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Abstract

First order random graphs as introduced by Wong are a promising tool for structure-based classi$cation. Their complexity,
however, hampers their practical application. We describe an extension to $rst order random graphs which uses continuous
Gaussian distributions to model the densities of all random elements in a random graph. These First Order Gaussian Graphs
(FOGGs) are shown to have several nice properties which allow for fast and e#cient clustering and classi$cation. Speci$cally,
we show how the entropy of a FOGG may be computed directly from the Gaussian parameters of its random elements. This
allows for fast and memoryless computation of the objective function used in the clustering procedure used for learning a
graphical model of a class. We give a comparative evaluation between FOGGs and several traditional statistical classi$ers.
On our example problem, selected from the area of document analysis, our $rst order Gaussian graph classi$er signi$cantly
outperforms statistical, feature-based classi$ers. The FOGG classi$er achieves a classi$cation accuracy of approximately 98%,
while the best statistical classi$ers only manage approximately 91%.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many pattern classi$cation problems the need for
representing the structure of patterns within a class arises.
Applications for which this is particularly true include char-
acter recognition [1,2], occluded face recognition [3], and
document type classi$cation [4–6]. These problems are not
easily modeled using feature-based statistical classi$ers.
This is due to the fact that each pattern must be repre-
sented by a single, $xed-length feature vector, which fails
to capture its inherent structure. In fact, most local struc-
ture information is lost and patterns with the same global
features, but di=erent structure, cannot be distinguished.

Structural pattern recognition attempts to address this
problem by describing patterns using grammars, knowledge
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bases, graphs, or other structural models [7,8]. Such tech-
niques typically use rigid models of structure within pattern
instances to model each class.

A technique that uses structural models, while allowing
statistical variation within the structure of a model, was in-
troduced by Wong [1]. He proposes a random graph model
in which vertices and edges are associated with discrete ran-
dom variables taking values over the attribute domain of the
graph. The use of discrete densities complicates the learn-
ing and classi$cation processes for random graphs. Graph
matching is a common tool in structural pattern recognition
[9], but any matching procedure for random graphs must
take statistical variability into account. Entropy, or the incre-
ment in entropy caused by combining two random graphs,
is typically used as a distance metric. When computing the
entropy of a random graph based on discrete densities, it
is necessary to remember all pattern graphs used to train
it. Also, some problems do not lend themselves to discrete
modeling, such as when there is a limited amount of training
samples, or it is desirable to learn a model from a minimal
amount of training data.
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In order to alleviate some of the limitations imposed by the
use of discrete densities we have developed an extension to
Wong’s $rst order random graphs that uses continuous Gaus-
sian distributions to model the variability in random graphs.
We call these First Order Gaussian Graphs (FOGGs). The
adoption of a parametric model for the densities of each
random graph element is shown to greatly improve the ef-
$ciency of entropy-based distance calculations. To test the
e=ectiveness of FOGGs as a classi$cation tool we have
applied them to a problem from the document analysis $eld,
where structure is the key factor in making distinctions be-
tween document classes [10].

The rest of the paper is organized as follows. The next
section introduces $rst order Gaussian graphs. Section 3
describes the clustering procedure used to learn a graphical
model from a set of training samples. Section 4 details a
series of experiments probing the e=ectiveness of FOGGs
as a classi$er for a problem from document image analysis.
Finally, a discussion of our results and indications of future
directions are given in Section 5.

2. De�nitions and basic concepts

In this section we introduce FOGGs. First we describe
how individual pattern instances are represented, and then
how FOGGs can be used to model a set of such instances.

2.1. First order Gaussian graphs

A structural pattern in the recognition task consists of a set
of primitive components and their structural relations. Pat-
terns are modeled using attributed relational graphs (ARGs).
An ARG is de$ned as follows:

De�nition 1. An attributed relational graph, G, over
L = (Lv; Le) is a 4-tuple (VG; EG; mv; me), where V is a set
of vertices, E ⊆ V ×V is a set of edges, mv :V → Lv is the
vertex interpretation function, and me :E → Le is the edge
interpretation function.

In the above de$nition Lv and Le are known respectively as
the vertex attribute domain and edge attribute domain. An
ARG de$ned over suitable attribute domains can be used to
describe the observed attributes of primitive components of a
complex object, as well as attributed structural relationships
between these primitives.

To represent a class of patterns we use a random graph.
A random graph is essentially identical to an ARG, except
that the vertex and edge interpretation functions do not take
determined values, but vary randomly over the vertex and
edge attribute domain according to some estimated density.

De�nition 2. A random attributed relational graph, R,
over L = (Lv; Le) is a 4-tuple (VR; ER; 
v; 
e), where V is a
set of vertices, E ⊆ V × V is a set of edges, 
v :V → �

is the vertex interpretation function, and 
e :E → � is the
edge interpretation function. �={
i | i∈{1; : : : ; |VR|}} and
� = {�ij | i; j∈{1; : : : ; |VR|}} are sets of random variables
taking values in Lv and Le respectively.

