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Abstract—We propose a new image segmentation technique called strings. A string is a variational deformable model that is learned

from a collection of example objects rather than built from a priori analytical or geometrical knowledge. As opposed to existing

approaches, an object boundary is represented by a one-dimensional multivariate curve in functional space, a feature function, rather

than by a point in vector space. In the learning phase, feature functions are defined by extraction of multiple shape and image features

along continuous object boundaries in a given learning set. The feature functions are aligned, then subjected to functional principal

components analysis and functional principal regression to summarize the feature space and to model its content, respectively. Also, a

Mahalanobis distance model is constructed for evaluation of boundaries in terms of their feature functions, taking into account the

natural variations seen in the learning set. In the segmentation phase, an object boundary in a new image is searched for with help of a

curve. The curve gives rise to a feature function, a string, that is weighted by the regression model and evaluated by the Mahalanobis

model. The curve is deformed in an iterative procedure to produce feature functions with minimal Mahalanobis distance. Strings have

been compared with active shape models on 145 vertebra images, showing that strings produce better results when initialized close to

the target boundary, and comparable results otherwise.

Index Terms—Machine learning, deformable models, energy minimization, multivariate statistics, shape analysis, functional data

analysis, chemometrics, active shape models.

�

1 INTRODUCTION

IN advanced image segmentation problems, object bound-
aries frequently have inhomogeneous characteristics. The

shape of a target boundary may be blunt at some parts and
strongly convoluted at other parts. Or, the image gradient
along a target boundary may be clearly visible and pointing
outward at some places, while it is hardly defined due to
neighboring objects at other places. We note that, in many
advanced segmentation problems, boundaries are frac-
tured, occluded, convoluted, or inhomogeneous otherwise,
requiring the definition of multiple features for accurate
boundary description. For this reason, it is imperative to
construct inhomogeneous boundary models for application
in image segmentation. We learn such boundary models by
exploring the information contained in large collections of
example images rather than constructing them from
analytical or geometrical knowledge rules.

Learning in the context of boundary-based image

segmentation has received considerable attention in litera-

ture, e.g., in [2], [13], [22], [26], in particular within the

active shape model framework [6]. In active shape models,
the appearance of a boundary is learned by statistical
analysis of feature values of a set of example boundaries.
During segmentation, the learned boundary model is used
as a reference for evaluation of potential boundaries
recorded by an active shape. The generic approach of active
shape models is very appealing. However, they often fail to
fully exploit the multivariate continuous nature of bound-
aries. The question raised here is how multiple continuous
boundary features, such as edge gradient and contour
curvature, are exploited for learning a continuous varia-
tional image segmentation model.

We propose a unified approach to learning structurally
different boundary features for multifeature image segmen-
tation. The problem of learning is transposed into one of
analyzing the closed functional curves in feature space that
best describe average feature values and the most important
variations therein. Image segmentation is conceived of as an
iterative procedure of recording multiple continuous
feature values, weighting these feature values to amplify
the statistically most descriptive features, and qualifying the
weighted feature values with respect to the values seen in
the learning set. The proposed string segmentation model
combines theory from functional data analysis [24] with
theory from chemometrics [21].

2 RELATED WORK

A number of active shape models have been presented in
literature. The method introduced by Cootes et al. in [6]
makes use of established statistical techniques to construct a
shape model from examples. In the reference, a shape is
represented as an N-vector of vertices

x ¼ ½ðx1; y1Þ; . . . ; ðxN; yNÞ�T : ð1Þ

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 11, NOVEMBER 2003 1399

. S. Ghebreab was with the Intelligent Sensory Information Systems Group,
Informatics Institute, University of Amsterdam, Amsterdam, The Nether-
lands. He is with the Biomedical Imaging Group Rotterdam, Room Ee2167,
Departments of Medical Informatics and Radiology, Erasmus MC,
University Medical Center Rotterdam, The Netherlands.
E-mail: s.ghebreab@erasmusmc.nl.

. A.W.M. Smeulders is with the Intelligent Sensory Information Systems
Group, Informatics Institute, Faculty of Sciences, University of Amster-
dam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.
E-mail: smeulders@science.uva.nl.

Manuscript received 1 Nov. 2001; revised 27 May 2002; accepted 18 Mar.
2003.
Recommended for acceptance by M.A.T. Figueiredo, E.R. Hancock, M. Pelillo,
and J. Zerubia.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 115300.

0162-8828/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society



Assuming two-dimensional vertices, eachN vertex is a single
point in a 2N-dimensional vector space. The set of M shape
examples subsequently forms a learning set of sizeM

L ¼ fx1; . . . ;xMg: ð2Þ

To remove variation attributed to stretching, shearing, and
rotation of the shapes from the learning set, the example
shapes are aligned by Procrustes analysis [15], aiming at
minimizing the sumofdistances of each example shape to the
average

�L ¼
XM
m¼1

jjxm � �xxjj2; ð3Þ

where �xx is an initial estimate of the average shape, with
jj�xxjj ¼ 1. TheM shape examples are aligned one-by-one,with
each iteration refining the estimation of the average shape.

Assuming the cluster of aligned shapes forms an ellipsoid,
in [6] principal components analysis is performed to reduce
the dimensionality of the data using the covariance matrix

CL ¼ 1

M � 1

XM
m¼1

ðxm � �xxÞðxm � �xxÞT ; ð4Þ

where �xx now denotes the average shape of the aligned
example shapes. The eigenvalues �n of CL, with �n � �nþ1

for n ¼ 1; . . . ; 2N , tell the amount of variance captured by
each principal component. The largest fraction of the total
variance is given by the first Q � 2N eigenvalues:

� ¼
XQ
q¼1

�q: ð5Þ

The eigenvalues �q describe the most significant modes of
variation and the corresponding eigenvectors describe the
dimensions in which they occur. A shape instance x is
explained as themean shape plus some linear combination of
these eigenvectors:

x � �xxþPbT ; ð6Þ

where theQ� 2N matrix P contains the firstQ eigenvectors
and b is a Q-vector of weighting coefficients. New plausible
shapes are generated by varying b within suitable limits,
derived by statistically examining the distribution of
weighting coefficients required to generate the learning
data. Based on feasible shapes, high gradient boundaries
are sought in an image.

