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Abstract—Grouping in vision can be seen as the process that organizes image entities into higher-level structures. Despite its

importance, there is little consistency in the statement of the grouping problem in literature. In addition, most grouping algorithms in vision

are inspired on a specific technique, rather than being based on desired characteristics, making it cumbersome to compare the behavior

of various methods. This paper discusses six precisely formulated considerations for the design of generic grouping algorithms in vision:

proper definition, invariance, multiple interpretations, multiple solutions, simplicity and robustness. We observe none of the existing

algorithms for grouping in vision meet all the considerations. We present a simple algorithm as an extension of a classical algorithm,

where the extension is based on taking the considerations into account. The algorithm is applied to three examples: grouping point sets,

grouping poly-lines, and grouping flow-field vectors. The complexity of the greedy algorithm isOðnOGÞ, whereOG is the complexity of the

grouping measure.

Index Terms—Grouping, design considerations, vision, perceptual grouping, clustering.
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1 INTRODUCTION

GROUPING plays an important role in many computer
vision systems that aim at recognition of objects in

images. In vision, grouping can be seen as the process that
organizes image features into higher-level structures,
corresponding to objects in the image. This abstract notion
of grouping is formulated in many ways. We consider
grouping as the task to find groups of similar elements from
a set S, where S is a finite set of basic elements
fs1; s2; . . . ; sng derived from an image. The elements of S
may represent edge points in an image (found with an edge
detector), locations of simple structures in the image (found
by a template operation), the location and orientation of
curves, etc. At any rate, S is a set of elements derived from
the image by a detector, to be refined in Section 3.1. Despite
its importance, there is hardly any consistency in the
(implicit) definition of grouping among the various papers
dealing with the subject. This lack of uniformity makes it
cumbersome to compare the structure and the behavior of
different grouping methods.

In most cases, the design of grouping algorithms is
application-driven or method-driven. As a result, the
behavior of the algorithms is hard to predict in general. In
this paper, we develop a number of considerations for the
design of grouping algorithms in general. The considera-
tions may also be used to typify the difference between
grouping algorithms. Our goal is not to design a generic
grouping algorithm (as regarded undesirable in [50], and
we agree), but rather to take the general grouping case in
vision as a reference in the design of actual grouping
algorithms. The considerations reflect the rationale behind
grouping, for computer vision and human vision alike.

A grouping algorithm in literature is often seen as the
combination of a grouping framework and a grouping measure.
For the grouping measure, the Gestalt laws still have lost
little of their value [27]. These laws are often used as design
considerations for grouping measures. For a modern
discussion of the use of Gestalt laws in grouping and
perceptual organization, see [38]. Although a large part of
the behavior of grouping algorithms is determined by the
behavior of the grouping measure, in this paper, we will
focus on the considerations for the grouping framework.
Our considerations do not deal with quantitative behavior
like grouping quality or execution time. Although this
quantitative behavior for a large part is determined by the
design, it is also influenced by implementation issues. We
choose to limit the scope of this paper by not taking these
issues into account. Our goal is to provide a set of
characteristics that are important to consider when design-
ing a grouping algorithm and specifically to describe the
consequences when the considerations are not taken into
account by a specific algorithm.

In Section 2, we discuss the use of grouping in literature,
specifically considerations, definitions, and requirements
for grouping. We present our considerations for grouping
in Section 3 with formal definitions. To illustrate the use of
the considerations, we present a grouping framework and
some examples in Section 4.

2 GROUPING IN LITERATURE

There are three main motivations in literature for the use of
grouping in vision. The first reason is found in papers that
derive their methods from the principles of Gestalt theory
(see, for instance, [40], [31], [1]). The general idea is because
grouping works well in the human vision system [4], [23], it
is worth a try in computer vision systems. The second
reason is the principle of common-cause, found in, for
instance, [44], [45], [27], [36], and later used in, for instance,
[14]. It is based on the idea that many relations in visual
information have a low probability to occur at random in
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real live images. So, when a relation is found there is a high
probability that the relation is significant. Organization
processes based on such relations will deliver nonaccidental
structures, often representing objects in the real world. In
other words: grouping is useful for real live images because
our world is coherent. The third reason is that of
computational efficiency, coming from a result in model-
based object recognition found in [13]. According to this
result, it is critical (from a complexity point of view) to use
techniques that select subsets of the data likely to have come
from a single object before establishing a correspondence
between data and model features.

In vision literature, the process of forming sets out of one
set of single elements is denoted by a number of names:
classifying, clustering, feature grouping, and perceptual
organization. Different processes are denoted by the same
name, making comparison of methods cumbersome. In [26],
[24], [25], definitions are proposed for classification, cluster-
ing methods, and hierarchical methods. The term classifica-
tion is used as the general term to address all processes that
form sets out of one set of single elements. Classification can
be divided into clustering methods and hierarchical methods.
Clustering, according to [26], [24], [25], is a classificatory
method which optimizes the intragroup homogeneity, where
hierarchical classification optimizes a hierarchical route from
single elements to population. When an element can be
assigned to more than one class, the classification is called
overlapping. In many papers, the term clustering is reserved
for nonoverlapping classification schemes (see, for instance,
[47], [46], [22]). The term hierarchical is used in most papers to
denote that the output of the classification process delivers
multiple solutions that can be arranged in some hierarchical
manner (see, for instance, [35], [8], [20]). We define hierarchy
as a characteristic of a process, not as a process of its own,
opposing the definitions of [26], [24], [25].

In the field of pattern recognition, clustering is often seen as
partitioning data without label information, while classifica-
tion is regarded as partitioning data with label information
[9]. The term perceptual organization (or perceptual group-
ing) is sometimes used as a general term for all kinds of
clustering or classification processes. In [40], perceptual
organization is defined as the ability to impose structural
organization on sensory data, so as to group sensory
primitives arising from a common underlying cause. In a
number of papers, however, perceptual organization and
grouping are defined more specifically. In [17], grouping and
perceptual organization are considered to be identical: a
bottom-up process that clusters image features into higher
level organizations, each likely to come from a single object (in
[43], however, grouping is not assumed to be strictly bottom-
up). Perceptual groupingof curved lines isdefined in [8]as the
search for and explicit description of significant curvilinear
structure. In [3], grouping is defined as a process that
rearranges given data by eliminating irrelevant data items
and sorting the rest into groups, each corresponding to a
particular object. There is also a tendency to use the term
perceptual organization for processes that are related to or
inspired on the Gestalt principles (see [21] for a discussion on
the Gestalt principles), see, for instance, [39], [31], [12]. The
great diversity in definitions makes it hard to compare
different grouping methods and to quickly understand the
scope and use of these methods. We provide a precise
definition for grouping that is applicable to a large class of

grouping problems and provide precise definitions for the
considerations based on our definition for grouping.