An ARG obtained from a random graph by instantiating
all vertices and edges is called an outcome graph. The joint
probability distribution of all random elements induces a
probability measure over the space of all outcome graphs.
Estimation of this joint probability density, however, be-
comes quickly unpleasant for even moderately sized graphs,
and we introduce the following simplifying assumptions:

(1) The random vertices 
i are mutually independent.
(2) A random edge �ij is independent of all random vertices

other than its endpoints vi and vj .
(3) Given values for each random vertex, the random edges

�ij are mutually independent.

Throughout the rest of the paper we will use R to repre-
sent an arbitrary random graph, and G to represent an arbi-
trary ARG. To compute the probability that G is generated
by R requires us to establish a common vertex labeling be-
tween the vertices of the two graphs. For the moment we as-
sume that there is an arbitrary isomorphism, �, from R into
G serving to “orient” the random graph to the ARG whose
probability of outcome we wish to compute. This isomor-
phism establishes a common labeling between the nodes in
G and R, and consequently between the edges of the two
graphs as well. Later we will address how to determine this
isomorphism separately for training and classi$cation.

Up to this point, our development is identical to that of
Wong [1]. In the original presentation, and in subsequent
work based on random graph classi$cation [2,3], discrete
probability distributions were used to model all random ver-
tices and edges. For many classi$cation problems, however,
it may be di#cult or unclear how to discretize continuous
features. Outliers may also unpredictably skew the range
of the resulting discrete distributions if the feature space is
not carefully discretized. Furthermore, if the feature space is
sparsely sampled for training the resulting discrete distribu-
tions may be highly unstable without resorting to histogram
smoothing to blur the chosen bin boundaries. In such cases
it is preferable to use a continuous, parametric model for
learning the required densities. For large feature spaces, the
adoption of a parametric model may yield considerable per-
formance gains as well.

To address this need we will use continuous random vari-
ables to model the random elements in our random graph
model. We assume that each 
i ∼ N (\
i ;�
i ), and that
the joint density of each random edge and its endpoints is
Gaussian as well. We call random graphs satisfying these
conditions, in addition to the three $rst order conditions men-
tioned earlier, First Order Gaussian Graphs, or FOGGs.

Given an ARG G = (VG; EG; mv; me) and a FOGG R =
(VR; ER; 
v; 
e), the task is now to compute the probability
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thatG is an outcome graph of R. To simplify our notation we
let pvi denote the probability density function of 
v(vi) and
peij the density of 
e(eij). Furthermore, let vi = mv(�(vi))
and eij=me(�(eij)) denote the observed attributes for vertex
vi and edge eij respectively under isomorphism �.

We de$ne the probability that R generates G in terms of
a vertex factor

VR(G; �) =
∏

vi∈VR

pvi (vi) (1)

and an edge factor

ER(G; �) =
∏

eij∈ER

peij (eij|vi ; vj): (2)

The probability that G is an outcome graph of R is then
given by

PR(G; �) = VR(G; �)× ER(G; �): (3)

Applying Bayes rule, we rewrite Eq. (2) as

ER(G; �) =
∏

eij∈ER

peij (vi ; vj|eij)peij (eij)
pvi (vi)pvj (vj)

; (4)

where we may write the denominator as the product of the
two vertex probabilities due to the $rst order independence
assumption. Letting �R(vi) denote the degree of vertex vi,
we can rewrite Eq. (4) as

ER(G; �) =

∏
eij∈ER

peij (vi ; vj|eij)peij (eij)∏
vi∈VR

pvi (vi)�R(vi)
: (5)

After substituting Eqs. (1) and (5) into (3) and noting that
the vertex probabilities in Eq. (1) cancel with the denomi-
nator of Eq. (5) we have

PR(G; �) =

∏
eij∈ER

peij (vi ; vj|eij)peij (eij)∏
vi∈VR

pvi (vi)�R(vi)−1
(6)

and by substituting the joint density for the conditional
above:

PR(G; �) =

∏
eij∈ER

1=(peij (eij))peij (vi ; vj ; eij)peij (eij)∏
vi∈VR

pvi (vi)�R(vi)−1

=

∏
eij∈ER

peij (vi ; vj ; eij)∏
vi∈VR

pvi (vi)�R(vi)−1
: (7)

Recalling that we assume each random vertex is Gaussian
we write

pvi (vi) =
1

(2
)d1=2|�vi |1=2
e−1=2(vi−\vi )�−1

vi
(vi−\vi )t : (8)

Letting pwij denote the (Gaussian) joint probability of edge
eij and its endpoints vi and vj , and denoting the concatenation

of feature vectors vi, vj , and eij with xij we have

pwij (xij) =
1

(2
)d2=2|�wij |1=2

e
−1=2(xij−\wij )�

−1
wij

(xij−\wij )
t

: (9)

Substituting these into (6) and taking the log we arrive at

ln PR(G; �) =
∑
vi∈VR

(�(vi)− 1)
[
1
2
(vi − \vi )�−1

vi (vi − \vi )t

+ ln(2
)d1=2|�
vi
|1=2
]

−
∑

eij∈ER

[
1
2
(xij − \wij )�

−1
wij (xij − \wij )

t

+ ln(2
)d2=2|�vi |1=2
]
: (10)

This probability and corresponding log-likelihood are cen-
tral to the use of FOGGs as classi$ers. Note that we can
promote an ARG to a FOGG by replacing each determin-
istic vertex and edge with a Gaussian centered on its mea-
sured attribute. The covariance matrix for each new random
element is selected to satisfy some minimum criterion along
the diagonal and can be determined heuristically based on
the given problem. Fig. 1 conceptually illustrates the proba-
bility metric induced by Eq. (10) over the space of outcome
graphs.

