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Abstract

A well known property of human vision, known as color constancy, is the ability to correct for color deviations

caused by a difference in illumination. A common approach to investigate color constant behavior is by psychophysical

experiments, regarding the human visual system as a black box responding to a well defined change in an laboratory

setup.

A fundamental problem in psychophysical experiments is that significant conclusions are hard to draw due to the

complex experimental environment necessary to examine color constancy. An alternative approach to reveal the

mechanisms involved in color constancy is by modeling the physical process of spectral image formation. In this paper,

we aim at a physical basis for color constancy rather than a psychophysical one.

By considering spatial and spectral derivatives of the Lambertian image formation model, object reflectance

properties are derived independent of the spectral energy distribution of the illuminant. Gaussian spectral and spatial

probes are used to estimate the proposed differential invariant. Knowledge about the spectral power distribution of the

illuminant is not required for the proposed invariant.

The physical approach to color constancy offered in the paper confirms relational color constancy as a first step in

color constant vision systems. Hence, low-level mechanisms such as color constant edge detection may play an im-

portant role in front-end vision. The research presented raises the question of whether the illuminant is estimated at all

in pre-attentive vision.
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1. Introduction

Color seems to be an unalienable property of

objects. It is the orange that has that color.

However, the heart of the matter is quite different.

Human perception actively assigns colors to an
observed scene. There is a discrepancy between the

physics of light, and color as signified by the brain.

It is evolution that has shaped the actual mecha-

nism of color vision. Evolution, such that a species

adapts to its (physical) environment, has driven

the use of color by perception. Although the effect

known as color constancy (see Fig. 1) is a long

standing research topic (Land, 1977; Maloney and
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Wandell, 1986; von Kries, 1878), the mechanism

involved is only partly resolved.

A common approach to investigate color con-

stant behavior is by psychophysical experiments

(Brainard, 1998; Land, 1977; Lucassen and Wal-

raven, 1996). Despite the exact nature of such ex-

periments, there are intrinsic difficulties to explain

the experimental results. For relatively simple ex-
periments, the results may not explain in enough

detail the mechanism underlying color constancy.

For example, in (Lucassen and Walraven, 1996)

the same stimulus patch, either illuminated by the

test illuminant, or by the reference illuminant, was

presented to the left and right eye. The subject was

asked to match the appearance of the color under

the reference illuminant to the color under the test
illuminant. As discussed by the authors, the ex-

periment is synthetical in that the visual scene

lacks a third dimension. Although the results

correspond to their predictions, they are unable to

prove their theory on natural scenes, the scenes

where shadow plays an important role. On the

other hand, for complex experiments, with inher-

ently a large amount of variables involved, the
results do not describe color constancy isolated

from other perceptual mechanisms (Brainard,

1998). Hence, a fundamental problem in experi-

mental colorimetry is that the complex experi-

mental environment necessary to examine color

constancy makes it hard to draw conclusions.

An alternative approach to reveal the mecha-

nisms involved in color constancy is by considering

the spectral image formation (Geusebroek et al.,

2002b). Modeling the physical process of spectral

image formation provides insight into the effect of

different parameters on object reflectance (Finlay-
son, 1996; Foster and Nascimento, 1994; Funt and

Finlayson, 1995; Geusebroek et al., 2002a; Gevers

and Smeulders, 1999; Sapiro, 1999; D�Zmura and
Lennie, 1986). In terms of physics, daylight is re-

flected by an object and reaches the eye. It is the

reflectance ratio over the wavelengths of radiant

energy that is an object property, hence the re-

flection function for an orange indeed is a physical
characteristic of the fruit. However, the amount of

radiant energy falling onto the retina depends on

both the object reflectance function, the geometry

of the object, and the light source illuminating the

object. Still, we observe an orange to be orange in

sunlight, by candlelight, independent of shadow,

frontal illumination, or oblique illumination. All

these variables influence the energy distribution as
it enters the eye, the variability being imposed by

the physical laws of light reflection. Human color

vision has adapted to include these physical laws,

due to which we neglect the scene induced varia-

Fig. 1. The problem of color constancy. The light emitted by the lamp is reflected by the (yellow) car, causing a color sensation in the

brain of the observers. The physical composition of the reflected light depends on the color of the light source. However, this effect is

compensated for by the visual system. Hence, regardless the color of the light source, we will see a yellow car. This light source

compensation is not trivial to obtain with a color camera in an unconstrained scene.
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tions. In this paper, we aim at a physical basis for

color constancy rather than a psychophysical one.