A number of shortcomings of active shape models have
been recognized in literature. One problem arises when the
learning set L is contaminated with outliers, influencing the
statistics adversely. For this reason, Duta et al. [11] remove
outliers in an iterative approachusingan inter-shapedistance
matrix that defines the mean alignment error between a
polygonal approximation of a shape instance and an original
shapefromthelearningset.Thereducedlearningset isusedto
construct a less distorted statistical shapemodel. Application
of the corrected shape model for image segmentation
consequently leads to better performance.We adopt this idea
and we remove outliers in one step using another distance
measure.

Anotherproblem is thatminimization of (3) only takes into
account pose and scale differences between instances and

does not account for nonlinear shape differences. This is
solved by Duta et al. [11] using a flexible point matching
technique that performs global similarity registration of two
arbitrary sets of points and nonlinear registration based on
local similarity of two curves. Instead of minimizing (3), the
trade off between a compensated mean alignment error and
the number of correspondences is minimized. This way the
effect that unconstrained linear registration of two sets of
points tends to shrink [11] one set with respect to the other is
avoided. In addition, in [11] no correspondence between
points is required when performing nonlinear registration.
Other work on the shape alignment problem includes [20],
wheremodel compactness is optimized rather than variance.
We also aim at linear and nonlinear registration, while
avoiding problems with the cardinality of point sets.

A restriction of point distribution models is that deforma-
tion of the shapemodel by adjusting weighting vector b only
allows limited deformation reflecting the variation in the
learning set. For this reason, Wang and Staib [28] use prior
models based on principal component analysis of additional
covariance matrices. By replacing (4) with a weighted and
mixed covariance matrix that deals with independence and
smoothness, they are capable of building a wide range of
shapemodels even when there are few examples shapes or if
the learning set exhibits small variation. An earlier attempt to
add artificial variation to the statistical model is found in [5].
We take a different road aiming at building models also
capable of explaining objects dissimilar to the ones in the
learning set.

Another limitation of active shape models concerns their
inability to statistically capture image features around shape
models. Cootes et al. [7] solve this problemby taking samples
of the image intensity perpendicularly to a shape. By
recording intensity profiles for all labeled points of the shape
model, they arrive at an augmented learning set. As with the
shape data, they compute the statistics of the intensity data
using (1), (2), (3), (4), (5), and (6). The image features improve
model specificity and, hence, segmentation accuracy. Other
work on modeling image features includes [27], where
optimal features are selected by nonlinear classifiers. We
adopt the idea of modeling both shape and image features.

In [7], it is assumed that image feature values, sampled at
different points along the boundary, are independent of one
another while commonly feature values are spatially highly
correlated. For this reason, Haslam et al. [17] propose a
probabilistic fitness measure using concatenated intensity
profiles, bringing in some continuity in feature values. This
way, in addition to resolving the issue of dependence, they
reduce the number of point distributions to two. Other
work acknowledging the often continuous nature of
boundary features, particularly shape features, is e.g., [1],
[8], [20], [22], [25]. We embrace the thought of capturing
spatial correlations among image features and we extend
this idea to arbitrary features.

To overcome the problem of high correlation between
structurally different features [17], Edwards et al. [12], and
more recently Cootes et al. [4], propose an active appearance
model that couples shape and image models more explicitly
by using a single vector containing both shape and image
feature values. By concatenating the feature values into a
single vector and representing this vector as a point in a very
high-dimensional space, a learning cluster is formed of
combined shape and image features. This way, a more
specific boundary model is obtained and more accurate
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image segmentations are achieved. We adopt and generalize
the idea of capturing correlations between structurally
different boundary features.

In conclusion, we mark the following shortcomings
addressed by the aforementioned methods:

1. the discrete point representation of boundaries, e.g.,
discrete points lead to discretization problems when
point sets have different numbers of elements,
requiring pseudocontinuous solutions,

2. insufficient correlation among structurally different
features, e.g., disregarding interdependency be-
tween shape and image features may lead to
unrealistic boundary models,

3. insubstantial exploitation of saliency, e.g., a priori
specification of saliency rather than computation by
optimality may result in indiscriminate features, and

4. redundant loss of feature information, e.g., currently
applied procedures for dimensionality reduction do
not attempt to minimize information loss.

It is the purpose of this study to integrally address these
shortcomings. We do this with a technique we call strings.

3 STRINGS BY FUNCTIONAL DATA ANALYSIS

Object boundaries are continuous. Hence, they should be
represented by curves rather than by a collection of discrete
points. Apart from this, boundaries are often described by
multiple features. Hence, they should be represented by
multivariate models rather than by a combination of
univariate models. These boundary characteristics motivate
the representation of boundary features by multivariate
curves in functional space, rather than by points in vector
space. When boundaries are represented this way, the
learning and segmentation problems can be solved by
functional data analysis [24] (see Fig. 1).

Each of the components in Fig. 1 will be described in
more detail in the following sections. In Section 4, we will
again elaborate on these components one by one to show
the (intermediate) results for a vertebra application.

3.1 Feature Function Definition

In order to construct a statistical boundary model, example
features need to be specified and their values computed.

Commonly, the featurevalues are a set of coordinatevalues of
boundary points and a set of image gradient values recorded
orthogonally to those boundary points, see, for example, [4],
[6], [11], [12].