Many existing clustering techniques, like k-means [30],
graph-theoretic clustering [49], nearest neighbor [28], fuzzy
clustering [37], or neural networks [42] are successfully used
in computer vision for instance to segment images [2].
Although the above mentioned methods are successful in
part of the vision based grouping problems, there is a need for
grouping algorithms tuned more towards computer vision,
given the large effort that is put into making specific grouping
algorithms for computer vision applications generic for
vision (see, for instance, [3], [47]). However, little effort is
put into the question which characteristics can be useful for
grouping algorithms in vision applications. For clustering, in
general, a formalization of desired properties is given in [46],
but not all axioms given there are applicable in computer
vision settings. For instance, elements to be grouped, can
share the same location and it is stated that a grouping where
an element is assigned to more than one group can never be
optimal. For one specific application, i.e., the clustering of line
segments, in [20], a number of requirements are mentioned.
From these requirements, a grouping measure and a
clustering scheme are derived. Our considerations are not
limited to one application domain. In [48], some general
grouping principles are derived from findings in neu-
roscience. In general, the requirements given are important
for perception in the presented application, but they cannot
easily be translated into desirable characteristics for generic
grouping in vision. The field of mathematical taxonomy [19]
puts forward a number of conditions that we consider for our
purposes where possible.

3 DESIGN CONSIDERATIONS FOR GROUPING

3.1 Proper Definition

In considering the design for grouping, it is desirable to
start from proper definitions [19]. As can be learned from
Section 2, definitions are rarely consistent in the computer
vision literature.

Consideration 1: Proper Definition. The following entities
are properly defined for any generic grouping frame-
work: the target structure, the data to be grouped, a
grouping, and a grouping measure.

In this paper, we choose to separate the extraction of the
data (feature extraction) from the grouping process. Other
choices are equally possible, for instance, [29] argues to
postpone decisions on which features should be extracted.
Furthermore, we choose to divide the grouping algorithm in
two components, the grouping framework and the grouping
measure.

Grouping in vision can be seen as the process that
organizes image features into higher-level structures. The
design of a specific grouping algorithm preferably starts with
the definition of these structures in a model. In our view of
grouping, this model consists of two parts: description of the
symbols and description of the organization of the symbols.
The symbols are the smallest entities into which the higher-
level structures can be decomposed, such that every symbol is
equal (see Fig. 1). The organization describes in which way
these symbols should be organized to form the higher-level
structures. This organization can be based on cues using
color, geometrical characteristics, or texture. Which of the
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cues are the most useful can hardly be said for computer
vision. For human vision, Elder and Zucker [10] argue that
geometric properties of boundaries play a prominent role in
grouping. Given the model of the high-level structure, the
next step is the collection of the data from the image that has to
be grouped. The data can be seen as the instantiation of the
symbols from the model.

Given the set S, grouping can be formalized in several
ways, for instance, as labeling problem or as a set-
theoretical problem. When viewing a grouping process as
a labeling problem, it boils down to finding the mapping
between the elements in the image and the labels of the
various groups. When viewing a grouping process as a set
theoretical problem, the process boils down to finding some
set covering of the set S. We choose to use a set theoretical
formulation throughout this paper.

A grouping is seen as a set of subsets ofS, where one subset
may not be a subset of another set in the grouping. This
restriction is meant to forbid groups of different abstraction
levels or scopes to be mixed because this would complicate
the design of a (generic) grouping method to an extend that it
may be unsolvable. To illustrate this, consider an image of
windmills (see Fig. 2). In perceptual grouping literature, often
the term clustering is used for processes that are more strict
then the process given by our grouping definition. Clustering
is often seen as the process that results in a partition of S.

In this paper, we concentrate on grouping (as given in
Definition 3.1) because, in realistic images, a substantial part
of the data to be grouped may be irrelevant, making it
undesirable to assign a label to it (see Fig. 3). A grouping
algorithm is able to ignore this data since it does not strictly
partition the data setS. This consideration is mentioned in the
definition of grouping in [3]. Clustering methods do not have
this feature by definition since they result in a covering or a
partition of the elements of S. One could introduce an

“irrelevant” label as a work around. In statistical literature,
ignoring irrelevant data boils down to outlier detection.

Every grouping method uses a measure of (dis)similarity
or alikeness (given by a nonnegative real number) to decide
whether single elements or groups are to be grouped together
or not. Often, the grouping measures are inspired on Gestalt
principles like continuity and proximity. The grouping
measure, as we define it here, is based on the (probabilistic)
characteristics of the symbols as well as the structure that is
specified in the model. Other possibilities are to base the
grouping measure also on intragroup dissimilarity or
similarity measures, see, for instance, [5], [8], [41], or the use
of depth cues [33]. The considerations apply to these kinds of
grouping algorithms, but the definitions might differ.

To formalize the concept of data to be grouped, let I 2 I
be the image to be analyzed: I : IR2 ! B, where B is the set
of possible image values. Let the output of the detector be
given by DI : IR2 ! V , where V is the set of possible results
for the detector. In the discrete case, the output of the
detector D assigns a value vi to every point pi 2 ZZ2. The
elements of S are defined as follows:

S ¼ fsjDIðsÞ 2 V �g; ð1Þ

where V � is the set of characteristics common to the
elements of S.

Given the set S, we can define a grouping as follows.

Definition 3.1 (Grouping). Let S ¼ fs1; s2; . . . ; sng be a set of
single elements, then a grouping X ¼ fX1; X2; . . .Xmg is a
collection of subsets of S, such that X1 [X2 [ . . . [Xm � S,
where Xi 6� Xj; i 6¼ j.
A grouping measure can be defined as a function

G : PðSÞ � PðSÞ � . . .� PðSÞ ! IRþ0 ; ð2Þ

where PðSÞ is the power set and p is fixed. We define
GðX1; X2; . . .XpÞ ¼ 0 for X1 [X2 [ . . . [Xp ¼ ; and for
X1 [X2 [ . . . [Xp ¼ fsig 2 S, for all functions G. Suppose
that it is more likely for a number of setsX1; X2; . . .Xp to form
one group than it is for a set of sets Y1; Y2; . . .Yp. Then, it is
desirable to have that GðX1; X2; . . .XpÞ < GðY1; Y2; . . .YpÞ.
The function G : PðSÞ ! IRþ0 that only takes one set as an
argument is called a homogeneity measure.

3.2 Invariance

The next consideration is standard in many computer vision
algorithms.

Consideration 2: Invariance. A generic grouping frame-
work has the ability to be invariant under a variety of
transformations.

Many vision algorithms need to be invariant under
translation, rotation, scaling, and other transformations. As
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Fig. 1. Illustration of the symbol definition. For the model of the dotted

line, the symbol is the dot; for the dash-dotted line, the symbol is the

dash and the dot together.