From a computer vision perspective, a funda-

mental question is how to integrate the physical

laws of light reflection into color measurement? The

question boils down to deriving the invariant
properties of color vision. With invariance we

mean a property f of object t which receives value
f ðtÞ regardless unwanted conditions W in the ap-
pearance of t. For human color vision, the group
of disturbing conditions W 0 are categorized by

shadow, highlights, light source, and scene geome-

try. Scene geometry is determined by the number

of light sources, light source directions, viewing
direction, and object shape. The invariant class W 0

is referred to as photometric invariance. For ob-

servation of images, geometric invariance is of

importance (Florack, 1997; Gool et al., 1995;

Koenderink, 1984; Lindeberg, 1994; ter Haar

Romeny, 1994). The group of spatial disturbing

conditions is given by translation, rotation, and

observation scale. Since the human eye projects
the three-dimensional world onto a two-dimen-

sional image, the group may be extended with

projection invariance. Both photometric and geo-

metric invariance are required for a color vision

system to reduce the complexity intrinsic to color

images (Geusebroek et al., 2001).

In this paper, we focus on local measurements

which are robust to a change in illumination color,
as proposed in (Geusebroek et al., 2001). We ex-

perimentally show the robustness of these local in-

variants to a change in illumination color, and

compare the performance with color constancy al-

gorithms derived from psychophysical experiments.

The organization of the paper is as follows. Section

2 derives illumination invariant differential expres-

sions. Measurement of spatio-spectral differential
quotients is described in Section 3. Finally, a con-

frontation between physics based and perception

based color constancy is given in Section 5.

2. Illumination invariant properties of object reflec-

tance

Any method for finding invariant color prop-

erties relies on a photometric model and on as-

sumptions about the physical variables involved.

For example, hue is known to be insensitive to

surface orientation, illumination direction, inten-

sity and highlights, under a white illumination

(Gevers and Smeulders, 1999). Normalized rgb is

an object property for matte, dull surfaces illumi-
nated by white light. When the illumination color

varies or is not white, other object properties

which are related to constant physical parameters

should be measured. In this section, expressions

for determining material changes in images will be

derived, robust to a change in illumination color

over time.

Consider the Lambertian photometric reflection
model and an illumination with locally constant

color,

Eðk;~xxÞ ¼ eðkÞið~xxÞmðk;~xxÞ ð1Þ

where eðkÞ represents the illumination spectrum,
ið~xxÞ the effect of shadow and shading, and mðk;~xxÞ
the reflectance function of the object. The as-

sumption of locally constant color allows for the

extraction of expressions describing material

changes independent of the illumination. In gen-

eral, any mixed xk partial derivatives of logðEÞ are
independent of eðkÞ and ið~xxÞ, see (Geusebroek
et al., 2001). Hence,

o

ox
1

Eðk; xÞ
oE
ok

� �
¼ o

ox
1

mðk; xÞ
om
ok

� �
ð2Þ

which results in the invariant

Nkx ¼
Ekx

E
� EkEx

E2
ð3Þ

which determines material changes independent of

the viewpoint, surface orientation, illumination

direction, illumination intensity, and illumination

color. Here, indices denote differentiation. Appli-

cation of the chain rule for differentiation yields

the higher order expressions in terms of the spatio-
spectral energy distribution. For instance, the

spectral derivative of Nkx is given by

Nkkx ¼
EkkxE2 � EkkExE � 2EkxEkE þ 2E2kEx

E3
ð4Þ

where Eðk; xÞ is written as E for simplicity and
indices denote differentiation. Without loss of

generality, we have restricted ourselves to the
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one-dimensional case; two-dimensional expres-

sions may be derived according to Geusebroek

et al. (2000a). These expressions are invariant for

a change of illumination over time. The major

assumption underlying the proposed invariants is
a single colored illumination, effectuating a spa-

tially constant illumination spectrum. For an illu-

mination color varying slowly over the scene with

respect to the spatial variation of the object re-

flectance, simultaneous color constancy is achieved

by the proposed invariant.

3. Measurement of spatio-spectral energy

Up to this point we did establish invariant ex-

pressions describing material changes robust to a

change in illumination color. These are formal

expressions, exploring the infinite dimensional

Hilbert space of spectra at an infinitesimal spatial

neighborhood. The spatio-spectral energy distri-
bution is only measurable at a certain spatial res-

olution and spectral bandwidth, yielding a limited

amount of measurements. Hence, physical realiz-

able measurements inherently imply integration

over the spectral and spatial dimensions. General

aperture functions, or Gaussians and its deriva-

tives, may be used to probe the spatio-spectral

energy distribution.
In order to measure the invariant properties, the

partial derivative operator is replaced by Gaussian

derivative convolutions. Hence, the incoming

spatio-spectral energy density function is probed

with Gaussian and Gaussian derivative functions.

