the next section an algorithm mini-
mizing the energy (15), we need a contour length estimator.
We estimate the contour length using the number of pairs of
neighboring pixels. In this way, the contour length can be
re-estimated locally when the contour moves. We use the
Chamfer neighborhood. Given pixel x 2 
i, let n4ðxÞ; n8ðxÞ,
and nkðxÞ be the number of pixels which are in the four,
eight, and “knight-move” connected neighborhood of x but
outside 
i (see Fig. 4).

The perimeter of 
i is then estimated as:Z
@
i

ds ¼
X
x2
i

½w4n4ðxÞ þ w8n8ðxÞ þ wknkðxÞ�; ð18Þ

where w4, w8, and wk are the weighting coefficients.
The motivation of (18) is the observation that contour

length is proportional to the number of neighbor pairs
crossing the contour. As will be seen, the advantage of this
approach is that we can calculate how much region
perimeter increases when a pixel is added to the region
border by looking at local information only. To determine
the values of the weighting coefficients, we do an experiment
to find the relation between n4, n8, nk, and the theoretical
perimeter of circles and rectangles. The results are shown in
Fig. 5. The results for circles confirm the linear relationship
between the perimeter and n4, n8, and nk, namely,
2�r � 0:79n4 � 0:56n8 � 0:18nk, where r is the circle radius.
Taking the final length as the average of the three individual
estimates, we set

w4 ¼ 0:26; w8 ¼ 0:19; wk ¼ 0:06: ð19Þ

Although these coefficients are obtained with circles, they
also yield a good estimate for straight boundaries, as
indicated in Fig. 5. Note that the above contour length
estimator will not be accurate for small-size regions like a
single pixels since it is derived for disks of larger radius.

5.3 Algorithm Based on Energy Discretization

In this section, we propose an algorithm that aims to
minimize the following discrete version of the energy (15)

~EEð
1; . . . ;
KÞ ¼
XK
i¼1

X
x2
i

n
�i þ ~LLiðxÞþ

�½w4n4ðxÞ þ w8n8ðxÞ þ wknkðxÞ�
o
:

ð20Þ

The smoothing term used in (20) is somewhat similar to that
in the Bayesian model [3], [28]. This term is nonzero only
near the region boundary.

The algorithm needs a partition of the image as starting
point. For example, the original watershed segmentation
can be used. Then, an exchange of boundary pixels between
the regions is performed such that the energy (20) is
minimized. Here, we define boundary pixels as ones having
at least one neighbor with a different label.

Suppose a boundary pixel x is currently assigned to 
i and
it is adjacent to region 
j. Let n4ðx; jÞ; n8ðx; jÞ, and nkðx; jÞ be
the number of pixels with label j, respectively, in the 4, 8, and
“knight-move”-connected neighborhood of x. If we change
the pixel assignment from label i to label j, n4ðx; jÞ pairs of
4-connected pixels disappear, while n4ðx; iÞ new pairs are
created. With the same observation for the other two kinds of
connectivity, it can be verified that the change of energy (20) is

� ~EEðx; i! jÞ ¼ ð�j ÿ �iÞ þ ð ~LLjðxÞ ÿ ~LLiðxÞÞ

þ 2�
n
w4½n4ðx; iÞ ÿ n4ðx; jÞ� þ w8½n8ðx; iÞ ÿ n8ðx; jÞ�

þ wk½nkðx; iÞ ÿ nkðx; jÞ�
o
:

ð21Þ

Relating this to (16), note that the last term in the right-hand
side of (21) can be regarded as a measure for the curvature
(but a inaccurate one).

Obviously, reassignment of x should occur if
� ~EEðx; i! jÞ < 0. The value of � ~EE is called the stability
of x [28]. Junction points may have several reassignment
possibilities. In this case, the stability of a junction pixel
is defined as the minimal value of � ~EE. For each
reassignment, the pixel with lowest stability is selected.
Since reassignments can only reduce the energy ~EE, the
convergence of the algorithm is guaranteed.