Fig. 2. The windmill example shows a case of different levels of
abstraction in grouping: grouping edge pixels into lines, grouping lines
into vanes, and grouping vanes into windmills. The wish to group all the
elements of the different abstraction levels in one try, would be
unreasonable.

Fig. 3. When clustering the image data into straight lines, B is the

desired result, not A.
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a consequence, the grouping process will often need to be
invariant under those transformations as well. Regardless of
the need, there are many examples of vision algorithms that
are not strictly invariant where they should be. For example,
rotation invariance is often only true in an approximate sense,
due to the inevitable discretization of images.

We call a grouping algorithm A invariant under
operation � if the following mapping from the configura-
tion space to the output space:

AðSÞ ¼ Að�ðSÞÞ; ð3Þ

3.3 Multiple interpretations

The third consideration seems specific for grouping in
computer vision, where in statistical clustering such a
consideration will rarely be found.

Consideration 3: Multiple Interpretations. A generic
grouping framework has the ability to assign one symbol
to more than one group.

In images (for instance, engineering drawings), parts of an
image can semantically be part of more than one object (see
Fig. 4). For instance, corner points and crossing points are
members of two lines or lines can be members of more then
one square. Not assigning a corner point to both lines would
raise a fundamental topological problem to which line the
point should be assigned. Having the possibility to assign a
data element to more than one group solves this problem. As
a consequence, methods that result in partitions of the data
set S are less useful as generic grouping methods in vision.

The possibility to have overlapping groups in a grouping is
used in [32] in the field of information retrieval. In vision, the
notion of overlapping groups in a grouping, in general, is
mentioned in [43]. More specifically, in [7] the need to handle
intersecting curves properly in grouping is discussed, while
in [6], [34], curves can share elements. In [15], for instance,
junctions are classified as such, but elements are not assigned
to more than one structure. The drawback of fuzzy clustering
[37] as a solution to the multiple clustering is that partial
memberships add up to 1, implying that an element cannot be
a “full” member of two or more groups.

For a formal definition of multiple interpretations, define a
grouping X ¼ X1 [X2 [ . . . [Xm of S. Multiple interpreta-
tions are possible for a grouping process if it is possible that

Xi \Xj 6¼ ;; for i 6¼ j: ð4Þ

Equation (4) captures the difference between grouping and
clustering.

3.4 Multiple Solutions

Jardine and Sibson [19] put forward the condition that a
grouping algorithm should result in a hierarchy of

solutions. We maintain a more general consideration holds
in computer vision.

Consideration 4: Multiple Solutions. A generic grouping
framework has the ability to return multiple solutions.

Multiplicity refers to the fact that many scenes do not
have a unique, context-free, and semantics-free grouping.
An obvious multiple solution is a hierarchy but one could
insert more problem-specific structures in the grouping as
well. We aim to concentrate such knowledge in the
grouping measure in an effort to maintain generality.

Images are often 2D-interpretations of 3D-scenes. Parts of
such images can frequently be interpreted in different ways,
due to 3D-ambiguity or occlusion (Fig. 5). But, also in strictly
2D images like engineering drawings, it can be possible to
have more than one interpretation of a local scene (Fig. 6).
Which is the “right” interpretation of a scene cannot always be
determined with just the local information. Since the use of
global or higher order information is unavoidable, the
grouping method cannot always decide which interpretation
is right, but as a solution could give more than one possible
interpretation of a scene. This consideration is discussed, for
instance, in [20], [17] for line grouping algorithms in computer
vision.

With the generation of more than one possible solution, the
question arises how to organize the solutions. Hierarchical
organization is mentioned in [5], [8], [16], [43], [20] based on
three reasons: interpretation of a scene is dependent on the
scale at which it is observed, hierarchical methods are
computationally efficient, and visual recognition by humans
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Fig. 4. An input image with: (A1) possible outcome of a clustering; (A2)
alternative possibility of a clustering; (B) possible outcome of “multiple
clustering” (grouping), the crossing point of the two lines has a multiple
label.

Fig. 5. Two interpretations of a scene: “A” (with occlusion) and “A” (no

occlusion), together with possible groupings of the two interpretations

and example hierarchies leading to these groupings.

Fig. 6. A detail of an input image with possible contexts for the input

image and several correct groupings depending on the context.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on December 23, 2009 at 08:57 from IEEE Xplore.  Restrictions apply. 



is hierarchical. In [20], it is argued that, for straight lines it is
easy to see that a hierarchy or ordering makes sense, see Fig. 7.

Despite the importance and usefulness of hierarchical
methods in computer vision, hierarchical methods are limited
in the sense that two solutions that are really alternative or
competing, as the two interpretations of Fig. 5, cannot be
represented by a single hierarchy. The most general (though
perhaps not most practical) interpretation of the result of a
grouping algorithm is to see the result as a set of hierarchies of
groupings, as is shown by two example hierarchies in Fig. 5.

Hence, we distinguish three types of grouping processes:

. Those that result in a single grouping.

. Those that result in a hierarchy of groupings.

. Those that result in a set of hierarchies.

It is clear that the resulting space form the three types
shows increased complexity, where each type is a superset
of the previous type.

The consideration of multiple solutions can be formulated
as follows, where MðSÞ ¼ fXjX is a grouping of Sg: A
grouping algorithm A allows multiple solutions if it is
possible that A : S ! PðMðSÞÞ.

To formalize a hierarchy of groupings, taking previous
considerations into account, a notion of ordering is needed.
The ordering used in [18] to define hierarchical is not useful
here since it does not allow elements to be part of more than
one group. We use the following partial ordering definition.

Definition 3.2 (Partial Grouping Ordering). Let X ;Y be
groupings of S. Then, X � Y iff

8X 2 X 9Y 2 Y : X � Y and 8Y 2 Y 9X 2 X : X � Y : ð5Þ

The first part of (5) states that data grouped in X should
remain grouped in Y. The second part of the equation states
that every group ofY somehow has its origin in a group ofX .
Lemma 3.3 ensures that the ordering we have chosen has the
properties of a partial ordering.

Lemma 3.3. Let X ;Y;Z be groupings of S. If “� ” is defined as
in Definition 3.2, then “� ” is a partial ordering on the
groupings of S.

The proof that the relation is a partial ordering, i.e., that it is
reflexive, antisymmetric, and transitive, can be found in [11].

A hierarchical grouping, or a hierarchy of groups can be
defined as a sequence of groupings H ¼ fX1;X 2; . . . ;Xpg,
where X i � X iþ1. This definition delivers a hierarchy for
groups equivalent to the hierarchy mentioned in [18],
represented by a sequence of groupings. Although the
ordering function is partial, the sequence of hierarchies is
totally ordered. The set of hierarchies can be derived directly
from the definition of the hierarchy.