These measurements approximate the differential

expressions derived above. For the spatial deri-

vatives, convolution with a Gaussian derivative
function yields the correct approximation. The

spectral derivatives may be approximated by linear

combinations of the eye receptor sensitivities, such

that the combination of these sensitivities ap-

proximate the shape of the Gaussian (derivative)

function. For human vision, spectral derivatives

up to second order are measured (Hering, 1964).

Hence, higher order derivatives do not affect color
as observed by the human visual system. The

spectrum is correlated with the Gaussian and its

derivatives, producing three color values per pixel.

The Gaussian color model approximates the Her-

ing basis for human color vision when taking the

parameters k0 ’ 520 nm and rk ’ 55 nm (Geuse-
broek et al., 2000b). The measured differential

quotients are denoted by bEE, bEEk and bEEkk. The

spectral measurements may be interpreted as mea-
suring intensity, yellow-bluish, and red-greenish,

respectively. The spectral intensity and its first and

second order derivatives only, combined in the

spatial derivatives up to a given order, together

form a framework of color scale-space.

4. Experiments

In order to demonstrate the performance of the

proposed color invariant, experiments are con-

ducted. In these experiments we test the extent of

invariance of the proposed model to a change in

illumination, and try to relate the results to the

imperfect color constancy of human vision. The

interaction of light and material is simulated on
spectral transmission data of colored patches. The

image formation of spectral transmission is iden-

tical to the multiplicative Lambertian image for-

mation for reflection of light, hence the results may

be regarded as indicative for reflective samples too.

The experiments aim in demonstrating the quality

of the proposed color constant measurement

under changing illuminations. The human visual
system is known to be not perfectly color con-

stant. As our framework applies both spectral and

spatial integration, we expect the proposed color

invariant not to be perfectly constant either. Fur-

ther, as parameters of the proposed color scale-

space framework are tuned to the human color

vision, the experiments aim in demonstrating how

well the performance of the proposed method
agrees with the performance of the human visual

system as derived from colorimetric experiments.

The transmission of 168 patches from a cali-

bration grid (IT8.7/1, Agfa, Mortsel, Belgium)

were measured (Spectrascan PR-713PC, Photo

Research, Chatsworth, CA) from 390 to 730 nm,

resampled at 5 nm intervals. The patches include

achromatic colors, skin like tints and full colors
(Fig. 2). Each patch i will be represented by its
spectral transmission m̂mi.
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For the case of daylight, incandescent and

halogen light, the emission spectra are known to

be a one parameter function of color temperature.
For these important classes of illuminants, the

spectral energy distribution ekðkÞ were calculated
according to the CIE method as described in

(Wyszecki and Stiles, 1982). Daylight illuminants

were calculated in the range of 4000 K up to

10,000 K color temperature in steps of 500 K. The

4000 and 10,000 K illuminants represent extremes

of daylight, whereas 6500 K represents average
daylight. Emission spectra of halogen and in-

candescent lamps are equivalent to blackbody ra-

diators, generated from 2000 K up to 5000 K

according to Wyszecki and Stiles (1982, Section

1.2.2).

For the case of fluorescent light, illuminants

F1–F12 are used, as given by Hunt (1995). These

are 12 representative spectral power distributions
for fluorescent lamps.

Assuming Lambert–Beer absorption, the spec-

trum ski ðkÞ transmitted by a planar patch i under
illuminant k is given by

ski ðkÞ ¼ ekðkÞmiðkÞ ð5Þ
where miðkÞ is the spectral transmittance and ekðkÞ
the illumination spectrum. Note that Lambert–

Beer absorption can be treated similar to

Lambertian reflection, as their image formation
equations are identical.

Color values are calculated by the weighted

summation over the transmitted spectrum ski at 5
nm intervals. For the CIE 1964 XYZ sensitivities,
the XYZ value is obtained by Wyszecki and Stiles

(1982, Section 3.3.8).