We explore boundary features in example images using
their known segmentation, represented by smooth curves s :
< ! <2 parameterized by v 2 <. Given the set of M input
images I1ðxÞ; . . . ; IMðxÞ with corresponding segmentations
s1ðvÞ; . . . ; sMðvÞ, the learning set consists ofpairs of image and
shape data (compare to (2))

L ¼ fðI1ðxÞ; s1ðvÞÞ; . . . ; ðIMðxÞ; sMðvÞÞg: ð7Þ

For the mth learning example, the shape smðvÞ relates to the
image at points ImðsmðvÞÞ. The relation is expressed in terms
of N features derived from the shape (e.g., curvature) as
well as from the image (e.g., isophote curvature). The
mapping f : < ! <N takes care of this, yielding feature
functions f��m ðvÞ in the N-dimensional functional space,
where each dimension corresponds to one feature, i.e.,

f ��m ðvÞ ¼ ½f��
m1ðvÞ; . . . ; f��

mNðvÞ�: ð8Þ

To capture features on and off a boundary, we exploit the
local Taylor expansion [19] up to the second order, sampled
at discrete but dense points along the boundary. This way,
we have an approximately complete two-dimensional
description of local boundary properties. Later, the princi-
pal components analysis, yet to be described, will cancel out
linear dependencies in the Taylor set.

3.2 Feature Function Alignment

For statistical analysis of example boundaries, feature
values at one point on an example boundary need to be
compared with values at an equivalent point on an other
example boundary. Commonly, this is achieved by scaling,
rotating, and translating the examples so that they
correspond as closely as possible. This reduces to aligning
a set of discrete points when boundaries are represented by
point distribution models as in e.g., [4], [6], [12].

In the context of our functional data, the alignment
problem is a curve registration problem. Feature functions
f��m ðvÞmay differ due to the fact that they are not measured at
the samepathposition vordue to small nonlineardifferences.
A shift of feature values along v and a nonlinear warping
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Fig. 1. Overview of the string segmentation technique. Note that at the start of the learning phase, we need a set of images ImðxÞ;m ¼ 1 . . .M with

corresponding known segmentations smðvÞ. Invariably, in this paper, boldface upper case indicates amatrix of functions, e.g.,AðvÞ;BðvÞ;EðvÞ, or in the
case of G of scalars, boldface lower case indicates a vector of functions, e.g., f t, or scalars, e.g., g

?
t , and regular lower case indicates a function or a

scalar.



account for this. Alignment reduces to finding the warping
function !mðvÞ that produces the warped feature function

f�mðvÞ ¼ f ��m ð!mðvÞÞ: ð9Þ

The strictly monotonic warping function !mðvÞ; v ¼ 0; . . . ;V,
is differentiable up to a certain order and has properties
!mð0Þ ¼ 0 and !mðVÞ ¼ V. Consequently, corresponding
starting points for and direction of alignment (clockwise or
counterclockwise) need to be known. Here, !mðvÞ takes care
of a shift and a nonlinear transformation by the roughness
penalty approach described in [24]. In this case, we penalize
by the size of the third derivative of !mðvÞ.

Alignment of f ��m ðvÞ is done by the Procrustes method [15]
using a global alignment criteria that computes the least
squares distance to f̂fðvÞ, the overall average feature function.
This reduces to finding !mðvÞ such that

!mðvÞ ¼ argmin
!�
mðvÞ

XM
m¼1

Z
v

jjf��m ð!�
mðvÞÞ � f̂fðvÞjj2dv: ð10Þ

The warping functions are estimated in an iterative process
where argument values for a feature function are shifted
and transformed so as to minimize the least squares error.
The estimated average f̂fðvÞ is updated by reestimating it
from the partially aligned functions.

The final average feature function �ffðvÞ is computed from
the aligned set. It is subtracted from each feature function to
normalize the range of feature values. This yields

fmðvÞ ¼
f �mðvÞ � �ffðvÞ

��f ðvÞ
ð11Þ

with units of variance due to normalization by the variance
vector of functions

����f ðvÞ ¼
1

M � 1

XM
m¼1

jjf�mðvÞ � �ffðvÞjj2
 !1=2

: ð12Þ

Normalization is required to reduce the influence of
variational differences due to measurements in different
units. The aligned normalized feature functions fmðvÞ
contain all information needed to statistically summarize
features into a boundary model.

3.3 Feature Space Reduction

We perform principal components analysis to project the
high-dimensional functional data to a smaller feature space
expecting that the essential structure in the original data is
preserved. This is admissible as long as the features exhibit a
small number of modes of variation, covering a large part of
the variability in the data.

Functional principal component analysis [24] computes
themainmodes of variation in the collectionofN-dimensional
feature functions fmðvÞ. Thenumberofmodes isderived from
agivenproportionof thevariance as explained in the learning
set. When the modes are numbered by q ¼ 1; . . . ; Q, the
central concept is that of taking the linear combination

gmq ¼
XN
n¼1

Z
v

fmnðvÞ�qnðvÞdv; ð13Þ

where �qnðvÞ denotes a weighting function chosen so as to
highlight variation in the data in dimension n. As before,

fmnðvÞ is the nth dimension of the mth observed feature
function. The principal component scores gmq are used to
produce more robust descriptions [10].