2.2. Technicalities

Before continuing with our development of the clustering
and classi$cation procedures for FOGGs, it is necessary to
$rst address a few details that will simplify the following
development. These details center primarily around the need
to compare and combine two FOGGs during the clustering
process.

2.2.1. Null extension
During clustering and classi$cation the need will

eventually arise to compare, and possibly combine, two
FOGGs of di=erent order. Let R1 = (V 1; E1; 
1

v ; 

1
e) and

R2 = (V 2; E2; 
2
v ; 


2
e) be two FOGGs with n = |V 1|

and m = |V 2|. Furthermore, let V 1 = {v1; : : : ; vn} and
V 2 = {u1; : : : ; um}. Assume without loss of generality that
m¡n.

We will use the same technique as Wong [1] to extend
R2 by adding null vertices to V 2. Thus we rede$ne V 2 as

V 2 = V 2 ∪ {um+1; : : : ; un};
where the um+1; : : : ; un are null vertices, i.e. they have no
attribute values, but rather act as place holders so that R1

and R2 are of the same order.
Once R2 has been extended in this fashion, both R1 and

R2 may be extended to complete graphs through a similar
addition of null edges to each graph until edges exist between
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Fig. 1. The probability metric induced by PR(G; �) over the space of outcome graphs. The probability depends not only on structural
variations, but deviation from the expected value of each corresponding random variable 
i and �i . This is illustrated spatially, however the
vertex and edge attribute domains need not have a spatial interpretation.

all vertices. By adding these null graph elements we can
now treat R1 and R2 as being structurally isomorphic, so that
we are guaranteed that an isomorphism exists and we must
only search for an optimal one.

Our probabilistic model must also be enriched to account
for such structural modi$cations to random graphs. First,
note that our densities pvi (x) modeling the features of each
random vertex are actually conditional probabilities:

pvi (x) = pvi (x|�(vi) is non-null):
After all, we can only update the feature distribution of
a vertex, or indeed even evaluate it, when we have new
information about an actual non-null outcome. To account
for the possibility of a vertex or edge not being instantiated,
we will additionally keep track of a priori probabilities of a
random element generating a non-null outcome:

pR(vi) = probability vi ∈VR is non-null;

pR(eij) = probability eij ∈ER is non-null: (11)

Thus, whenever we wish to evaluate the probability of a
random element � taking the value x we will use p(�)p�(x),
which is intuitively the probability that � exists and takes
the value x. Whenever a probability for a random vertex or
edge must be evaluated on a null value, we will fall back
to the prior probability of that element. This is done by
optimistically assuming that the null element results from a
detection failure, and that the missing feature is the expected
value of the random element it is being matched with.

Through the use of such extensions, we can compare
graphs with di=erent sized vertex sets. For the remainder of
the paper we will assume that such an extension has been

performed, and that any two graphs under consideration are
of the same order.

2.2.2. Entropy of FOGGs
In order to measure the quality of a model for a class

we require some quantitative measure that characterizes the
outcome variability of a FOGG. As variability is statisti-
cally modeled, Shannon’s entropy is well suited for this
purpose [11].

We can write the entropy in a FOGG as the sum of the
contributions of the vertices and edges:

H (R) = {H (VR) + H (ER)}: (12)

Because of the $rst order assumptions of independence, we
can write the vertex and edge entropies as the sum of the
entropy in each component. The entropy in each random
vertex and edge may be written as the sum of the entropy
contributed by the feature and prior entropy:

H (vi) = H (
v(vi)) + H (p(vi));

H (eij) = H (
e(eij)) + H (p(eij)): (13)

Eq. (12) then becomes

H (R) =
∑
vi∈VR

H (vi) +
∑

eij∈ER

H (eij): (14)

For clustering we are primarily interested in the increment
of entropy caused by conjoining two graphs. We denote by
R1⊕2(�) the graph resulting from conjoining the Gaussian
random graphs R1 and R2 according to the isomorphism �
between R1 and R2. Assuming without loss of generality that
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H (R1)6H (R2), we can write the increment in entropy as

OH (R1; R2; �) = H (R1⊕2(�))− H (R1)

and then substitute the sum of the component entropies:

OH (R1; R2; �) =
∑

vi∈VR1⊕2(�)

H (O
v(vi))−
∑

vi∈VR1

H (
1
v(vi))

+
∑

eij∈ER1⊕2(�)

H (O
e(eij))

−
∑

eij∈ER1

H (
1
e(eij)): (15)

We use O
�(x) to denote the density of the random variable
� updated to rePect the observations of the corresponding
random variable as dictated by the isomorphism �.