3.5 Simplicity

Following the principle advocated since Occam’s razor and
the Gestalt-law [27] leads us to formulate the fifth
consideration. The fifth consideration is also mentioned in

[19] under the concept of optimality. It can be explained as
the ability to find the simplest explanation of a scene that is
still valid under the used model.

Consideration 5: Simplicity. A generic grouping frame-
work has the ability to find the maximal groups according
to the model.

When grouping edge points into straight lines, a
configuration of points may be grouped into three groups
of straight line segments (see Fig. 8). If there is no further
evidence from the image, it is desirable for the grouping
method to deliver the most “simple” grouping of the data
(Fig. 8). Simplicity of a grouping can be seen as the
characteristic that, for every group in that grouping, there
does not exist a superset of basic elements that is equally
likely according to the grouping measure.

It should be noted that the condition of multiple
interpretations is a necessary condition for simplicity of a
grouping method. See Fig. 9 for an example. When looking
for straight lines, the white and the black group compete for
element p with equal rights. To prevent element p being
assigned to the black group or to the white group on
entirely accidental grounds, multiple interpretations are
mandatory. The alternative is to assign p to a new, third
grouping of its own, in contrast to the demand of simplicity.

To formulate simplicity, suppose the grouping measure
takes p arguments, X1; X2; . . . ; Xp, where X ¼ X1 [
X2 [ . . . [Xp. Then, define

G�ðXÞ ¼ min
i¼1...p;Xi2S;[iXi¼X

GðX1; X2; . . . ; XpÞ: ð6Þ

A grouping process resulting in a single grouping is called
simple, if the following holds for the result of the grouping
process: 8X 2 X ) : 9Y � S : ðX � Y Þ ^ ðG�ðXÞ � G�ðY ÞÞ.
So, for every group in a single grouping, there does not exist a
superset of that group that is just as likely to be formed as the
group itself.

A grouping process resulting in a hierarchical grouping,
with grouping measure G, is simple if the following holds
for the result of the grouping process:

8X 2 X i : ð9Y � S;X � Y : G�ðXÞ � G�ðY ÞÞ )
ð9j > i;9Z 2 X j; X � Z : G�ðXÞ � G�ðZÞÞ:

ð7Þ
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Fig. 7. Regardless of context, when looking for straight lines,

grouping L1L2 should be grouped at a lower scale than grouping

L2L3, L1L2L3, or L1L3.

Fig. 8. When clustering the image data into straight lines, A is not the

desired result, B is.

Fig. 9. Multiple interpretations are needed for simplicity.
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So, for hierarchical grouping results, we interpret simplicity
as follows: If there exists a superset of a group in a grouping
that is as most as likely to occur as the group itself, then
somewhere at a higher level in the hierarchy there exists a
superset of this group in the grouping. If all the hierarchies in
a set of hierarchies are simple, the set of hierarchies can be
seen as simple.

3.6 Robustness

For any practical application, we need the following

consideration.

Consideration 6: Robustness. A generic grouping frame-

work is robust.

Regarding robustness, we leave to limits due to the
discrete character of the grid aside as a general problem.
Robustness of a method in an assumed quasi-continuous case
is interpreted here as the characteristic that a small change in
the input, due to noise or measurement errors, only has as
small influence on the result of the method. Of course, there is
a trade-off between the discriminatory power of the method
and its robustness, largely dependent on the application.

The condition of multiple interpretations is a necessary
(but not sufficient) condition for the robustness of a
grouping method. In Fig. 10, an arbitrary small change in
the element p causes the white cluster in clustering A to be
formed as a subset of another cluster at a much higher level
in clustering B. If element p can be assigned to both groups,
the white group A (including p) can be formed at a level
arbitrarily close to the original level.

The outcome of a grouping measure of the combination of
two groups T and U can be calculated from their individual
grouping measure GðT Þ and GðUÞ or can be calculated as
GðT [ UÞ [25]. Although the first combinatorial calculation
has obvious computational advantages, it cannot be guaran-
teed that the same groups are formed at the same level,
regardless of the order of previous grouping steps. Combi-
natorial calculation potentially leads to nonrobustness. The
second option, noncombinatorial calculation requires more
computational effort, but is independent of the distribution of
the element over the two sets. Hence, robustness may be
ensured in the latter case.

To ensure that a grouping method is robust, the grouping
measure must be robust as well. That is not a sufficient
condition however. To ensure that the same groups are
formed at the same level, regardless of the order of previous
grouping steps, it is useful that the grouping measure is
data-dependent.

Definition 3.4. A grouping measure G : PðSÞ � PðSÞ ! IR is

called data-dependent iff

T [ U ¼ T 0 [ U 0 ) GðT; UÞ ¼ GðT 0; U 0Þ: ð8Þ

A data dependent grouping measure can be given as a
function Gs : PðSÞ ! IR. So, if GðT; UÞ is data dependent it
can be written as GðT [ UÞ.

To illustrate the usefulness of data-dependent distance
measures, consider the example of a robust grouping
measure that is not data-dependent:

GðT; UÞ ¼

min
x2T;y2U

kxÿ yk
� �

= max max
x;y2T

kxÿ yk;max
x;y2U

kxÿ yk
� �� �

:
ð9Þ

In Fig. 11, it is illustrated that for this grouping measure it is
not true that the same groups are formed at the same level,
disregarding the order of the previous grouping steps. The
groups forming group “A” are grouped at level 1

2
(assuming that the distance between two subsequent points
is 1 and that the points are placed equidistant), while the
groups forming group “B” are grouped at level 1

3 , meaning
that the same group is formed at a completely different
level, depending on the groups it was constructed from.
This potentially leads to methods that are not robust.

Robustness and data-dependence of a grouping measure
are insufficient to ensure a robust grouping method. Consider
the situation in Fig. 12. Assume that we are looking for
continuous piecewise straight lines in an image. SolutionA is
just as valid a solution as B. Since the existence of both
solutionsA andB in the result of a grouping method cannot be
guaranteed, it may happen that only one of them will appear
in the results. Therefore, an arbitrarily small change in the
data may cause the algorithm to prefer solution A over B or
vice versa (see Fig. 13). The problem sketched in Fig. 13 is a
problem of robustness in general. An arbitrarily small change
in the elements of S, may cause a completely different result,
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Fig. 10. Multiple interpretations are needed for robustness (but not sufficient).

Fig. 11. Two different groupings A and B of the same one-dimensional set.

Fig. 12. Robustness and data dependence of the grouping measure are

not sufficient for robustness of the grouping method.
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equally likely. Consequently, a method should allow for
multiple solutions to be robust in the most general sense.

To formulate this consideration of robustness, the set
under change ðS [ yÞnx is denoted as Sx$y. In addition, subset
under change �x$y and inclusion under change 2x$y are
defined as follows.