As noted, (21) uses a crude measure of curvature. This
measure takes into account only the local information at the
pixel considered and, therefore, smoothing occurs only at a
small scale. To smooth corner structures at larger scales, the
algorithm should run in multiscale mode. The minimization
result at a low-resolution level is used as the initial state for the
minimization at the next higher resolution level. One
advantage of multiscale smoothing is that resulting bound-
aries are not jagged as often happens in methods based on a
single scale [2]. In the latter approach, only global corners are
smoothed but local corners remain unaffected, causing
jaggedness.

Another advantage of the multiscale mode is the avoid-
ance of undesired local minima of the energy function. As we
have proven, the original watershed segmentation gives the
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Fig. 4. For the indicated pixel: n4ðxÞ ¼ 2; n8ðxÞ ¼ 2; nkðxÞ ¼ 5.



global minimum of the energy function (13). However, due to
adding the contour length as in (15) and (20), the energy
function may have many local minima. As the minimization
procedure finds a local minimum only, the result depends on
the choice of the initial segmentation. The coarse-to-fine
strategy prevents the algorithm from getting trapped in an
undesired local minimum by providing a good initial
segmentation, obtained at lower resolution levels.

The algorithm is summarized below: It consists of two
stages. The result of Stage 1 is identical to the original
watershedsegmentationas in[15], [22].SinceStage1increases
regions based on a minimum distance criterion, it is also
similar to the algorithm in [29] except for a different distance
measure. The major contribution of our algorithm, therefore,
is Stage 2 where the segmentation result of Stage 1 is smoothed
by minimizing energy (20).

ALGORITHM

STAGE 1

1. Compute K distance transforms LiðxÞ ( see [15], [22] ).

2. Initialize the regions 
i from the regional minima Mi.
3. From unassigned pixels on the outer boundary of the

regions, select one with minimal value of �i þ LiðxÞ, where

i is the label of the adjacent region. Assign the selected pixel

to region 
i.

4. Iterate Step 3 until all pixels are assigned.

STAGE 2

1. Start from a low-resolution level by subsampling the

label image as well as the K distance transforms.
2. For every boundary pixel compute the stability accord-

ing to (21).

3. Select the boundary pixel with lowest stability. When

this value is negative, perform the reassignment.

4. Recompute the stability of the pixels in the chamfer

neighborhood of the reassigned pixel according to (21).

5. Iterate Steps 3 and 4 until no reassignment is possible.

6. Repeat Steps 2-5 for higher resolution levels.

Let us give more details on the downscaling process in
Stage 2. The input for the minimization at the upper or
coarse resolution level l is obtained from the previous level
lÿ 1 by subsampling the label image and the K distance
maps by a factor of two in both dimensions. To be specific, a
label of a pixel x at level l is selected from the labels of the
four corresponding pixels x1, x2, x3, and x4 at the finer
resolution lÿ 1 according the majority criterion. The
K topographical distance maps could be recomputed for
each level. However, since this recomputation is time
consuming, we use a simplified approach in which the
topographical distance LiðxÞ at level l is obtained by
averaging of the values of Liðx1Þ, Liðx2Þ, Liðx3Þ, and
Liðx4Þ at level lÿ 1.
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Fig. 5. Results of the experiment for the determination of w4, w8, and wk. (a) The numbers n4, n8, and nk are counted at the border of digital disks of
radius ranging from 5 to 200 and plotted as function of the radius. The plot shows a linear relationship between the numbers of neighbor pairs and the
perimeter of the disks: 2�r � 0:79n4 � 0:56n8 � 0:18nk. (b) The numbers n4, n8, and nk are counted at the border of a digital rectangle of size 210� 194,
the orientation of which is then rotated with respect to the grid. The plots show the ratios (in percentage) of 0:79n4, 0:56n8, and 0:18nk, respectively, to
the theoretical perimeter of the rectangle as function of the rotation angle. (c) The same as in (b) but for the combination ð0:79n4 þ 0:56n8Þ=2. (d) The
same as in (b) but for the combination of ð0:79n4 þ 0:56n8 þ 0:18nkÞ=3.