From Eqs. (13) and (14) we can express the increment
in entropy as the sum of the increment in the feature den-
sity and the prior distribution. Since we are using Gaussian
distributions to model each random element, the entropy of
a Gaussian:

H (X ) = ln(2
e)N=2|�X |1=2 (16)

for Gaussian random variable X will prove useful as this
will allow us to compute component entropies directly from
the parameters of the corresponding densities. The technique
for estimating the parameters of the combined distribution
is described next.

2.2.3. Parameter estimation
Given two Gaussian random variables X and Y , and sam-

ples {x1; : : : ; xn}, {y1; : : : ; yn} from each distribution, we es-
timate the Gaussian parameters in the normal fashion

x =
1
n

n∑
i=1

xi ; �X =
1

n− 1

n∑
i=1

xixt
i − nxxt ;

y =
1
m

m∑
i=1

yi ; �Y =
1

m− 1

m∑
i=1

yiyt
i − myyt : (17)

Assuming that the samples from X and Y are generated by a
single Gaussian Z , we can compute the Gaussian parameters
for Z directly from the estimates of X and Y :

z =
1

n+ m
(nx + my);

�Z =
1

m+ n− 1

(
n∑

i=1

xixt
i +

m∑
i=1

yiyt
i − (m+ n)zzt

)

= (n− 1)�X + nxxt + (m− 1)�Y

+myyt − (m+ n)zzt : (18)

Eq. (18) gives us a fast method for computing the entropy
arising from combining two random vertices. It also allows
us to compute the parameters of the new distribution without
having to remember the samples that were used to estimate
the original parameters. When there are too few observations

to robustly estimate the covariance matrices, �X is chosen
to rePect the inherent uncertainty in a single (or very few)
observation(s). This also allows us to promote an ARG to
a FOGG by setting each mean to the observed feature, and
setting the covariance matrices to this minimal �.

2.3. Discussion

At this point it is useful to take a step back from the math-
ematical technicalities presented in the previous subsection
and examine the practical importance they represent. By re-
placing the original discrete random variables with contin-
uous ones, we have eliminated the need to discretize our
feature space. This, in conjunction with the adoption of a
Gaussian model for each random variable, additionally min-
imizes the complexity of updating the estimated distribution
and entropy of a random element.

Consider the process of conjoining two discrete distribu-
tions. In the worst case, every bin in the resulting distribu-
tion must be updated. The complexity of this procedure will
be proportional to the size of the quantized feature space.
Computing the increase in entropy caused by joining two
discrete distributions will have the same complexity. Using
Gaussian distributions, however, Eqs. (17) and (18) allow
us to compute the parameters of a new distribution, and Eq.
(16) to compute the increment in entropy directly from the
parameters of the new distribution. This reduces the com-
plexity to d2, where d is the dimensionality of the feature
space.

3. Clustering and classi�cation

In this section we describe the technique for synthesiz-
ing a FOGG to represent a set of input pattern ARGs. The
approach uses hierarchical clustering of the input ARGs,
which yields a clustering minimizing the entropy of the re-
sulting FOGG(s). Entropy is useful in that it characterizes
the intrinsic variability in the distribution of a FOGG over
the space of possible outcome graphs.

3.1. Hierarchical clustering of FOGGs

The concepts of increment in entropy introduced in Sec-
tion 2.2.2 can now be used to devise a clustering procedure
for FOGGs. The $rst step is to derive a distance measure
between FOGGs that is based on the minimum increment in
entropy. Using Eq. (15), the minimum increment of entropy
for the merging of two FOGGs can be written:

OH (R1; R2) = min
�

{OH (R1; R2; �)}; (19)

where the minimization is taken over all possible isomor-
phisms � between R1 and R2.

At last we have arrived at the need to establish an actual
isomorphism between two graphs. Unfortunately this prob-
lem is NP-hard, and we must settle for an approximation to
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the optimal isomorphism. We choose to optimize only over
the vertex entropy H (VR; �). This approximation is accept-
able for problems where much of the structural information
is present in the vertex observations. Edge probabilities are
still used in the classi$cation phase, so gross structural de-
viations will not result in misclassi$cations.

There are two ways in which the entropy of a vertex may
be changed by conjoining it with a vertex in another FOGG.
The feature density of the $rst vertex may be modi$ed to
accommodate the observations of the random vertex it is
matched with according to �. Or, when � maps vi to a null
vertex, the entropy may be changed due to a decrease in its
prior probability pvi of it being instantiated in an outcome
graph.

Using Eq. (16) we may write the increment in vertex
entropy due to the feature distribution as

OHf(
v(vi); R2; �) = ln(2
e)N=2(|�O
(vi)|1=2

− |�
1(vi)|1=2): (20)

Eq. (18) gives us a method for rapidly computing the co-
variance matrix for each random element in the new graph
R1⊕2, and thus the increment in entropy.