Definition 3.5 (Subset under change). �x$y is defined such
that T �x$y U iff T � U or Tx$y � U or T � Ux$y.

So, a set T is a subset under change of set U if it is a normal
subset or a subset if the elements x is replaced by the
element y.

Defintion 3.6 (Inclusion under change). 2x$y is defined
such that x 2x$y T iff x 2 T or y 2 Tx$y.

That is, an element is included under change if it is included in
the set, or if it is included in the subset under change.

SupposeG is a homogeneity measure. The formation level
of a groupingX can then be defined asLðXÞ ¼ maxX2XGðXÞ.
For grouping measures that are not homogeneity measures,
the maximum can be taken over the values of the grouping
measure of the components that formed X.

The minimal formation level of a set Xj is denoted as
LðXjÞ and is defined as follows.

Definition 3.7. The minimal formation level of a groupXj within
a hierarchical grouping H ¼ fX1;X 2; . . . ;Xpg is denoted as
LðXjÞ and given by LðXjÞ ¼ minX i2H:ðXj2X i_Xj�A2X iÞ LðX iÞ
Lx$yðXjÞ is defined in the same way �x$y is defined.

For the definitions of robustness, we have to assume
there exists a distance measure on the space of sets of
elements S. To define robustness for nonhierarchical
methods, we need some notion of distance between groups.
Suppose there is a distance measure dðX i;X jÞ assigning a
distance to a pair of groupings ðX i;X jÞ. The actual form of
such a measure will depend on the application in which the
grouping method is to be used. Robustness of nonhier-
archical grouping methods can be defined as follows.

Definition 3.8. A grouping algorithm which groups a set S into
a set of groups X ¼ fX1; X2; . . . ; Xmg with grouping measure
G is called robust if

8x 2 S; 8" > 0; 9� > 0 : dðX ;X0Þ < "; 8y with kxÿ yk < �;

where X0 is the grouping of Sx$y.

So, a grouping algorithm is robust if an arbitrarily small
change in a data element of a group only results in a small

change in the resulting grouping. The distance measure
dðX i;X jÞ should be chosen carefully for useful definitions of
robustness. A discrete measure that assigns 1 to a pair of
groupings that is equal and 0 to a dissimilar pair, does not
allow for any robust grouping algorithms. Rather a
continuous measure is needed.

A hierarchical grouping algorithm which groups a set S
into a number of nested groups H ¼ fX1;X2; . . . ;X pg with
X i � X iþ1, for i < p, with grouping measure G is called
robust if

8x 2 S; 8i; 8Xj 2 X i; 8" > 0; 9� > 0 :

kLðXjÞ ÿ L0x$yðXjÞk < "; 8y with kxÿ yk < �; ð12Þ

where H 0 ¼ fX01;X02; . . . ;X0pg is the hierarchical grouping of
Sx$y, with corresponding levels L0. So, a hierarchical
grouping method is robust if an arbitrary small change in
a data element of a group only results in a small change in
the minimal formation level of that group. A grouping
method that results in a set of hierarchies can be seen as
robust if it is robust for all the separate hierarchies.

To introduce the notion of robustness for hierarchical
methods, we used the level at which a grouping was formed,
which can be assumed to be a real number. This introduces
some notion of similarity between two groupings. If the
difference between the levels at which the groupings are
placed in the hierarchy is small, then the groupings are alike.

The definition of robustness can be altered for other
small changes in the data set like addition or subtraction of
points, by overloading the definition of$ in the definitions
of S$, �$ , 2$ , and change L$, such that they model the
intended small change in the data set.

4 A GROUPING ALGORITHM

4.1 An Algorithm

To illustrate our considerations, we present a grouping
algorithm. We choose to use a variation of the hierarchical
grouping framework presented in [18], making it possible
to return more than one grouping. Following the discussion
of Consideration 6, the algorithm uses a homogeneity
measure, G : PðSÞ ! IRþ0 , as grouping measure.

In the hierarchical algorithm of [18], a proximity matrixM
is used in which the rows and the columns represent the
different groups fX1; X2; . . .Xmg in a grouping X . The
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Fig. 13. A small shift of point p may cause a preference of solution B over solution A.
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elementsMij; i 6¼ j are given byGðXi [XjÞ andMii ¼ 0. The
disjoint groupingis definedasX ¼ ffs1g; fs2g; . . . ; fsngg.The
algorithm delivers a hierarchical structure of solutions
H ¼ fX1;X2; . . . ;Xng, withX i � X j for all i < j and it is easy
to adjust the stop criterion in such way that the grouping stops
as soon as no meaningful groups can be formed depending on
the value of the grouping level (assuming that the grouping
measure can be used for this task). If the grouping process is
terminated early, data that have not been grouped can be
marked as irrelevant and can be left out of the results. Our
framework is not able to deliver a set of hierarchies. This
means that equivalent alternative solutions cannot be deliv-
ered by the algorithm. Adding this feature is possible, but will
be inefficient.

Taking the consideration of multiple interpretations into
account, we observe that the mentioned algorithm from [18]
does not allow elements to be assigned to more than one
group, which means that corner points or crossing points
cannot be treated correctly. Furthermore, simplicity and
robustness cannot be ensured. To solve this drawback, an
alternative matrix Q is defined. The columns of Q represent
the groups ffs1g; fs2g; . . . ; fsngg in the disjoint grouping,
while the rows ofQ represent the groups fX1; X2; . . . ; Xmg in
the grouping at a certain level. The elementsQij are given by
Gðfsig [XjÞ if fsig 6¼ Xj else Qij ¼ 0 (since the element is
already part of that group). To limit the complexity of the
algorithm, the number of groups that share the same basic
element, is at most v, while the number of basic elements that
two arbitrary groups share, is at mostw.

We restrict the number of pairs that are considered in each
grouping step, by a graph H ¼ ðVH;EHÞ, defined over all
groups in a grouping, and a graphR ¼ ðVR;ERÞ, representing
the relation between the groups in a grouping and the basic
elements from S. If for two groupsXi andXj the correspond-
ing edge ij is present in the graph, they are candidates to be
grouped. We define the graphs as follows: Define V ffi X
and E ¼ fijjdðXi;XjÞ < tg, where dðXi;XjÞ ¼ minsi2Xi;sj2Xj

jjsi ÿ sjjj. The graph R is defined likewise. Other types of
restrictions can be defined with the graphs H and R in a
similar fashion. See Fig. 14 for the resulting Multiple
Hierarchical Grouping algorithm.

4.2 Complexity

The following lemma gives the general complexity of the
grouping algorithm with no practical restrictions (i.e., v ¼ n,
w ¼ n, and H ¼ Kn, R ¼ �KKn � �KKn).