To obtain the value of gmq for all q, the corresponding
vectors of weighting functions ����qðvÞ ¼ ½�q1ðvÞ; . . . ; �qNðvÞ�
needtobecomputed.Theyaresought forone-by-one insucha
waythat theyexplainmostof thevariation in the learningdata

����qðvÞ ¼ argmin
���
q ðvÞ

1

M

XM
m¼1

g2mq

¼ argmin
���
q ðvÞ

1

M

XM
m¼1

XN
n¼1

Z
v

fmnðvÞ�qnðvÞdv
 !2

;

ð14Þ

where ����kðvÞ, for each iteration k, is subject to the following
orthonormal constraints

XN
n¼1

Z
v

�qnðvÞ2dv ¼ 1 ð15Þ

XN
n¼1

Z
v

�knðvÞ�qnðvÞdv ¼ 0; k � q: ð16Þ

Equations (15) and (16) ensure that the vector ����1ðvÞ contains
most of the independent variation. After ����1ðvÞ has been
established, the above process is continued until all
Q significant modes of variation, each described by ����qðvÞ,
are obtained: ��1ðvÞ captures the location with largest
correlated variation, ��2ðvÞ the second largest of the remain-
ing variance, etc., until most of the variation is explained.

The matrix of functions AðvÞ ¼ ½����1ðvÞ; . . . ; ��QðvÞ�T in-
dicates where along the boundary there is independent
variation in the learning ensemble. Hence, the matrix AðvÞ
of functional principal components captures the most
important feature subspace.

3.4 Principal Components Regression

To construct an underlying model of feature values, the
distribution of feature values seen in the learning set needs to
be captured in statistical terms. In the active shape model
literature [4], [6], [11], [12], feature reconstruction is done
after projecting the features to the space spanned by themost
important principal components.Hence, only part of the data
in the learning set is subjected to modeling. We perform
principal component regression [3] to obtain a predictive
model from the feature functions in the learning set.

Wedefine thematrixof functionsFðvÞ¼ ½f1ðvÞ; . . . ; fMðvÞ�T
and the matrixG by

G ¼ FðvÞAðvÞ ð17Þ

with scalar elements according to the dot product defined
in (13). We define a matrix of regression functions
BðvÞ ¼ ½��1ðvÞ; . . . ; ��QðvÞ�T , with elements of the same
N-dimensional functional form as the elements of FðvÞ.
To find the values of BðvÞ, the matrix of feature functions
FðvÞ is expressed as

FðvÞ ¼ GBðvÞ þEðvÞ ð18Þ

with EðvÞ ¼ ½��1ðvÞ; . . . ; ��MðvÞ�T being the matrix of residual
functions yet to be defined. Instead of regression on the
original data, regression is performed on the principal
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component scores containing information on how the

feature samples correlate with one another. The matrix of

regression functions BðvÞ gives an estimate of how the

principal scores relate to the feature functions and what the

contribution of each is toward defining an unknown feature

function. The regression functions are computed by least

squares minimization such that

BðvÞ ¼ argmin
B�ðvÞ

XM
m¼1

Z
v

jjfmðvÞ � gmB
�ðvÞjj2dv: ð19Þ

Since there are no particular restrictions on the way in

which the matrix of functions BðvÞ varies as a function of v,

the solution can be obtained by minimizing the least

squares difference for each v separately. After least squares

minimization, we have

EðvÞ ¼ jjFðvÞ �GBðvÞjj2: ð20Þ

With the help of the estimated regression functions, we

predict scores for an unknown feature function in the

segmentation phase, reconstruct it in reduced space

according the regression model, and evaluate it by examin-

ing the distance of its score to the cluster of scores

corresponding to the feature functions in the learning set.

3.5 Mahalanobis Distance

In order to determine how a new boundary relates to the

boundaries in the learning set, a distance measure needs to

be defined. Commonly, the evaluation of boundary feature

values is performed in terms of the Mahalanobis distance,

i.e., the distance to the average normalized by the variation

in each dimension. Following Cootes et al. [6], we use a

Mahalanobis distance model [10] to compute the distance of

a feature function to the average of the learning set.
The Mahalanobis distance model is obtained by aug-

menting G with the vector of residuals ���� ¼ ½�1; . . . ; �M � with

elements defined as

�m ¼ 1

N

XN
n¼1

Z
v

�mnðvÞdv�
1

M

XM
m¼1

Z
v

�mnðvÞdv
 !

: ð21Þ

This yields a ðQþ 1Þ �M augmented principal components

scores matrix G? ¼ ½G; ����T �. This improves the robustness of

Mahalanobis distance calculation [10]. The Mahalanobis

distance matrix is then defined as

D ¼ G?TG?

ðM þ 1Þ : ð22Þ

The Mahalanobis distance of fmðvÞ to the average �ffðvÞ is

computed using g?
m ¼ ½gm; �m�:

D2ðfmðvÞ;�ffðvÞÞ ¼ g?
mD

�1g?
m
T : ð23Þ

Note that D depends on g?
m. Hence, in addition to variation,

the distance model also considers the valuable additional

discriminating factor of residual information [21]. In the

segmentation phase, the Mahalanobis distance model will

be used as an objective function to find a boundary in a new

image that resembles the ones seen in the learning set.

3.6 Stochastic Outlier Removal

As outlier feature functions in the learning set can have a
severe influence on the discrimination ability of the Maha-
lanobis distance model, they are removed following [11].
Thosewith aMahalanobis distance exceeding a threshold �M
are considered outliers. For a Gaussian distribution, �M ¼ 3
corresponds to the removal of all instances that have a
1 percent probability of belonging to the class. Outlier
removal results in a new learning set in which each element
has a Mahalanobis distance of �M or less. Learning is done
once again to obtain more appropriate regression and
distance models. For simplicity of notation, we assume, in
the following, that computations are performed on the
reduced set rather than on the original learning set.

3.7 Deformable Strings

Having constructed a statistical boundary model in the
learning phase, in the segmentation phase, we use this
model as a reference for finding a boundary in a new image.
We use the following information from the learning phase:
average feature function �ffðvÞ, normalization function ����f ðvÞ,
Mahalanobis distance model G?, and regression functions
matrix BðvÞ.