For the increment in prior entropy, we $rst note that the
prior probabilities pvi for each vertex will be of the form
ni=Ni, where ni is the number of times vertex vi was instan-
tiated as a non-null vertex, and Ni is the total number of
training ARGs combined thus far in a particular cluster. We
can then write the change in prior entropy as

OHp(p(vi); R2; �)

=− [p′(vi) lnp′
vi + (1− p′(vi)) ln(1− p′(vi))]

− [p(vi) lnpvi + (1− p(vi)) ln(1− p(vi))]; (21)

where

p′(vi) =




ni+1
Ni+1 if �(vi) is non-null;

ni
Ni+1 if �(vi) is null:

(22)

We solve the optimization problem given by Eq. (19) using
the maximum weight matching in a bipartite graph. Given
two FOGGs R1 and R2 of order n, construct the complete
bipartite graph Kn;n= QKn× QKn. A matching in Kn;n is a subset
of edges such that the degree of each node in the resulting
graph is exactly one. The maximum weight matching is the
matching that maximizes the sum of the edge weights in the
matching. By weighting each edge in the bipartite graphs
with (see Fig. 2):

wij =−OH (
v(vi); R2; �)

with OH (
v(vi); R2; �) as given in Eq. (20) and solving for
the maximum weight matching, we solve for the isomor-
phism that minimizes the increment in vertex entropy. There
exist e#cient, polynomial time algorithms for solving the
maximum weight matching problem in bipartite graphs [12].
The complexity of the problem O(n3) using the Hungarian

Fig. 2. Computation of the sub-optimal isomorphism � for two
$rst order Gaussian graphs. Each edge is weighted with wij , whose
value is the increment in entropy caused by conjoining the estimated
distributions of random vertices v1i and v2j . The same technique
will be used for determining an isomorphism for classi$cation as
well, but with wij representing the probability that random vertex
v1i takes the value v2j .

method, where n is the number of vertices in the bipartite
graph.

Now we may construct a hierarchical clustering algorithm
for FOGGs. For a set of input ARGs, we desire, on the one
hand, a minimal set of FOGGs that may be used to model the
input ARGs. On the other hand, we also wish to minimize
the resulting entropy of each FOGG by preventing unnatural
combinations of FOGGs in the merging process.

The algorithm should return a set of FOGGs, Ri =
{Ri

1; : : : R
i
mi}, that represent the original set of attributed

graphs. We will call this set of random graphs the graphical
model of the class of ARGs. An entropy threshold h con-
trols the amount of variability allowed in a single FOGG.
This threshold parameter controls the tradeo= between the
number of FOGGs used to represent a class and the amount
of variability, i.e. entropy, allowed in any single FOGG in
the graphical model. Algorithm 1 provides pseudo-code for
the hierarchical synthesis procedure. In the supervised case,
the algorithm may be run on each set of samples from the
pre-speci$ed classes. For unsupervised clustering, the en-
tire unlabeled set of samples may be clustered. The entropy
threshold h may be used to control the number of FOGGs
used to represent the class by limiting the maximum entropy
allowed in any single FOGG. Fig. 3 graphically illustrates
the learning process for FOGGs.

Algorithm 1. Synthesize FOGG(s) from a set of ARGs

Input: G= {G1; : : : ; Gn}, a set of ARGs, and h, a
maximum entropy threshold.
Output: R = {R1; : : : ; Rm}, a set of FOGGs representing G.

Initialize R = G, promoting each ARG to a FOGG
(Section 2.2).
Compute H = [hij], the n× n distance matrix, with
hij =OH (Ri; Rj).
Let hkl =min hij .
while (|R|¿ 1 and H (Ri) + hkl ¡h) do
Form the new FOGG Rk⊕l, add it to R, remove
Rk and Rl from R.
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Fig. 3. The learning process for $rst order Gaussian graphs. A set of sample graphs are synthesized into a set one or more random
graphs which represent the class. The hierarchical clustering process described in Algorithm 1 chooses combinations and isomorphisms that
minimize the increment in vertex entropy arising from combining two random graphs.

Update distance matrix H to rePect the new and
deleted FOGGs.
Re-compute hkl, the minimum entropy increment
pair.

end while

Note that this clustering procedure requires, for the cre-
ation of the initial distance matrix alone, the computation
of n(n − 1) isomorphisms, where n is the number of in-
put ARGs. Subsequent updates of the distance matrix will
demand a total of O(n2) additional isomorphism computa-
tions in the worst case. Each isomorphism additionally re-
quires the computation of m2 entropy increments as given in
Eq. (20), where m represents the number of vertices in the
graphs being compared. Using the techniques derived in Sec-
tion 2.2 we can exploit the use of Gaussian distributions to
greatly improve the e#ciency of these computations. This,
combined with the use of the bipartite matching approach as
an approximation in $nding the optimal isomorphism will
enhance the overall e#ciency of the clustering procedure.

3.2. Classi:cation using FOGGs

Given a set of graphical models for a number of classes,
we construct a maximum likelihood estimator as follows.
LetRi={Ri

1; : : : ; R
i
mi} be the graphical model for class i. Our

classi$er, presented with an unknown ARG G, should return
a class label w, from a set of known classes {w1; : : : ; wn}.

The maximum likelihood classi$er returns:

wi; where i = argmax
i

{
max

16j6mi
max

�
PRi

j
(G; �)

}
with PRi

j
(G) as de$ned in Eq. (3). This procedure is de-

scribed in more detail in Algorithm 2.