Since the final segmentation is obtained at the finest
resolution, the result is always a local minimum of the
energy (20). Note also that the algorithm is guaranteed to
converge since the energy function always decreases.

6 RESULTS

In this section, we show illustrations of the performance of
watersnakes in segmentation using the algorithms described.

Before the segmentation started, images were smoothed
by the opening by reconstruction filter [12]. For the
smoothed images, the morphological gradient rm ¼ �I ÿ
"I was computed, where �I and "I, respectively, denote the
gray-value dilation and erosion of I with the minimum disk.
For color images, we defined the gradient as the maximum of
the morphological gradients computed for the three
RGB channels. The markers were extracted as low-gradient
zones, where the gradient is below 0.5 times of the estimated
standard deviation of the gradient over the entire image.

Let

hðxÞ ¼ 0 if x 2 markers
rmðxÞ otherwise

�
ð22Þ

and

gðxÞ ¼ 0 if x 2 markers
1 otherwise:

�
ð23Þ

The relief f was obtained by the reconstruction by erosion
of g with mask h. The reconstruction algorithm can be
found in [30].

Fig. 6a shows an original brain slice image of size
375� 371. Fig. 6b shows the relief image obtained. The
markers extracted are shown in Fig. 6c. The result of the
original immersion-based watershed algorithm [10], [9] is
shown in Fig. 6d for comparison.

The segmentation results obtained with the energy
discretization-based algorithm, presented in Section 5.3, are
shown in Fig. 7 for different values of the smoothing
coefficient �. The minimization was performed at three
scales. At the lowest resolution level, the image was reduced
by a factor of four in both dimensions. Although the
algorithm used a simple measure for curvature, in multiscale
mode, the smoothing result is quite satisfactory.

More segmentation results are shown in Figs. 8 and 9. To
focus the reader attention, in all examples except for the top
row of Fig. 8, we show the results for the object of interest only.

The result in the top row of Fig. 8 can be compared to
that in [2], which aimed to segment the same image. Our
segmentations have less regions. Moreover, the regions are
smooth and the most prominent regions in the image.

As observed in the results, the watersnake algorithm has
two advantages over the watershed. The first one is the ability
to impose smoothness on the segmentation result. In Figs. 6d
and 8a, the original watershed line is rather noisy and jagged.
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Fig. 6. (a) A brain image. (b) The relief computed from morphological gradient. (c) The markers extracted. (d) The result of the original watershed

segmentation, shown for comparison.
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Fig. 7. The segmentation result of the watersnake algorithm based on energy discretization with (a) � ¼ 10, (b) � ¼ 50, (c) � ¼ 100, and (d) � ¼ 150.
Note, in comparison with the original watershed segmentation in Fig. 6d, that the results in figure are smoother, but still identify the main objects.

Fig. 8. Segmentation by (a) watershed and (b) watersnake (� ¼ 50). In the bottom row, the result is shown for the object of interest only.



These contours are usually not what the user desires. Smooth

contours as in the results of Figs. 7 and 8b are important for

further investigation of object shape. The second important

advantage of the watersnake algorithm is that it prevents the

formation of wrong limbs, the unwanted regions attached to

the object of interest. These limbs often occur in the watershed

segmentation due to a leak at the object boundary. Examples

are shown in the bottom row of Fig. 8a and in Fig. 9a. As

observed in Figs. 8b and 9b, the watersnake algorithm has

significantly shortened the wrong limbs, resulting in much

better segmentation compared to the left column.
Apparently, smoothness of the resulting boundary is

always at the cost of losing adherence to edges at some
corners. Examples are some protrusions in Figs. 7c and 7d or
the foot of the cat in the top row of Fig. 9b, which have been