Now, consider the active feature function f ��t ðvÞ, which
will be deformed in time t. We call it a string. The string
lives in the N-dimensional feature space and, hence, we can
compute its Mahalanobis distance to �ffðvÞ. As in the learning
phase (see (9)), we first obtain

f �t ðvÞ ¼ f ��t ð!tðvÞÞ; ð24Þ

where, similar to (11), the warping function !tðvÞ is
computed such that

!tðvÞ ¼ argmin
!�
t ðvÞ

Z
v

jjf��t ð!�
t ðvÞÞ � �ffðvÞjj2dv: ð25Þ

We normalize the feature function in analogy to (11) and
(12). Normalization yields

f tðvÞ ¼
f �t ðvÞ � �ffðvÞ

����f ðvÞ
: ð26Þ

The quality of f tðvÞwith respect to the matrix FðvÞ of feature
functions isdetermined from the relationof its corresponding
scorevectorgt to the cluster of example scores contained inG.
The vector gt is estimated by solving

f tðvÞ ¼ gtBðvÞT þ ��tðvÞ: ð27Þ

That is, the equation estimates the score of a new feature
function on the basis of the principal component regression
model obtained in Section 3.4. The principal component
scores are estimated by least squares minimization such that

gt ¼ argmin
g�
t

Z
v

jjg�
tBðvÞT � f tðvÞjj2dv: ð28Þ

In analogy to (20), we augment gt with the residual of the
least squares minimization as an additional discriminating
factor for the string. The ðQþ 1Þ-vector g?

t ¼ ½gt; �t� is
obtained on the basis of

����tðvÞ ¼ jjgtBðvÞT � f tðvÞjj2 ð29Þ
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by adding to gt the residual sum

�t ¼
1

N

XN
n¼1

Z
v

�tnðvÞdv�
1

M

XM
m¼1

Z
v

�mnðvÞdv
 !

: ð30Þ

The Mahalanobis distance of f��t ðvÞ is defined as the
distance of the newly augmented score g?

t to the average
of the cluster of example scores, i.e.,

D2ðf tðvÞ;�ffðvÞÞ ¼ g?
tD

�1g?
t
T : ð31Þ

We use this quality measure for image segmentation by
strings. The string f ��t ðvÞ is defined by features extracted from
an active shapemodel stðvÞ and from the image inwhich that
shapemodel lives. The string vibrates in feature space due to
deformation of the shape model in image space. The shape
model is freely deformed rather than constructed in reduced
space as in [6] and [12]. Shapes that are less plausible are
punished rather than prohibited.

3.8 Optimization

Finally, we formulate the segmentation problem as an
optimization problem. The objective is to find a boundary
that gives rise to a feature function with minimal Mahalano-
bis distance Dð:Þ to the ones seen in the learning set. To this
end, the deformable shape model stðvÞ is deformed in the
image I0ðxÞ to suggest a statistically optimal boundary
described by the deformable string f ��t ðvÞ. Starting from an
initial shape configuration st¼0ðvÞ the shape model is
deformed by tuning its shape parameters in such a way that
the state of minimal energy provides the optimal feature
function. This reduces to optimizing stðvÞ such that

fðvÞ ¼ argmin
f tðvÞ

Dðf tðvÞ;�ffðvÞÞ: ð32Þ

We use simulated annealing [18] for optimization as it
distinguishes between different local minima in the
energy landscape. Starting off at the initial configuration,
a sequence of iterations is generated, where each iteration
consists of the random selection of a configuration from
the neighborhood of the current configuration and the
calculation of the corresponding change in the energy
value. A transition is achieved from one configuration
into another one by a small perturbation of the x and
y-coordinates of stðvÞ. If the change from time t to tþ 1
yields negative �D ¼ Dðf tþ1ðvÞ;�ffðvÞÞ �Dðf tðvÞ;�ffðvÞÞ, the
transition is accepted unconditionally; if the cost function
increases the transition is accepted with a probability
based upon the Boltzmann distribution p ¼ ej �

�D
kT j, where

k is a constant and the temperature T is a control
parameter. This temperature is gradually lowered

throughout the segmentation from a sufficiently high
starting value, i.e., a temperature where almost every
proposed transition, both positive and negative, is
accepted to a freezing temperature, where no further
changes occur. The temperature is decreased in stages
and, at each stage, the temperature is kept constant until
thermal quasi-equilibrium is reached.

4 EXPERIMENTS AND RESULTS

We illustrate and discuss model construction and image
segmentation, step by step according to Fig. 1. We use 145
annotated and digitized NHANES X-ray images [14] of
normalcervicalvertebrae, acquired fromtheNationalLibrary
ofMedicine.Ascanbe seen fromFig. 1, thevertebraboundary
in these images is ill-defined. It is characterized by the
presence of interfering boundaries (e.g., the adjacent verte-
bra), convoluted boundary parts (e.g., tips of the vertebral
body), missing image evidence (e.g., at the pedicles) and, in
this case, very poor image quality. These characteristics
complicate model construction and image segmentation.

4.1 Feature Instantiation

For boundary description, we use a repertoire of features.We
confine ourselves to invariant features as they generalize
applicability, but more importantly, as they minimize the
need for feature alignment. We use the features listed in
Table 1 and their derivatives up to second order. As a
consequence, N ¼ 9 features are measured along each
example vertebra boundary.