X ¼ 1

k10

X
k

�xx10ðkÞekðkÞmiðkÞ

Y ¼ 1

k10

X
k

�yy10ðkÞekðkÞmiðkÞ

Z ¼ 1

k10

X
k

�zz10ðkÞekðkÞmiðkÞ

ð6Þ

where k10 is a constant to normalize Yw ¼ 100,
Yw being the normalized luminance of the light
source. Similarly, for the Gaussian color model we

have

E ¼ Dk
X

k

Gðk; k0; rkÞekðkÞmiðkÞ

Ek ¼ Dk
X

k

Gkðk; k0; rkÞekðkÞmiðkÞ

Ekk ¼ Dk
X

k

Gkkðk; k0; rkÞekðkÞmiðkÞ

ð7Þ

where Dk ¼ 5 nm. Further, rk ¼ 55 nm and k0 ¼
520 nm to be colorimetric with human vision

(Geusebroek et al., 2000b).

Color constancy is examined by evaluating
edge strength under different simulated illumina-

tion conditions. Borders are formed by combining

0
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Fig. 2. The CIE 1964 chromaticity diagram of the colors in the calibration grid used for the experiments, illuminated by average

daylight D65.
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all patches with one another, yielding 14,028 dif-

ferent color combinations. A ground truth is ob-

tained by taking a perfect white light illuminant.

The reference boils down to an equal energy

spectrum. The ground truth represents the patch

transmission function up to multiplication by a
constant a,

srefi ðkÞ ¼ amiðkÞ ð8Þ
The difference in edge strength for two patches

illuminated by the test illuminant and the reference
illuminant indicates the error in color constancy.

We define the color constancy ratio as

�k ¼ 1� dkði; jÞ � drefði; jÞ
drefði; jÞ

����
���� ð9Þ

where dk is the color difference between two pat-

ches i, j under the test illuminant k, and dref is the
difference between the same two patches under the

reference illuminant, that is equal energy illumi-

nation. The color constancy ratio �k measures the
relative deviation in edge strength between two

patches i; j due to illuminant k relative to the edge
strength under the reference illuminant. The ratio

is essentially a chromatic Brunswik ratio (Bruns-

wik, 1928), taken at the center of the border be-
tween the patches.

The proposed invariant is evaluated against the

performance for color constancy of von Kries

(1970) and uv color space (Wyszecki and Stiles,
1982). For the colorimetric experiment, Gaussian

weighted samples are taken at k0 ¼ 520 nm and
rk ¼ 55 nm. Color difference is defined by

dN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nkxði; jÞ2 þ Nkkxði; jÞ2

q
ð10Þ

where Nkxði; jÞ (Eq. (3)) and Nkkxði; jÞ (Eq. (4))
measure total chromatic edge strength between

patch i and j, as derived from the Gaussian

weighted samples. Again, the measurements are

taken at the center of the border between the

patches. Color constancy is determined by Eq. (9),

using dN as measure for color difference.
For comparison, the experiment is repeated

with the CIE XYZ 1964 sensitivities for observa-
tion. Color difference is defined by the Euclidian

distance in the CIE 1976 u0v0 color space (Wyszecki
and Stiles, 1982, Section 3.3.9),

duv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0i � u0jÞ

2 þ ðv0i � v0jÞ
2

q
ð11Þ

where i, j represent the different patches. Color
constancy is determined by Eq. (9), using duv as
measure for color difference. Note that for the u0v0

color space no information about the light source

is included. Further, u0v0 space is similar to uv
space up to a transformation of the achromatic

point. The additive transformation of the white

point makes uv space a color constant space. Dif-
ferences in u0v0 are equal to differences in uv space.
Hence, duv is an illumination invariant measure of
color difference.

As a well known reference, the von Kries

transform for chromatic adaptation (von Kries,
1970) is evaluated in a similar experiment. Von

Kries method is based on Lambertian reflection,

assuming that the (known) sensor responses to the

illuminant may be used to eliminate the illuminant

from the measurement. For the experiment, von

Kries adaptation is applied on the measured color

values, and the result is transformed to the equal

energy illuminant (Hunt, 1995). Thereafter, color
difference between patches i and j taken under the
test illuminant is calculated according to Eq. (11).

Comparison to the color difference between the

same two patches under the reference illuminant is

obtained by Eq. (9), using the von Kries trans-

formed u0v0 distance as measure for color distance.
Results for the color constancy measurements

are given for daylight illumination (Table 1),
blackbody radiators (Table 2), and fluorescent

light (Table 3).

Average constancy over the different phases of

daylight is for the proposed invariant 91:8� 6:1%.
Difference in u0v0 color space performs similar with
an average of 91:9� 6:3%. The von Kries trans-
form is 5% more color constant, 96:0� 3:3%. As
expected, the von Kries transform has a better
performance given that the color of the illuminant

is taken into account.