smoothed over. We still cannot give an optimal scheme for the
determination of the coefficient � since this issue is subjective
and depending on the application. Nevertheless, the pro-
posed method is advantageous over the traditional wa-
tershed and postsmoothing of the result. As noted in Section 4,
boundaries in our results are not smoothed equally but rather
depending on the sharpness of local edges, i.e., abruptness of
intensity change. Since important edges are usually sharp,
they tolerate the smoothing better than weak edges. This can
also be observed in Fig. 7. Pay attention to the indentation on
the top of the brightest region in the middle. Despite high
curvature, this indentation remains unaffected in Figs. 7a and
7b, while protrusions at other weaker edges have been
smoothed over. The intactness of the true limbs of the tree in
Fig. 8b is another example.
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Fig. 9. Segmentation by (a) watershed and (b) watersnake (� ¼ 50). The results are shown for the object of interest only.



7 CONCLUSION

This paper has established a connection between the well-
known watershed segmentation from mathematical mor-
phology and energy-based segmentation methods. Using
the distance-based approach for the definition of the
watershed line, we have derived an energy function whose
minimization is equivalent to the watershed segmentation.
Using this point of view, a priori knowledge on boundary
smoothness or shape can now be taken into account. In
particular, we obtain smooth watersheds by adding the
length of the region boundary to the energy function. It
yields a new segmentation method called watersnake that is
implemented by a multiscale algorithm. Significant im-
provements in smoothness of segmentation results, using
the new method, have been confirmed by experiments.

Apart from the incorporation of a priori knowledge into
the watershed segmentation, the results of the paper can
also be used for the combination of the watershed lines
obtained on different relief functions. The minimization of a
linear combination of the energy functions yields a natural
trade-off in segmentation between different types of edge
indicating functions. In a forthcoming paper, we are
exploring this for tracking regions in an image sequence.

APPENDIX A

PROOF OF THEOREM 1

In this appendix, we prove the existence of at least one
watershed segmentation according to Definition 5.

When the watershed line is thick, the assignment of the
watershed pixels into the catchment basins is ambiguous.
This is known as the plateau problem. As noted, several
methods [10], [16], [11], [22] use the geodesic distance in
plateau to solve this ambiguity. Unlike the euclidean SKIZ
[19], the geodesic SKIZ may be thick (see Fig. 10). Therefore,
none of the above methods can guarantee an ideally thin
watershed line that has a zero area (or equivalently, empty
interior). In essence, the proof presented below specifies a
way to construct a watershed segmentation that has
boundaries of zero area.

Our solution to the plateau problem is to assign all pixels in
the plateau to one catchment basin unless the constraints of
connectedness and regularity of the partition are violated. If it
is desired that the watershed line lies in the middle of the
plateau, one can also use the geodesic distance to divide the

plateau first and then use the proposed approach to divide the
remaining geodesic SKIZ that may be thick.

We shall call a set A regular if IntðAÞ ¼ A. Such a set
does not have barbs although it may contain barbs of
other sets inside it. If all regions of a partition are regular
and, furthermore, the border of the union set X does not
have barbs, then the border of every region does not have
barbs either.

We use the following proposition that has been proven

in [18].

Proposition 3. Let S be an open set. Given K seeds: A1; . . . ;AK
which are disjoint subsets of S, where every Ai, i 2 f1::Kg, is

connected and regular. We assume further that every pixel inS is

connected to one of Ai.
Then, we can partition S intoK disjoint regionsR1; . . . ; RK

such that every regionRi, i 2 f1::Kg is connected and regular,
and, furthermore, Ai � Ri.

Using this proposition, we now can prove Theorem 1.