In our application, the vertebra boundary is represented
by seven discrete points, manually marked in the image by
a medical expert. For this reason, we compute a continuous
approximation of the boundary by interpolation of a curve
sðvÞ through the seven points. This curve and its corre-
sponding nine-dimensional feature function f ��ðvÞ are
tensor product B-Splines [23]:

sðv;pÞ ¼
XK
k¼1

BkðvÞpk ð33Þ

f ��ðv;qÞ ¼
XJ
j¼1

BjðvÞqj: ð34Þ

Basis functions BkðvÞ correspond to the K ¼ 7 manually
marked points pk. The N ¼ 9 features, and also point
coordinates values, are computed along sðv;pkÞ at 100 sam-
ples. The 100 coordinatevalues areused for redefinitionof the
7-vector of control points pk to a 100-vector of control points,
to be used in active shape model segmentation (yet to be
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TABLE 1
Features in Our Implementation Defining the Dimensions of f ��ðvÞ

The first dimension is the contour curvature, the second the isophote curvature, and the third the directional correspondence between the normal
nðvÞ to the shape s at v and the image gradient at rIðxÞ with x ¼ sðvÞ.



described). Feature functions f ��ðv;qjÞ are defined by basis
functionsBjðvÞ, corresponding to the J ¼ 100N-dimensional
control points qj, i.e., the sampled feature values. As these
feature values are not always smooth, we impose regularity
by using basis expansions with a relatively small number of
basis functions [24].

4.2 Learning Phase

We discuss the results of the learning phase for the vertebra
application. We only discuss the 0th-order derivative values
of the features, i.e., only the first three dimensions of fmðvÞ.

The upper row of Fig. 2 illustrates contour curvature
values f��

m1ðvÞ, isophote curvature values f��
m2ðvÞ, and direc-

tional correspondence values f��
m1ðvÞ computed from smðvÞ

and the imagedata arrays (see (8)). The presence of correlated
structure in the contour curvature values is apparent. The
peaks in curvature values correspond with the tips of the

vertebral body and correlate with the peaks in f��
m2ðvÞ. This is

more clearly seen from the average functions in the upper
row of Fig. 3. Note that the isophote curvature is badly
defined along most parts of the vertebra boundary. More
correlated structure is seen in the feature values of directional
correspondence.

The results of aligning feature functions f ��m ðvÞ by the
iterative Procrustes procedure in (9) are illustrated in the
middle row of Fig. 2. The majority of the feature functions
already has a good alignment thanks to the a priori manual
registration of the discrete points by medical experts (from
which the continuous shapes and feature functions are
derived). Consequently, alignment brings no significant
changes to feature functions f ��m ðvÞ. Alignment is more
important during segmentation where the starting points
for sampling are unknown.
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Fig. 2.Upper row: Feature values along path parameter v for allM ¼ 145 examples. Left: Contour curvature values f��m1ðvÞ. Middle: Isophote curvature
values f��m2ðvÞ. Right: Directional correspondence values f��m3ðvÞ. Middle row: Results of registering feature functions vector f��m ðvÞ. Left: f�m1ðvÞ.
Middle: f�m2ðvÞ. Right: f�m3ðvÞ. Note that only three dimensions are shown out of the nine. Lower row: Results of normalizing feature functions f�mðvÞ.
Left: fm1ðvÞ corresponding to contour curvature. Middle: fm2ðvÞ corresponding to isophote curvature. Right: fm3ðvÞ corresponding to directional
correspondence. Note the increased variation in contour curvature values and directional correspondence values in comparisonwith the upper row due
to centering and scaling.



The effects of normalizing f�mðvÞ are shown in the lower
row of Fig. 2. Note that the feature functions exhibit
considerable variation even though they have been aligned
in the previous step. This is because centering and scaling
according to (11) suppresses little variation and amplifies
large variation. The feature functions with extreme varia-
tion are candidate outliers, to be removed later from the
learning set.

The composite effect of adding and subtracting two

standard deviations of the first principal component ��1ðvÞ
to the average feature function �ff�ffðvÞ is shown in the upper

row of Fig. 3. We reduce the feature space using Q ¼ 4

principal components (see (14)), capturing 83.9 percent of

the total variability in the data. Q has been set to four

because, in this application, we expect four corners, hence

four places, in the model where the learning data shows

independent variation in feature values. Note, the displays
remind of the diagrams in physics of modes of vibration of
a string fixed at both ends, hence the name strings.

Finally, regression functions BðvÞ, obtained using (19),
are shown in the middle row of Fig. 3. The function �qnðvÞ
indicates how the nth feature along the curve contributes to
the qth principal component. Hence, the regression func-
tions indicate which features are locally most important to
define the boundary characteristics, implying that weight-
ing is done in a way that exploits the most correlated and
descriptive features along the boundary.

Not shown is the effect of the optional outlier removal. A
total of 11 feature functionshavebeenconsideredoutliers and
removed.After this, thewhole learningprocedure is repeated
one more time. The average vector �ffðvÞ, the normalization
vector ����f ðvÞ, the matrix of regression functions BðvÞ, and of
scalarsG? are transferred to the segmentation phase.
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Fig. 3. Upper row: Average feature functions and the effects of adding (+) and subtracting (-) two standard deviations of the first principal
component: �ffðvÞ þ =� 2 standard deviations of ��1ðvÞ. From left to right the effects for: contour curvature, isophote curvature, and directional
correspondence. Middle row: The regression functions indicate for all N ¼ 3 features the relative importance with respect to the Q ¼ 4 principal
components. Left: Functions �11ðvÞ; . . . ; �41ðvÞ for contour curvature. Middle: �12ðvÞ; . . . ; �42ðvÞ for isophote curvature. Right: �13ðvÞ; . . . ; �43ðvÞ for
directional correspondence. Lower row: The average root mean square distance as a function of translation (left), rotation (middle), and scaling
(right) for the initial shape (dotted line), and the final shape for active shape model segmentation (dashed line) and string segmentation (solid line).