For blackbody radiators, the proposed invari-

ant is on average 88:9� 12:5% color constant. The
proposed invariant is more color constant than u0v0

differences, average 82:4� 15:1%. Again, von
Kries transform is even better with an average of

93:4� 6:8%. For these types of illuminants, often
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Table 1

Results for the different colorimetric experiments with daylight illumination, ranging from 4000 to 10,000 K color temperature

T (K) N von Kries u0v0

��� (%) S.D. ��� (%) S.D. ��� (%) S.D.

4000 92.2 5.6 96.1 3.2 86.9 10.0

4500 94.5 4.2 97.9 1.8 91.1 7.1

5000 94.9 2.8 99.2 0.7 94.5 4.6

5500 94.1 1.8 98.9 1.0 96.6 2.0

6000 93.2 2.7 97.9 1.7 97.6 1.8

6500 92.5 4.0 96.9 2.4 96.1 2.7

7000 91.8 5.2 96.1 2.9 94.3 3.8

7500 91.2 6.2 95.4 3.4 92.7 4.9

8000 90.6 7.0 94.8 3.8 91.2 6.0

8500 90.1 7.6 94.3 4.2 89.9 6.9

9000 89.6 8.2 93.8 4.5 88.8 7.7

9500 89.2 8.7 93.4 4.8 87.8 8.4

10,000 88.8 9.1 93.0 5.1 86.9 9.1

Average percentage constancy ��� and standard deviation for the proposed invariant N , the von Kries transform, and u0v0 difference.

Table 2

Results for the different colorimetric experiments with blackbody radiators from 2000 to 5000 K color temperature

T (K) N von Kries u0v0

��� (%) S.D. ��� (%) S.D. ��� (%) S.D.

2000 75.6 24.5 85.6 12.4 65.8 24.9

2500 82.5 16.5 89.0 9.4 72.3 20.6

3000 87.1 11.2 91.9 6.8 78.3 16.3

3500 90.8 7.5 94.3 4.7 83.7 12.4

4000 93.7 4.9 96.3 3.0 88.4 8.9

4500 96.0 3.0 97.9 1.7 92.5 6.0

5000 96.9 1.7 99.1 0.7 95.9 3.4

Average percentage constancy ��� and standard deviation for the proposed invariant N , the von Kries transform, and u0v0 difference.

Table 3

Results for the colorimetric experiments with representative fluorescent illuminants

T (K) N von Kries u0v0

��� (%) S.D. ��� (%) S.D. ��� (%) S.D.

F1 82.4 14.4 89.4 7.9 88.6 7.9

F2 82.7 12.4 87.8 7.9 82.9 7.5

F3 79.9 13.5 85.5 9.8 76.4 11.4

F4 77.2 15.4 83.6 11.6 71.4 14.9

F5 81.1 15.4 88.1 8.6 87.4 8.9

F6 80.6 13.7 85.9 8.9 79.7 8.8

F7 90.2 7.8 95.2 3.7 93.7 3.9

F8 93.6 3.1 97.8 1.6 94.6 4.4

F9 93.3 4.4 95.3 3.6 90.1 7.8

F10 87.2 9.1 91.1 8.8 91.7 9.2

F11 87.1 10.1 88.3 11.2 85.5 12.6

F12 84.9 13.6 85.0 13.8 74.9 18.7

Average percentage constancy ��� and standard deviation for the proposed invariant N , the von Kries transform, and u0v0 difference.
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running at a low color temperature, variation due

to illumination color is drastically reduced by the

proposed method.

The proposed method is less color constant

than von Kries adaptation, which requires knowl-

edge on the color of the light source. In compari-
son to u0v0 color differences, the proposed invariant
offers better performance for low color tempera-

ture illuminants.

Color constancy for fluorescent illuminants is

on average 85:0� 11:8% for the proposed invari-
ant, 84:7� 10:5% for u0v0 difference, and

89:4� 8:8% for the von Kries transform. As ex-
pected, the large integration filters are not capable
in offering color constancy for the class of fluo-

rescent illuminants. The use of broad-band filters

limits the applicability to smooth spectra, for

which the Gaussian weighted differential quotients

are accurate estimations. For outdoor scenes,

halogen illumination and incandescent light, the

illumination spectra may be considered smooth.