Proof of Theorem 1. Given x 2 X , we use IðxÞ to denote the

set of indices such that

8i 2 IðxÞ : �i þ LiðxÞ ¼ min
1�j�K

f�j þ LjðxÞg: ð24Þ

Let �ðxÞ be the number of indices in IðxÞ and

SðnÞ ¼ fx 2 Xj�ðxÞ � ng: ð25Þ

Note that Sð1Þ ¼
SK
i¼1 CBi and SðKÞ ¼ X . It can be

verified that SðnÞ is an open set and, furthermore, every
pixel in SðnÞ is connected to one of the regional minima
(using a similar proof as in Proposition 2).

To illustrate why we need sets SðnÞ, let us consider the
segmentation with three catchment basins, i.e., K ¼ 3.
The watershed, being the set of points with equal
distances to the two nearest catchment basins, is then
the union of the following sets (see Fig. 11):

W12 ¼ fx j�1 þ L1ðxÞ ¼ �2 þ L2ðxÞ;
�1 þ L1ðxÞ < �3 þ L3ðxÞg

W23 ¼ fx j�2 þ L2ðxÞ ¼ �3 þ L3ðxÞ;
�2 þ L2ðxÞ < �1 þ L1ðxÞg

W13 ¼ fx j�1 þ L1ðxÞ ¼ �3 þ L3ðxÞ;
�1 þ L1ðxÞ < �2 þ L2ðxÞg

W123 ¼ fx j�1 þ L1ðxÞ ¼ �2 þ L2ðxÞ ¼ �3 þ L3ðxÞg:

To complete the segmentation, the regions of the
catchment basins need to be extended to fill up the
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Fig. 10. (a) An example of a thick geodesic SKIZ. The bold lines illustrate
the shortest geodesic paths from x to the seeds A1 and A2. (b) A
partition that has a boundary of zero area.

Fig. 11. Illustration of the watershed region in case of three catchment

basins.



watershed region. Note, however, that points in W12

cannot be assigned to the catchment basin CB3 because
this would violate (12) in our watershed definition. For
that reason, we do not construct a partition of the whole
image immediately. Instead, we grow the catchment
basins within set Sð2Þ first. By our definition:

Sð2Þ ¼ fxj�ðxÞ � 2g
¼ CB1 [ CB2 [ CB3 [W12 [W23 [W13:

In this way, points in W12 will not be assigned to CB3

since W12 and CB3 are disconnected, as will be proven

below. The final segmentation is constructed by assign-

ing points in the remaining region W123 to one of the

regions obtained from the partition of Sð2Þ.
We are now back to the main proof with a general K.

In order to prove the existence of a watershed segmenta-
tion, we construct a series of partitions of SðnÞ

SðnÞ ¼ RðnÞ1 [ . . . [RðnÞK ; n ¼ 1; . . . ; K ð26Þ

with

R
ð1Þ
i ¼ CBi ; i ¼ 1; . . . ; K: ð27Þ

The regions R
ðnÞ
1 ; . . . ; R

ðnÞ
K are obtained by applying

Proposition 3 forSðnÞwithR
ðnÿ1Þ
1 ; . . . ; R

ðnÿ1Þ
K as seeds. Then,

the final regions fRðKÞ1 ; . . . ; R
ðKÞ
K g constitute a disjoint

partition of X , where each region R
ðKÞ
i is connected and

regular.
It remains to prove that fRðKÞi g is a watershed

segmentation. We shall prove that for every n ¼ 1; . . . ; K,

8x 2 RðnÞi : �i þ LiðxÞ ¼ min
0�j�K

f�j þ LjðxÞg: ð28Þ

We employ the principle of mathematical induction. Since

R
ð1Þ
i ¼ CBi, (28) holds for n ¼ 1 by the definition of the

catchment basins. Assuming that (28) holds for nÿ 1, we

shall prove that it also holds for n.
Let x 2 RðnÞi . We assume conversely that

�i þ LiðxÞ > min
1�j�K

f�j þ LjðxÞg:

That also means i 62 IðxÞ.
As assumed, (28) holds for nÿ 1, it follows that

x 62 Rðnÿ1Þ
i . Furthermore, since 8j 6¼ i : R

ðnÞ
i \R

ðnÞ
j ¼ ;

and R
ðnÿ1Þ
j � RðnÞj , we also have R

ðnÞ
i \R

ðnÿ1Þ
j ¼ ;. From

x 2 RðnÞi , it follows that x does not belong to any R
ðnÿ1Þ
j ,

j 6¼ i. It follows that �ðxÞ > nÿ 1.