4.3 Segmentation Phase

Weperform string segmentation of the vertebra images using
the above learning results as a reference. The B-spline
stðv;pkÞ; k ¼ 1; . . . ; 100 is deformed in the image by reposi-
tioning the control points in an iterative procedure. Feature
function f��t ðv;qkÞ emanating from stðv;pkÞ is constructed
from 100 samples along stðv;pkÞ. The samples are taken at
control points pk to facilitate comparison with active shape
model segmentation (described below), i.e., pk constitute the
point set of an active shapemodel. For computation of image
features, derivatives are computed by convolution of the
imagewith Gaussian derivatives at scale 4.0. Optimization of
the active shape model is done by the simulated annealing
optimizationprocedure,with theBoltzmann factor set to 0.99,
thermal equilibriumdefinedasa 10percent or smaller change
in 10 random trials and a maximum of 50 iterations.

We also perform multiresolution active shape model
segmentation [16]. The active shape model learns the
distribution of points pk. The normalized gradient is
captured perpendicularly to the boundary in profiles of
length 3. The number of levels of resolution is set to 6, with
level 0 the original image, level 2 the image with half the
number of pixels, etc. After alignment of the shapes by
rotation, translation, and scaling, a shape model is con-
structed in which 84.2 percent of the variance is explained
by the first six principal components. We compare the
performance of the string with that of the active shape
model starting from the same initial shape. That shape is a
transformation of the correct shape, projected onto the
space spanned by the 4 and 6 principal components [16],
respectively. This way, both models try to find an
equilibrium starting from a configuration away from the
average. The pixel neighborhood examined during optimi-
zation is nine and the maximum number of iterations 50.

We perform three experiments with strings and active
shape models (software courtesy [16]). In each experiment,
a shape is placed in the image on the correct position and
transformed a known amount to verify robustness against
initialization. The transformed shape forms the initial
configuration. The first experiment concerns translations
up to 15 pixels, the second rotations up to 30 degrees, and
the third scalings with respect to a center point c with a
factor up to 0.1. To measure the accuracy of the segmenta-
tion, the distance from the deformed shape, represented by
the optimized control points, to the correct shape, repre-
sented by the original control points is computed using the
root squared metric error. The experiments are performed
systematically, excluding each learning instance from the
learning set and using the excluded one to test the
performance of the model built without it.

The lower row of Fig. 3 shows the average root squared
metric of 145 segmentations for varying amounts of transla-
tion, rotation, and scaling. As can be seen from the reduction
in the rootmeansquarederror, the initial shapealmostalways
moves to the correct boundary for both strings and active
shape models. The string segmentation method outperforms
active shape model segmentation when the initial shape is
close to the correct boundary, in spite of the fact that the
ground-truth is poorly sampled. If not initialized close to the
target, string segmentation produces results similar to those
produced by active shape model segmentation, occasionally
worse. This sensitivity to initialization is attributed to the fact

that no pose parameters are optimized to explicitly account
for pose corrections, in contrast to active shape model
segmentation. The active shape model finds the correct
boundary even from a large distance if that boundary is
well-defined. However, when the image evidence is vague,
the active shapemodel tends to get trapped in a localminima
far away from the correct boundary due to wrong pose
optimization. For strings, we expect performance improve-
ment by optimization of poseparameters in addition to shape
parameters under the condition that pose parameters are
restricted to admissible ranges. Equivalent improvements
may be expected for active shape models by restricting pose
parameters.

From the lower row in Fig. 3, we observe that even when
the initial shape is the correct shape, optimization brings it to
rest at anaverageof almost fivepixel distance fromthecorrect
shape. We note that the points marking the vertebra
boundaries in our learning set have been placed by a single
medical experts and that variation of five or more pixels in
manual point placement can be expected. Hence, the
structural error of approximately five pixels is largely
ascribed to intra-observer variability.We expect an improve-
ment of performance proportional to the accuracy of manual
demarcation, eitherbymoreprecise individual assignmentor
by using larger amounts of salient points per vertebra. As a
general model also contributes to the structural error, we
expect that a dedicated boundary model, e.g., a C1 vertebra
model, will bring in more accuracy and specificity to the
boundary model.

The upper row in Fig. 4 shows an example result for the
activeshapemodel segmentationand thestringsegmentation
of aNHANES II vertebra image. Segmentation typically takes
about 15 seconds and 95 seconds, respectively, on a standard
machine. In spite of the elaborate matrix function manipula-
tions, performance is still very good. Much of the processing
time is attributed to feature function alignment. Also, the
exhaustive search of simulated annealing contributes to the
high computational cost.We expect a significant reduction in
computational cost with landmark-based alignment, a more
efficient optimization technique andoptimizationof our code
for speed. Note that much of the erroneous solutions of the
active shape model [16] in Fig. 4 are global of nature.
Apparently, the image evidence around the target boundary
is too vague to be conclusive for such a model. Hence, the
active shape model converges with a feasible shape in an
unacceptablepose.For the stringsegmentation, theerroneous
solutions are confined to segments, which are not on the
sought boundary but rather on other visually-detectable
edges, such as tissue/background edges or even edges
produced by gray-scale intensity variation within a vertebra.

To demonstrate our method on a different set of images,
we constructeda synthetic image containing anobjectwith an
inhomogeneous boundary (e.g., varying edge strength
gradient, strongly curved parts). The object boundary was
warped in four different ways with varying directions and
magnitudes for the warping vectors. Each warp produced a
set of five images. In all images, the object boundary was
manually delineated to arrive at a set of 21 image and shape
pairs with known number and modes of independent
variation. We have used 16 pairs, including the original, for
model construction and five for case segmentations. The five
were chosen such that they have a different direction and
magnitude of warping. An example is given in the middle
rowofFig. 4, showingawarped imageandobject outlinewith
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an appearance close to the average (left), an active shape
model segmentation (middle) and a string segmentation
(right). Here, the active shape outperforms the string, which
fails to find the object boundary from a distance. The lower
row of Fig. 4 shows the object most deviating from the
average. The shape is initialized close to its boundary. The
string finds that boundary even at places where it deviates
much from average. On the basis of these cases, we note that
active shape models outperform strings in case of distant
initializations and objects with an appearance close to the
average, whereas strings produce better results if the
initialization is good and if the object of interest deviates
much from the average.