5. Discussion

Color constancy was considered in (Lucassen

and Walraven, 1996; Brainard, 1998) from an ex-

perimental colorimetric background, where sub-

jects are asked to match the reference and test

illumination condition. As a consequence their
experiments do not include shadow and shading.

The result of their approach shows approximate

color constancy under natural illuminants. How-

ever, their approach is unable to cope with color

constancy of three-dimensional scenes, where

shadow plays an important role. The advantage of

our physical approach over an empirical colori-

metric approach, is that invariant properties are
deduced from the image formation model. Our

proposed equation (3) is designed to be insensitive

to intensity changes due to the scene geometry.

The proposed invariant equation (3) is evalu-

ated by experiments on spectral data of 168 trans-

parent patches, illuminated by daylight, blackbody,

and fluorescent illuminants. Average constancy is

90� 5% for daylight, 90� 10% for blackbody ra-
diators, and 85� 10% for fluorescent illuminants.
The performance of the proposed method is

slightly less than that of the von Kries transform.

Average constancy for von Kries on the 168 pat-

ches is 95� 3% for daylight, 95� 5% for black-
body radiators, and 90� 10% for fluorescent

illuminants. This is explained from the fact that

the von Kries transform requires explicit knowl-
edge of material and illuminant, and even than the

difference is small. There are many circumstances

where such a knowledge of material and illumi-

nant is missing, especially in image retrieval from

large databases, or when calibration is not prac-

tically feasible as is frequently the case in light

microscopy. The proposed method requires

knowledge about the material only, hence is ap-
plicable under a larger set of imaging circum-

stances.

As an alternative for color constancy under an

unknown illuminant, one could use Luv color
space differences (Wyszecki and Stiles, 1982) in-

stead of the proposed method. We have evaluated

color constancy for both methods. Ignoring the

fact that the proposed color scale-space frame-
work allows spatial integration, the proposed in-

variant offers similar performance to u0v0 color
differences. This is remarkable, given the different

background against which the methods are de-

rived. Whereas u0v0 is derived from colorimetric
experiments, hence from human perception, the

proposed invariant N is derived from measurement
theory––the physics of observation––and physical
reflection models. Apparently, it is the physical

cause of color, and the environmental variation in

physical parameters, to which the human visual

system adapts.

As pointed out in (Lucassen and Walraven,

1996), mechanisms responding to cone-specific

contrast offer a better correspondence with human

vision than by a system that estimates illuminant
and reflectance spectra. The research presented

here raises the question whether the illuminant is

estimated at all in pre-attentive vision. The physi-

cal model presented demands spatial comparison

in order to achieve color constancy, thereby con-

firming relational color constancy as a first step in

color constant vision (Foster and Nascimento,

1994; Nascimento and Foster, 2000). Hence, low-
level mechanisms as color constant edge detection

reported here may play a role in front-end vision.
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6. Conclusion

This paper presents a physics-based back-

ground for color constancy, valid for Lambertian

light reflectance. By considering spatial and spec-
tral derivatives of the image formation model,

object reflectance properties are derived indepen-

dent of the spectral energy distribution of the il-

luminant. Knowledge about the spectral power

distribution of the illuminant is not required for

the proposed invariant, as opposed to the well

known von Kries transform for color constancy

(von Kries, 1970).
The derivation of object properties from color

images yields the extraction of geometric and

photometric invariants from color images. Mod-

eling the physical process of color image formation

gives insight into the disturbing conditions during

image acquisition. The robustness of our invari-

ant Eq. (3) is assured by using color scale-space,

as introduced in (Geusebroek et al., 2001). The
Gaussian color model is considered an adequate

approximation of the human tri-stimulus sensi-

tivities. The Gaussian color model measures the

intensity, first, and second order derivative of the

spectral energy distribution, combined in a well-

established spatial observation theory. Application

of color scale-space techniques in color constancy

ensures compatibility with colorimetry, while in-
herently physically sound and robust measure-

ments are derived. Hence, color scale-space as

proposed in (Geusebroek et al., 2001) provides a

framework for the calculation of photometric in-

variance, while maintaining compatibility with

human perception.

We have proven that spatial differentiation is

necessary to achieve color constancy when pre-
knowledge about the illuminant is not available.

Hence, any color constant system should perform

both spectral and spatial comparison in order to

be invariant against illumination changes, which

confirms the theory of relational color constancy

as proposed in (Foster and Nascimento, 1994).

We plan to undertake similar experiments as

Nascimento and Foster (2000) in order to com-
pare performance of the proposed invariants

with the imperfect color constancy of human vi-

sion.
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