Algorithm 2. Classi$cation with $rst order Gaussian
graphs

Input: G, an unclassi$ed ARG,
R = {R1; : : : ;Rn}, graphical models representing pattern
classes !1; : : : ; !n,
with each Ri = {Ri

1; : : : ; R
i
mi} a set of FOGGs.

Output: !i for some i∈{1; : : : ; n}
for all Ri ∈R do

Set Pi = 0.
for all Ri

j ∈Ri do
Compute orientation � of Ri

j w.r.t. G that
maximizes PRi

j
(G; �) (Fig. 2).

Pi =max{PRi
j
; Pi}

end for
end for
k = argmaxi(Pi)
return !k

In establishing the isomorphism � for classi$cation, it is
useful to use the log-likelihood function given in Eq. (10).
We can then use the same bipartite graphmatching technique
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Table 1
Sample document images from four of the document genres in the test sample

introduced in Section 3 and shown in Fig. 2. Instead of
weighting each edge with the increment in entropy, however,
we weight each edge with the log of the vertex factor from
Eq. (8):

wij =− 1
2 (vj − \vi )�−1

vi (vj − \vi )t − ln(2
)d1=2|�vi |1=2:
Determining the maximum weight matching then yields the
isomorphism that maximizes the likelihood of the vertex
densities.

The entropy threshold h required by the training procedure
described in Algorithm 1 has quite an inPuence over the
resulting classi$er. Setting h=0would not allow any FOGGs
to be combined, resulting in a nearest neighbor classi$er.
For h → ∞ all classes will be modeled with a single FOGG,
with arbitrarily high entropy allowed in an individual FOGG.
It is important to select an entropy threshold that balances
the tradeo= between the complexity of the resulting classi$er
and the entropy inherent within each class.

4. Experiments

We have applied the technique of FOGGs to a problem
from the document analysis $eld. In many document analy-
sis systems it is desirable to identify the type, or genre, of a
document before high-level analysis occurs. In the absence
of any textual content, it is essential to classify documents
based on visual appearance alone. This section describes a
series of experiments we performed to compare the e=ec-
tiveness of FOGGs with traditional feature-based classi$ers.

4.1. Test data

A total of 857 PDF documents were collected from sev-
eral digital libraries. The sample contains documents from
$ve di=erent journals, which determine the classes in our
classi$cation problem. Table 1 gives some example images
from four of the genres.

All documents in the sample were converted to images
and processed with the ScanSoft TextBridge 2 OCR system,
which produces structured output in the XDOC format. Only
the layout information from the $rst page of a document is
used since it contains most of the genre-speci$c information.
The importance of classi$cation based on the structure of
documents is immediately apparent after a visual inspection
of the test collection. Many of the document genres have
similar, if not identical, global typographical features such
as font sizes, font weight, and amount of text.

4.2. Classi:ers

To compare the e=ectiveness of genre classi$cation by
$rst order random graphs with traditional techniques, a va-
riety of statistical classi$ers were evaluated along with the
Gaussian graph classi$er. The next two subsection detail the
speci$c classi$ers studied.

4.2.1. First order Gaussian graph classi:er
In this section we develop our technique for representing

document layout structure using attributed graphs, which
naturally leads to the use of FOGGs as a classi$er of doc-
ument genre. For representing document images, we de$ne
the vertex attribute domain to be the vector space of text
zone features. A document Di is described by a set of text
zone feature vectors as follows:

Di = {zi1; : : : ; zini};
where

zij = (xij ; y
i
j ; w

i
j ; h

i
j ; s

i
j ; t

i
j): (23)

In the above de$nition of a text zone feature vector,

• xij , y
i
j , w

i
j and hi

j denote the center, width and height of
the textzone.

2 TextBridge is a registered trademark of ScanSoft, inc.
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Fig. 4. Classi$cation accuracy over a range of training sizes for various entropy thresholds. The x-axis represents the number of training
samples selected randomly per class. The y-axis represents the estimated classi$cation accuracy for the corresponding number of training
samples.

• sij and tij denote the average pointsize and number of
textlines in the zone.

Each vertex in the ARG corresponds to a text zone in the
segmented document image. Edges in our ARG representa-
tion of document images are not attributed. The presence of
an edge between two nodes is used to indicate the Voronoi
neighbor relation [13]. We use the Voronoi neighbor relation
to simplify our structural representation of document lay-
out. We are interested in modeling the relationship between
neighboring textzones only, and use the Voronoi neigh-
bor relation to identify the important structural relationships
within a document.

Given training samples from a document genre, we
construct a graphical model according to Algorithm 1 to
represent the genre. The entropy threshold is particularly im-
portant for this application. The threshold must be selected
to allow variability in document layout arising from mi-
nor typographical variations and noisy segmentation, while
also allowing for gross structural variations due to common
typesetting techniques. For example, one genre may contain
both one and two column articles. The threshold should be
selected such that the FOGGs representing these distinct
layout classes are not combined while clustering.