Lemma 4.1. Let the order of complexity of the grouping measure
be given by OG. Then, the order of complexity of the
unrestricted MHG is Oðn3OGÞ, where n is the number of
data elements.

The following lemma gives the complexity of the
grouping method, when parameters are bound to a
realistic constant. v ¼ cv < n, w ¼ cw < n, and 8v 2 VH :
�ðvÞ < cH < n, 8v 2 VR : �ðvÞ < cR < n).

Lemma 4.2. Let the order of complexity of the grouping
measure be given by OG. Let v ¼ cv < n, w ¼ cw < n, and
8v 2 VH : �ðvÞ < cH < n, 8v 2 VR : �ðvÞ < cR < n, w i th
cv; cw; cH; cR constant. The order of complexity of the
restricted MHG is OðnOGÞ, where n is the number of
data elements.

For the proofs of Lemmas 4.1 and 4.2, see [11].

4.3 Results

4.3.1 Point Set Example

In this example, we took a point set from [3] to repeat an
experiment they describe. The algorithm as described in this
section was implemented to group the points into straight
lines as an example case. The homogeneity measure that
was used, is based on the Singular Value Decomposition of a
group of points, where the grouping measure is given by the
variance of the points in the direction of the second
principal axis.

So, let every element si in S correspond to the position of a
point in the image ðsxi ; syiÞ. LetD be an� 2 matrix containing
all the points ðsxi ; syiÞ. Then, the singular value decomposi-
tion of that matrix D can be determined and is given by
D ¼ U�V T , where � is a diagonal 2� 2 matrix. The largest
value, �max corresponds to the variance of the positions in the
direction of the first principal axis. The smallest value �min
corresponds to the variance of the positions in the direction of
the second principal axis. Define �minðXÞ as the variance in
the direction of the second principal axis of the elements ofX.
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Fig. 14. The hierarchical grouping algorithm (MHG).
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The homogeneity measure GðXÞ of a set X � S used in the
examples in this section is defined as

GðXÞ ¼ �minðXÞ: ð13Þ

To calculate the grouping measure for two single points
(which is needed in the beginning of the grouping process),
the grouping measure is returned to a group that consists of
the two points, combined with a third point from the set S,
that delivers the smallest value of the grouping measure. So,
for jXj ¼ 2, the grouping measure G0ðXÞ is given by:
G0ðXÞ ¼ minx2S;x62X GðX [ fxgÞ.

To illustrate our algorithm, we used a data set from [3],
which is given in Fig. 15a. In Fig. 15b, the result of applying
our algorithm to the data without the ability to assign an
element to a group more than once (the “classic” hierarchical
method) is given. The algorithm was ordered to stop if the
grouping measure exceeded the value of 25. Only the five
largest groups were selected. With these settings, the
algorithm fails to obtain results comparable to the algorithm
from [3], due to the fact that a lot of points are initially
assigned to noise and, therefore, can no longer be assigned to
more appropriate groups (the migration problem). In Fig. 15c,
the result of applying our algorithm to the same data, but now
with the ability to assign an element to more than one group is
shown. To keep the complexity low, we limited the number of
groups that an element can be assigned to 20 and we limited
the number of elements that two groups can share to 3. The

result is very similar to the result of [3], with the difference
being that our method assigns elements to more than one
group (see Fig. 15d). With the above mentioned relatively
small change in the settings, the algorithm no longer suffers
from the migration problem. The easy selection criteria used
prevents the algorithm from assigning labels to small
insignificant groups in the end, thereby ignoring irrelevant
data. Furthermore, the algorithm finds the “most simple
explanation” of the scene. While the “classic” algorithm does
not find the maximal solution with a certain maximum
grouping quality (there are a lot of points missing in the
groups given in Fig. 15b), our method does, as is illustrated in
Fig. 15c).

Since the used homogeneity measure is robust, the
algorithm is robust as long as the number of elements that
can be shared between to groups is set high enough and the
number of groups an element can be assigned to is set high
enough. It appears that with a relative low setting of these
parameters (and, thus, creating only a minor overhead
compared to the classic algorithm), robustness can be
provided, as illustrated by the result given in Fig. 16. Changes
in the solution occur especially in regions where groups
overlap because the restrictions we put on the number of
elements that two groups can share and the number of groups
an element can be assigned to, in principle, make it impossible
for the algorithm to be robust in general. But, as can be seen in
Fig. 16, these limitations only have a minor effect.
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Fig. 15. (a) The data to be grouped taken from [3] for comparison. (b) Result of the “classic” hierarchical-grouping method. (c) Result of the

presented grouping method. (d) Detail of the results given in (c).
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4.3.2 Poly-Lines Example

To illustrate the hierarchical nature of the result of our

algorithm, we applied it to the data as given in Fig. 17a. We

used the same grouping measure as we used for the

example in the point set example from the previous section.

The number of elements that can be shared by two groups

was set to 4 in this example. The distinction between the

definitions of a straight line for different scales is clearly

reflected in the hierarchical result of the algorithm.

4.3.3 Flow Field Example

In this section, we give an example of grouping flow field data

calculated from the image sequence as given in Fig. 18. The

simple homogeneity measure that was used is based on the

weighted sum of the variance in orientation of the flow field

vectors and the variance in the size of the flow field vectors.

Let an element si from S correspond to a vector in the
flow field given by parameters ðxi; yi; �i; riÞ, where ðxi; yiÞ is
the position of the vector, �i is the angle (measured
counterclock wise relative to the x-axis) and ri is the size.
The difference between two angles is calculated as

dð�i; �jÞ ¼
2�ÿ j�i ÿ �jj; if j�i ÿ �jj > �
j�i ÿ �jj; otherwise:

�
The average over a set of angles �1; �2; . . . ; �n is calculated
iteratively (i ¼ 1; . . . ; n) as

ai ¼
ðiÿ1Þaiÿ1þ�i

i þ �; for jaiÿ1 ÿ �ij > � and i > 1
ðiÿ1Þaiÿ1þ�i

i ; for jaiÿ1 ÿ �ij � � and i > 1
�1; for i ¼ 1;

8<:
where the average ��� equals an. The variance of the angles
is now calculated as S2

� ¼ 1
nÿ1

Pn
i¼1 dð���; �iÞ

2. Given the
variance of the size of the vectors S2

r ¼ 1
nÿ1

Pn
i¼1ð�rrÿ riÞ

2 of
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Fig. 16. (a) Perturbed version of Fig. 15, where each point received a probability of 0.05 to shift one or two pixels at random. (b) Grouping the original

data set. (c) Grouping on the changed data set.