5 DISCUSSION AND CONCLUSION

In conclusion, we have addressed a number of problems
with statistical image segmentation models. We have
represented boundaries by curves, solving some problems
arising from discrete representations. By placing the curves
in a multivariate functional feature space, we have properly
dealt with the problem of spatial and feature interdepen-
dencies. We have performed curve registration, releasing us
from the problem of missing points when aligning. We have
substituted feature data by principal component scores,
thereby not only reducing the feature space but also
endorsing more robust computations. We have constructed
a regression model for predicting unknown boundaries,
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Fig. 4. Upper row: Segmentation of a NHANES cervical vertebra image (note the vague image evidence along the vertebra boundary due to the very
low image quality). Left: An NHANES image with correct shape placed on it (dotted line) and transformation of this shape as the initial configuration
for deformation (solid line). Middle: The correct shape (dotted line) and the active shape model segmentation (solid line). Right: The correct shape
(dotted line) and string segmentation (solid line). Middle row: Segmentation of a warped synthetic image. Left: Synthetic image with correct shape
placed on it (dotted line) and transformation of this shape as the initial configuration for deformation (solid line). Middle: The correct shape (dotted
line) and the active shape model segmentation (solid line). Right: The correct shape (dotted line) and string segmentation (solid line). The bad initial
configuration adversely influences the string segmentation. Lower row: Segmentation of another warped synthetic image with a different
initialization. Left: image with correct shape (dotted line) and transformation of this shape as the initial configuration for deformation (solid line).
Middle: The correct shape (dotted line) and the active shape model segmentation (solid line). Right: The correct shape (dotted line) and string
segmentation (solid line). Note that the string correctly captures the bump in the upper boundary, where the active shape model fails to do so.



even ones dissimilar to the examples. We have built a
distance model that also accounts for residual information.
Finally, we have defined image segmentation as string
optimization in multidimensional feature space.

In this paper, we have applied the string method for
segmentation of rigidly shapedobjectswith ill-defined image
evidence along their boundary, as often found in medical
images. The method is also expected to work well for objects
with more articulated shapes, provided there is correlated
variation in the shape properties. When applied to objects of
the real world, where objects often have an unknown and
varyingbackground, thedefinitionof features shouldbe such
that values are computed from the inside of the object only.
This provides a multivariate statistical description of the
object area, rather than a description of the object boundary
with its surrounding. It is important to note that continuous
ground-truth segmentations are required to fully exploit the
capabilities of strings.

With [4], [6], [11], [12], we share the observation that
features should be learned rather than constructed from
a priori geometrical or analytical knowledge. Geometrical
and analytical features such as smoothness act as con-
straints on the solution since the resulting shape then will
often be smooth at most places, regardless whether that is
the appropriate solution or not. As in [6], we conceive of
shape and image evidence as features and learn where they
are effective in describing the statistics of the model. In fact,
we have adopted the idea of mapping features to a space
where the most important modes of variation are deter-
mined by principal components analysis and used for
steering a shape for segmentation of an image.

The difference is that we conceive of a boundary as a
multivariate continuous curve, requiring continuous func-
tions to be learned. Cootes et al. [6] reduce the boundary to
point sets. This introduces the following problems. First,
points may be confused with other points if they are not
labeled, leading to erroneous classification. Second, point
location correspondence may be doted with error. Third, as
recognized by Duta et al. [11], points may be missing,
requiring a pseudocontinuous reconstruction of the bound-
ary. Finally, measurements at discrete sample points are
less reliable and lead to lose of spatial coherence.

We are less critically effected by these difficulties as we
use closed continuous curves. We profit from functional
data analysis in exploiting the spatial and feature correla-
tions to explain the observed variation in the learning data
rather than removing or down weighting such correlations.
In explaining these variations, we also consider residual
information, rather than omitting it. Contrary to Cootes et
al. [6] we built a regression model from which we try to
explain unknown boundaries, including the errors made in
doing so. Another difference is that, instead of producing
new models in reduced space and, hence, restricting the
allowed shapes, we freely produce new segmentation
shapes and punish implausible ones.

In comparing the performance of our string implementa-
tionwith an active shapemodel implementation [16],wenote
the following. The active shape model performs better in the
case the target object is visually well-defined and the initial
shape is placed at a large distance from the target. This is
thanks to the explicit optimization of pose parameters, e.g.,
rotation and scaling.When the initial shape is initialized close
to the target object, the active shapemodel performs better in

the case where the object has boundary properties like most
objects in the learning set. If the target object has boundary
properties that are dissimilar to the ones in the learning set,
the stringmodelproducesmore accurate results.Wenote that
the prediction of feature values in reduced space, aids in
explaining objects not seen in the learning set.

If the target boundary is visually ill-defined and the
shape initialized distantly from the target, both string
segmentation and active shape model segmentation per-
form poorly. For that condition, we found active shape
models to produce much better or much worse results than
string segmentation. On average, their performance is then
similar. Model initialization remains a problem in view of
the presence of disturbing attractors in the image. Strings
outperform active shape models if the target object is
visually ill-defined and the initialization is close to the
target boundary because strings locally exploit the dis-
criminative power of a repertoire of features. Also, the fact
that strings cope better with spatial dependencies between
feature values and the fact that they explicitly consider
correlations among features improves segmentation under
such highly demanding conditions.

Hence, we arrive at the conclusion that strings are
particularly suited for learning variational models of objects
with inherently multivariate continuous boundary proper-
ties. Strings are also very well suited for segmentation of
complex scenes, where the visual evidence is vague, or
where a multidimensional feature set is needed to capture
an object boundary.
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