4.2.2. Statistical classi:ers
Four feature-based statistical classi$ers were evaluated

in comparison with the FOGG classi$er. The classi$ers
considered are the 1-NN, linear-oblique decision tree [14],
quadratic discriminant, and linear discriminant classi$ers.
Global page-level features were extracted from the $rst page
of each document. Each document is represented by a 23
element feature vector as
np; nf; niz ; ntz ; niz ; ntl︸ ︷︷ ︸

global document features

;

proportional zone features︷ ︸︸ ︷
pta; pi; pte; pin; pit ; pr; pb;

h0; h1; : : : ; h9︸ ︷︷ ︸
text histogram


 :

The features are categorized as follows:

• Global document features, which represent global at-
tributes of the document. The global features we use are
the number of pages, fonts, image zones, text zones, and
textlines in the document.

• Proportional zone features, that indicate the proportion of
document page area classi$ed by the layout segmentation
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Fig. 5. Learning curves for all classi$ers. The curves indicate the estimated classi$cation accuracy of each classi$er over a range of training
sample sizes. Classi$cation accuracy was estimated by averaging over 50 trials for each sample size. The x-axis represents the number of
training samples selected randomly per class.
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Fig. 6. Computation time for clustering and classi$cation: (a) gives average time required for clustering for each class as a function of the
number of training samples per class. A plot of n2=100 is also shown for reference, (b) shows the average time required to classify an
unknown ARG as a function of the number of FOGGs representing each class.
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Table 2
Average confusion matrix for a linear discriminant classi$er. Classi$cation accuracy is estimated over 50 random trials

IJNM JACM STDV TNET TOPO

IJNM 0.8524 0.0464 0.0250 0.0750 0.0012
JACM 0 0.9718 0 0 0.0282
STDV 0.0540 0.0016 0.9127 0.0310 0.0008
TNET 0.0199 0.0013 0.0584 0.9195 0.0009
TOPO 0.0724 0.0444 0.0047 0 0.8786

Fig. 7. Example document images from di=erent structural categories within the IJNM class.

process as being a speci$c type of image or text zone.
The feature vector includes the proportion of image area
classi$ed as table, image, text, inverse printing, italic, text,
roman text, and bold text.

• Text histogram, which is a normalized histogram of
pointsizes occurring in the document.
This feature space representation is similar to that used

by Shin et al. [5], for their experiments in document genre
classi$cation. We do not include any texture features from
the document image, however. Note that the features for the
vertices in the FOGG classi$er discussed in the previous
subsection is essentially a subset of these features, with a
limited set of features collected locally for each text zone
rather than for the entire page.

4.3. Experimental results

The $rst set of experiments we performed was designed
to determine the appropriate entropy threshold h for our
classi$cation problem and test set. Fig. 4 gives the learn-
ing curves for the FOGG classi$er over a range of training
sample sizes and for several entropy thresholds.

The learning curves indicate that our classi$er performs
robustly for all but the highest thresholds. This implies that
there is intrinsic structural variability in most classes, which

cannot be represented by a single FOGG. This is particu-
larly true for small training samples. Note, however, that a
relatively high threshold (h = 0:05) may be used with no
performance loss when sample size is more than 25. This
indicates that a smaller and more e#cient graphical model
may be used to represent each genre if the training sample
is large enough.

The second set of experiments provides a comparative
evaluation of our classi$er with the statistical classi$ers de-
scribed above. Fig. 5 gives the learning curves of all classi-
$ers evaluated. The curves were obtained by averaging the
classi$cation results of 50 trials where n samples were ran-
domly selected from each genre for training, and the rest
used for testing. These results indicate that the FOGG clas-
si$er consistently outperforms all of the other classi$ers.

4.4. Computational e<ciency

Fig. 6 indicates the computation time required for clus-
tering and classi$cation using FOGGs. The times were es-
timated by averaging over 50 experimental trials. Fig. 6a
shows the time to learn a graphical model of each class as a
function of the number of training samples. A plot of n2=100
is also shown for reference. The n2 bound on clustering time
indicates that the time required for clustering is dominated
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Fig. 8. Example clusters learned from 30 randomly selected samples
from the IJNM class of documents. FOGGs 1 and 2 represent the
most commonly occurring two-column documents, while FOGG
6 represents the three-column layout style. A very low entropy
threshold was used to halt the clustering procedure at this point for
illustrative purposes. The unclustered ARGs have not been allowed
to merge with any others at this point because they represent
segmentation failures and their inclusion in another FOGG would
drastically increase the overall entropy.

by the computation of the initial n× n distance matrix, with
an additional constant factor representing the intrinsic com-
plexity of each class. The constant factor of 1=100 shown
in the $gure was determined experimentally, but is clearly
class speci$c and depends on the variance in size of the
training ARGs being clustered.

Fig. 6b shows the time required to classify an unknown
ARG as a function of the number of FOGGs used to
represent each class. As expected, there is a linear depen-
dence between the number of FOGGs in a class and the
time required for classi$cation. Again, the constant factor
a=ecting the slope of each performance curve is determined
by the complexity of each class.