Fig. 17. (a) The data to be grouped. (b), (c), (d), (e), (f), (g), and (h) consecutive solutions, given in order of appearance in the hierarchy.
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a set of vectors X, the variance in the orientation of the
vectors S2

� of a set of vectors X, the largest difference in
vector size R ¼ maxi¼1;...;n ri ÿmini¼1;...;n ri of all the vectors
in the flow field, the grouping measure for this example is
calculated as:

GðXÞ ¼ S
2
�

�
þ S

2
r

R
; for jXj � 3:

For jXj ¼ 2, the grouping measure G0ðXÞ is given by
G0ðXÞ ¼ minx2S;x62X GðX [ fxgÞ.

The maximum number of elements shared by two
groups was limited to 4, as was the number of groups an
element can belong to. Also, groups of less than six
elements were regarded as irrelevant.

In Fig. 19, the flow field is given together with four
results from the hierarchy of solutions. Vectors close to hip
and shoulder are grouped in more than one group,
illustrating the usefulness of implementing multiple inter-
pretations. The usefulness of the hierarchical result is
shown by the order in which the vectors are grouped: First
the head, arm, hip, and leg are formed, while later on the
complete body is grouped as one entity.

5 CONCLUSIONS

In this paper, we present six design considerations for
grouping in vision. There is not one broadly accepted set of
design criteria on the behavior of a grouping algorithm, nor
will such a unique set likely be found. However, our
considerations formulate desired behavior of grouping
algorithms. For each consideration, we show what will go
wrong when a grouping process does not have that
property. This may or may not be appropriate for a specific
application at hand. As a consequence, the considerations
define precisely what the algorithm aims to achieve.

The six considerations for generic grouping algorithms we
propose are: proper definition, invariance, multiple inter-
pretations, multiple solutions, simplicity, and robustness.

Additionally, we provide precise definitions for all six of
them. The consideration of multiple interpretations is rarely
implemented in grouping algorithms, but it will be essential
for a correct interpretation of many scenes. There is a marked
difference with statistical clustering where one would rarely
find the consideration of multiple interpretations taken into
account. The consideration of multiple solutions is often
required when the correct interpretation depends on the
context of the grouping task. The simplicity consideration
implies that a generic grouping algorithm aims at the simplest
explanation of a scene, as long as such explanation has the
desired quality. The final consideration states that it is
desirable for a generic grouping algorithm to be robust.
When a grouping algorithm is robust, a small change in the
input data does not have large effects on the grouping result.
Human vision, for one, fulfills all these characteristics.

Although the considerations may be intuitively clear,
formulations show that especially simplicity and robustness
are hard to obey in general. In order for a grouping
algorithm to be robust and simple, it is crucial that the
grouping algorithm has the ability to assign one element to
different groups. It should be noted that our considerations
apply to deterministic and probabilistic groupings alike.

The feasibility of the considerations is illustrated with a
simple example grouping algorithm, with OðnOGÞ com-
plexity, where n is the number of data elements to be
grouped and OG is the order of complexity of the grouping
measure. The cause of the low complexity compared to
cluster algorithms Like k-means and pair-wise clustering is
in its greediness. By taking the considerations into account,
we are able to improve the behavior of the classic algorithm
from [18], by making only a few minor changes.
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Fig. 18. (a), (b), (c), (d), and (e) Scenes from the image sequence. (f) The flow field of frame (c).

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on December 23, 2009 at 08:57 from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] N. Ahuja and M. Tuceryan, “Extraction of Early Perceptual
Structure in Dot Patterns: Integrating Region, Boundary, and
Gestalt,” Computer Vision, Graphics, and Image Processing, vol. 48,
pp. 304-356, 1989.

[2] M.N. Murty, A.K. Jain, and P.J. Flynn, “Data Clustering: A
Review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.

[3] A. Amir and M. Lindenbaum, “A Generic Grouping Algorithm
and Its Quantitative Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 2, pp. 168-185, Feb. 1998.

[4] J. August and S.W. Zucker, “The Curve Indicator Random Field:
Curve Organization Via Edge Correlation,” Perceptual Organization
for Artificial Vision Systems, K. Boyer and S. Sarkar, eds., pp. 265-
288, Boston: Kluwer Academic, Jan. 2000.

[5] M. Boldt, R. Weiss, and E. Riseman, “Token-Based Extraction of
Straight Lines,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 19, no. 6, pp. 1581-1595, June 1989.

[6] S. Casadei and S. Mitter, “Hierarchical Image Segmentation-
Detection of Regular Curves in a Vector Graph,” Int’l J. Computer
Vision, vol. 27, no. 1, pp. 71-100, 1998.

[7] I.J. Cox, J.M. Rehg, and S. Hingorani, “A Bayesian Multi-
Hypothesis Approach to Edge Grouping and Contour Segmenta-
tion,” Int’l J. Computer Vision, vol. 11, no. 1, pp. 5-24, 1993.

[8] J. Dolan and R. Weiss, “Perceptual Grouping of Curved Lines,”
Proc. Image Understanding Workshop, pp. 1135-1145, 1989.

[9] R. Duda, P. Hart, and D. Stork, Pattern Classification. New York:
John Wiley & Sons, 2001.

[10] J.H. Elder and S.W. Zucker, “Evidence for Boundary-Specific
Grouping,” Vision Research, vol. 38, no. 1, pp. 143-152, 1998.

[11] E.A. Engbers and A.W.M. Smeulders, “Requirements for Generic
Grouping in Vision and an Algorithm,” ISIS Technical Report
Series 2001-17, Univ. of Amsterdam, 2001.

[12] M.A. Fischler and R.C. Bolles, “Perceptual Organization and
Curve Partitioning,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 8, no. 1, pp. 100-105, 1986.

[13] W.E.L. Grimson, “The Combinatorics of Heuristic Search Termi-
nation for Object Recognition in Cluttered Environments,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 9,
pp. 920-935, Sept. 1991.

[14] W.E.L. Grimson and D.P. Huttenlocher, “On the Verification of
Hypothesized Matches in Model-Based Recognition,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 13, no. 12, pp. 1201-
1213, 1991.

[15] G. Guy and G. Medioni, “Inference of Surfaces, 3D Curves, and
Junctions from Sparse, Noisy, 3D Data,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, no. 11, pp. 1265-1277,
Nov. 1997.

[16] D.W. Jacobs, “Grouping for Recognition,” MIT AI Memo 1177,
1989.

[17] D.W. Jacobs, “Robust and Efficient Detection of Salient Convex
Groups,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 18, no. 1, pp. 23-37, Jan. 1996.

[18] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice
Hall, 1988.

[19] N. Jardine and R. Sibson, Mathematical Taxonomy. London: Wiley,
1971.

[20] A. Jonk and A.W.M. Smeulders, “An Axiomatic Approach to
Clustering Line-Segments,” Proc. Third Int’l Conf. Document
Analysis and Recognition, pp. 386-389, 1995.