At the same time, as assumed, x 2 RðnÞi � SðnÞ and

from the definition of SðnÞ, we have �ðxÞ � n. Combining

�ðxÞ > nÿ 1 and �ðxÞ � n, we conclude �ðxÞ ¼ n.
Since R

ðnÞ
i is connected, one can find a path 
 in R

ðnÞ
i

from x to CBi, where 
ð0Þ ¼ x and 
ð1Þ 2 CBi. Observe
that the sets Ið
ð0ÞÞ and Ið
ð1ÞÞ are different. There-
fore, if we travel along 
 from x to CBi, a change in
Ið
ðtÞÞ occurs somewhere. Let z� be the first point
where Ið
ðtÞÞ changes. In formulas, z� ¼ 
ðt�Þ, where
t� ¼ supft0j80 � t < t0 : Ið
ðtÞÞ � IðxÞg. By this defini-
tion, one can find a sequence zm ¼ 
ðtmÞ, where tm > t�

and limm!1 zm ¼ z� such that IðzmÞ 6� IðxÞ.

We consider the two following cases:

1. There exists an index ‘ 2 IðzmÞ and ‘ 62 IðxÞ. This

implies�‘ þ L‘ðzmÞ ¼ min0�j�Kf�j þ LjðxÞg.Since

this equality also holds at the limit z�, we have

‘ 2 Iðz�Þ. On the other hand, IðxÞ � Iðz�Þ. It

follows that IðxÞ [ f‘g � Iðz�Þ and, therefore,

�ðz�Þ, the number of indices in Iðz�Þ is larger than

that in IðxÞ: �ðz�Þ > n. This contradicts to the fact

that 
 is contained in SðnÞ.
2. IðzmÞ is a subset ofIðxÞand�ðzmÞ < n. This implies

zm 2 Sðnÿ1Þ. Since i 62 IðxÞ ) i 62 IðzmÞ and, there-

fore, zm 62 Rðnÿ1Þ
i . It follows that zm 2 Rðnÿ1Þ

j � RðnÞj
for some j 6¼ i. At the same time, zm 2 RðnÞi , this

contradicts to the fact thatR
ðnÞ
i \R

ðnÞ
j ¼ ;. tu

APPENDIX B

PROOF OF THEOREM 2

Proof. In this appendix, we prove the equivalence of the

watershed to the minimization of energy (13).

From (7), it follows that �i þ LiðxÞ � fðxÞ. Therefore,

for any partition 
1; . . . ;
K we have:

Eð
1; . . . ;
KÞ ¼
XK
i¼1

Z

i

Z
f�i þ LiðxÞgdx

�
XK
i¼1

Z

i

Z
fðxÞdx ¼

ZZ
x2X

fðxÞdx:
ð29Þ

For a watershed segmentation, the functionE is minimized

since (29) becomes an equality. On the other hand, if (29) is

an equality, then

8i :

Z

i

Z
f�i þ LiðxÞ ÿ fðxÞgdx ¼ 0:

Since �i þ LiðxÞ ÿ fðxÞ � 0, it follows thatZ
U

Z
f�i þ LiðxÞ ÿ fðxÞgdx ¼ 0

for any set U � 
i. That means: 8x 2 Int
i : �i þ LiðxÞ ¼
fðxÞ and as both LiðxÞ and fðxÞ are continuous, this

equality holds also on Intð
iÞ ¼ 
i:

8x 2 
i : �i þ LiðxÞ ¼ fðxÞ: ð30Þ

This implies 
1; . . . ;
K is a watershed segmentation. tu
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