4.5. Analysis

The experimental results presented above indicate that
the FOGG classi$cation technique outperforms statistical

classi$ers on our example application. In understanding
the reasons for this it is useful to analyze some speci$c
examples from these experiments. Table 2 gives an average
confusion table for a linear discriminant classi$er on our
dataset.

Note that the class IJNM contains the highest percentage
of confusions. The primary reason for this is that the class
contains many structural sub-classes within it. Fig. 7 pro-
vides examples from the three primary structural sub-classes
within the IJNM class. As shown in the $gure, the class con-
tains document images with one, two, and three columns of
text. The variance in structural layout composition makes
it di#cult for statistical classi$ers to learn decision bound-
aries distinguishing this class from others. Similar structural
sub-classes can also be seen in the TOPO class, which also
accounts for the large number of confusions.

The main advantage of the FOGG approach over purely
statistical classi$ers is in its ability to learn this type of
sub-class structure. Fig. 8 gives an example snapshot of the
clustering procedure on the IJNM class for a random training
sample, with the clustering halted at a low entropy threshold
of 0.00005. The $gure shows how the distinct structural
sub-classes are represented by individual FOGGs. It is this
independent modeling of sub-classes that enables the FOGG
classi$er to outperform statistical methods.

5. Conclusions and future work

We have described an extension to discrete $rst order ran-
dom graphs which uses continuous Gaussian distributions
for modeling the densities of random elements in graphs.
The technique is particularly appealing for its simplicity in
learning and representation. This simplicity is rePected in
the ability to learn the distributions of random graph ele-
ments without having to worry about the discretization of
the underlying feature space, and the ability to do so using
relatively few training samples. The learned distributions
are also e=ectively “memoryless” in that we do not have to
remember the observed samples in order to update density
estimates or compute their entropy.

Since we can quickly compute the increment in entropy
caused by joining two distributions directly from the Gaus-
sian parameters, the hierarchical clustering algorithm used
to learn a class model is very e#cient. The use of an ap-
proximate matching strategy for selecting an isomorphism
to use when comparing random graphs also enhances the
e#ciency of the technique while preserving discriminatory
power.

The experimental results in the previous section establish
the e=ectiveness of $rst order Gaussian graphs as a classi$-
cation technique on real-world problems. The need for mod-
eling structure is evident, as the statistical classi$ers fail to
capture the sub-structural composition of some classes in
our experiments. While it might be possible to enrich the
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feature space in such a way that allows statistical classi$ers
to handle such structural information, the FOGG classi$er is
already capable of modeling these structural relationships.
Moreover, the FOGG classi$er uses a small subset of the
feature space used by the statistical classi$ers in our exper-
iments. The important di=erence is that the FOGG classi-
$er models the structural relationship between local feature
measurements.

The FOGG classi$er requires the selection of an appropri-
ate entropy threshold for training. This threshold is problem
and data dependent, and was more or less arbitrarily chosen
for our experiments. The results shown in Fig. 4 indicate
that an adaptive entropy thresholding strategy might be ef-
fective for balancing the intrinsic entropy in a class with the
desire for minimizing the complexity of its graphical model.
It is also possible that the use of a measure of cross-entropy,
such as the Kullback–Leibler divergence [15], might permit
the learning of models which simultaneously minimize the
intra-class entropy, while maximizing inter-class entropy.
More research is needed on the subject of entropy thresh-
olding in random graph clustering.

While the use of entropy as a clustering criterion has
been shown to be e=ective, the precise relationship between
the entropy of a distribution and its statistical properties is
not well understood. It is possible that alternate distance
measures, such as divergence or JM-distance [16], could be
e=ectively applied to the clustering problem. Such distance
metrics have precise statistical interpretations, and might
allow for the establishment of theoretical bounds on the
expected error of learned graphical models.

6. Summary

First order random graphs as introduced by Wong are a
promising tool for structure–based classi$cation. Their com-
plexity, however, hampers their practical application. This
complexity arises from the use of discrete distributions, and
the subsequent need to estimate and update the entropy esti-
mates of such distributions. We describe an extension to $rst
order random graphs which uses continuous Gaussian dis-
tributions to model the densities of all random elements in a
random graph. These First Order Gaussian Graphs (FOGGs)
are shown to have several nice properties which allow for
fast and e#cient clustering and classi$cation. Speci$cally,
we show how the entropy of a FOGG may be computed
directly from the Gaussian parameters of its random ele-
ments. This allows for fast and memoryless computation of
the objective function used in the clustering procedure used
for learning a graphical model of a class. Moreover, the use
of continuous, parametric distributions eliminates the need
to discretize continuous samples. We give a comparative
evaluation between FOGGs and several traditional statisti-
cal classi$ers. On our example problem, selected from the
area of document analysis, our $rst order Gaussian graph
classi$er signi$cantly outperforms statistical, feature-based

classi$ers. The FOGG classi$er achieves a classi$cation ac-
curacy of approximately 98%, while the best statistical clas-
si$ers only manage approximately 91%. We also show that
FOGGs are capable of representing structural sub-classes
within the original classes. This feature allows FOGGs to
capture structural variation that statistical classi$ers are in-
capable of modeling.
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