[21] G. Kanizsa, Organization in Vision. Preager, 1979.
[22] R. Krishnapuram and J.M. Keller, “A Possibilistic Approach to

Clustering,” IEEE Fuzzy Systems, vol. 1, no. 2, pp. 98-110, 1993.
[23] N. Kruger, “Collinearity and Parallelism Are Statistically Sig-

nificant Second-Order Relations of Complex Cell Responses,”
Neural Processing Letters, vol. 8, pp. 117-129, 1998.

[24] G.N. Lance and W.T. Williams, “Computer Programs for
Hierarchical Polythetic Classification,” Computer J., vol. 9, pp. 60-
64, 1966.

[25] G.N. Lance and W.T. Williams, “A General Theory of Classifica-
tory Sorting Strategies: I. Hierarchical Systems,” Computer J., vol. 9,
pp. 373-380, 1966.

[26] G.N. Lance and W.T. Williams, “A General Theory of Classifica-
tory Sorting Strategies: II. Clustering Systems,” Computer J., vol. 10,
pp. 271-277, 1967.

[27] D.G. Lowe, “Perceptual Organization and Visual Recognition,”
PhD thesis, Stanford Univ., 1984.

[28] S.Y. Lu and K.S. Fu, “A Sentence to Sentence Clustering Procedure
for Pattern Analysis,” IEEE Trans. System, Man, and Cybernetics,
vol. 8, pp. 381-389, 1978.

[29] D. Marr, Vision. San Francisco: W.H. Freeman and Company,
1982.

[30] J. McQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, pp. 281-297, 1967.

[31] R. Mohan and R. Nevatia, “Perceptual Organization for Scene
Segmentation and Description,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 14, no. 6, pp. 616-635, June 1992.

456 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 4, APRIL 2003

Fig. 19. (a) Flow field of Fig. 18c to be grouped. (b), (c), and (e) Intermediate results in order of appearance. (f) The result as given in (b).

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on December 23, 2009 at 08:57 from IEEE Xplore.  Restrictions apply. 



[32] R.M. Needham, “A Method for Using Computers in Information
Classification,” Proc. IFIP Congress ’62, C.M. Popplewel, ed.,
pp. 284-287, 1962.

[33] M. Nitzberg, D. Mumford, and T. Shiota, “Filtering, Segmentation
and Depth Filtering, Segmentation and Depth,” Lecture Notes in
Computer Science, vol. 662, 1993.

[34] P. Parent and S.W. Zucker, “Trace Inference, Curvature Consis-
tency and Curve Detection,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 11, no. 8, pp. 823-839, 1989.

[35] J. Princen, J. Illingworth, and J. Kittler, “A Hierarchical Approach
to Line Extraction Based on the Hough Transform,” Computer
Vision, Graphics, and Image Processing, vol. 52, pp. 57-77, 1990.

[36] I. Rock, The Logic of Perception. MIT Press, 1983.
[37] E.H. Ruspini, “A New Approach to Clustering,” Information and

Control, vol. 15, pp. 22-32, 1969.
[38] S. Santini and R. Jain, “Similarity Measures,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 21, no. 9, pp. 871-883, Sept.
1999.

[39] S. Sarkar and K.L. Boyer, “Integration, Inference, and Manage-
ment of Spatial Information Using Bayesian Networks: Perceptual
Organization,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 15, no. 3, pp. 256-274, Mar. 1993.

[40] S. Sarkar and K.L. Boyer, “Perceptual Organization in Computer
Vision: A Review and a Proposal for a Classificatory Structure,”
IEEE Trans. Systems, Man, and Cybernetics, vol. 23, no. 2, pp. 382-
399, 1993.

[41] E. Saund, “Identifying Salient Circular Arcs on Curves,” CVGIP:
Image Understanding, vol. 58, no. 3, pp. 327-337, 1993.

[42] I. Sethi and A.K. Jain, Artificail Neural Networks and Pattern
Recognition: Old an New Connections, I. Sethi and A.K. Jain, eds.,
Elsevier Science, 1991.

[43] R. Weiss and M. Boldt, “Geometric Grouping Applied to Straight
Lines,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition,
pp. 489-495, 1986.

[44] A. Witkin and J. Tenenbaum, “On the Role of Structure in Vision,”
Human and Machine Vision, J. Beck, B. Hope, and A. Rozenfeld,
eds. pp. 481-543, Academic Press, 1983.

[45] A.P. Witkin and J.M. Tenenbaum, “What Is Perceptual Organiza-
tion For?” Proc. Eighth Int’l Joint Conf. Artificial Intelligence,
pp. 1023-1026, 1983.

[46] W.E. Wright, “A Formalization of Cluster Analysis,” Pattern
Recognition, vol. 5, pp. 273-282, 1973.

[47] Z. Wu and R. Leahy, “An Optimal Graph Theoretical Approach to
Data Clustering: Theory and Its Application to Image Segmenta-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15,
no. 11, pp. 1101-1113, 1993.

[48] J. Xiao, Z. Yang, and S. Ma, “Some General Grouping Principles:
Line Perception From Points as an Example,” Proc. 14th Int’l Conf.
Pattern Recognition, A.K. Jain, S. Venkatesh, and B.C. Lovell, eds.,
pp. 1825-1828, 1998.

[49] C.T. Zahn, “Graph-Theoretical Methods for Detecting and
Describing Gestalt Clusters,” IEEE Trans. Computers, vol. 20,
pp. 68-86, 1971.

[50] S.W. Zucker, “The Diversity of Perceptual Grouping,” Vision,
Brain, and Cooperative Computation, M.A. Arbib and A.R. Hanson,
eds. pp. 231-262, Cambridge, Mass.: MIT Press, 1987.

Erik A. Engbers received the PhD degree in
computer science from the University of Am-
sterdam in 2002. His research interests are in
grouping algorithms for vision applications,
quality measures for grouping results, and game
theory. Currently, he is working on integrating
computer vision techniques and theory in Go
playing programs.

Arnold W.M. Smeulders graduated from Tech-
nical University of Delft in physics in 1977 (MSc)
and in 1982 from Leyden University in medicine
(PhD) on the topic of visual pattern analysis. He
heads the ISIS research group of 25 people
concentrating on theory, practice and implemen-
tation of multimedia information analysis includ-
ing image databases, video analysis, and
computer vision. His current research is in
computer vision of the real world including

learning to recognize visual entities rather than explicit modeling. He
is also interested in the enigmas dividing picture (streams) and
language. He was elected fellow of International Association of Pattern
Recognition in 2000 and an honorary member of the Dutch branch of the
IAPR in 2002. He is a board member of the International Association of
Pattern Recognition. He is a member of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

ENGBERS AND SMEULDERS: DESIGN CONSIDERATIONS FOR GENERIC GROUPING IN VISION 457

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on December 23, 2009 at 08:57 from IEEE Xplore.  Restrictions apply. 


