758 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO.7, JULY 2002

P-3PC: A Point-to-Point Communication
Model for Automatic and Optimal
Decomposition of Regular
Domain Problems

F.J. Seinstra and D. Koelma

Abstract—One of the most fundamental problems automatic parallelization tools are confronted with is to find an optimal domain
decomposition for a given application. For regular domain problems (such as simple matrix manipulations), this task may seem trivial.
However, communication costs in message passing programs often significantly depend on the memory layout of data blocks to be
transmitted. As a consequence, straightforward domain decompositions may be nonoptimal. In this paper, we introduce a new point-to-
point communication model (called P-3PC, or the “Parameterized model based on the Three Paths of Communication”) that is
specifically designed to overcome this problem. In comparison with related models (e.g., LogGP) P-3PC is similar in complexity, but
more accurate in many situations. Although the model is aimed at MPI’s standard point-to-point operations, it is applicable to similar
message passing definitions as well. The effectiveness of the model is tested in a framework for automatic parallelization of low level
image processing applications. Experiments are performed on two Beowulf-type systems, each having a different interconnection
network, and a different MPI implementation. Results show that, where other models frequently fail, P-3PC correctly predicts the

communication costs related to any type of domain decomposition.

Index Terms—MPI, point-to-point communication, performance optimization, performance modeling, automatic domain

decomposition.

1 INTRODUCTION

ESSAGE passing is used widely in software designed

for execution on distributed memory MIMD-style
multicomputers. Whereas, many software libraries exist
that provide efficient message passing implementations [9],
[15], MPI seems to have become the de facto standard [17].
Of the large number of functions defined in MPI 1.1, the two
blocking point-to-point communication operations (i.e.,
MPI_Send() and MPI_Recv()) are most important and
most often used.

To implement optimal parallel applications, it is essential
to have a thorough understanding of the performance
characteristics of these basic communication operations. A
good way to make such characteristics explicit is to design a
performance model that captures typical point-to-point
communication behavior. Because a fundamental MPI
design criterion was portability across a wide range of
computers, such model must be applicable to the same range
of machines as well. Essentially, this means that a
performance model must incorporate a similar level of
abstraction as introduced in the MPI standard.

In the literature, several point-to-point communication
models have been described that match the MPI

o The authors are with the Intelligent Sensory Information Systems, Faculty
of Science, University of Amsterdam, Kruislaan 403, 1098 S] Amsterdam,
The Netherlands. E-mail: {fjseins, koelmaj@science.uva.nl.

Manuscript received 1 Apr. 2001; revised 21 Aug. 2001; accepted 5 Mar.
2002.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 114020.

abstractions up to a certain degree (e.g., the Postal Model
[4], [6], LogP [7], and LogGP [1]). Although successful in
many situations, these models do not incorporate all
capabilities of MPI's send and receive operations. Most
importantly, the effect of memory layout on communication
costs is ignored completely. This is unfortunate, as the
recent work of Prieto et al. [20], [21] indicates that a change
in the spatial locality of messages exchanged using MPI can
have a severe impact on the overall performance of an
application. In this work, it is stated that “the bandwidth
reduction due to nonunit-stride memory access could be more
significant than the reduction due to contention in the network.”
Independently, we have come to similar conclusions [22].
Given these results, it is surprising that no model seems to
exist that can account for such costs.

In our research, we rely heavily on performance models
to perform the task of automatic parallelization of a
particular class of regular domain problems, i.e., that of
low level image processing [24]. As the limitations of
existing communication models proved to be too severe, we
have designed a new model (called P-3PC) that closely
matches the behavior of MPI’s standard point-to-point
operations. P-3PC bears a strong resemblance to the
aforementioned models, but due to its additional features
it is capable of providing more accurate estimations in
many essential situations. First, P-3PC acknowledges the
difference in the time either the sender or the receiver is
occupied in a message transfer, and the complete end-to-
end delivery time. Second, P-3PC makes a distinction
between communicating data stored either contiguously

1045-9219/02/$17.00 © 2002 |EEE

SEINSTRA AND KOELMA: P-3PC: A POINT-TO-POINT COMMUNICATION MODEL FOR AUTOMATIC AND OPTIMAL DECOMPOSITION OF... 759

1. Parallel Image

Processing Library 6. Program Specification

| | :

5. Scheduler

—— T
4. Database

2. Performance Models

' ¢

3. Benchmarking Tool

Fig. 1. Simplified architecture overview.

or noncontiguously in memory. Finally, P-3PC does not
assume a strictly linear relationship between the size of a
message being transmitted and the communication costs.
Although P-3PC is targeted toward the specific needs in our
research, it is general enough to be applicable in other
research areas as well.

This paper is organized as follows: Section 2 discusses
the requirements for a model to be applied in our research.
The new P-3PC model is introduced in Section 3. Section 4
shows how P-3PC is applied in the evaluation of commu-
nication algorithms executed in a realistic image processing
application. In Section 5, predictions are compared with
results obtained on two Beowulf-type systems, each having
a different interconnection network, and a different MPI
implementation. Concluding remarks are given in Section 6.

2 MoDEL-BASED DoMAIN DECOMPOSITION

The main objective in our research is to build a software
architecture that allows image processing researchers to
implement parallel applications in a transparent (i.e.,
sequential) manner [24]. All parallelization and optimiza-
tion issues are to be taken care of by the architecture itself,
hidden from the user. The architecture consists of six logical
components (see Fig. 1). The first component is an extensive
library of data parallel low level image processing opera-
tions. Each library operation is annotated with a perfor-
mance model for runtime cost estimation. Essentially, one
class of models deals with the costs of sequential computa-
tion only, and another class of models—which is the main
topic of this paper—deals with the costs of interprocess
communication. The third architectural component per-
forms a set of benchmarking operations to obtain appro-
priate values for the model parameters for a given parallel
machine. The benchmarking results are stored in a database
of performance values, which, in turn, are used by a
scheduling component to obtain an optimal schedule for a
given image processing application. Essentially, the sche-
duler uses the models and the measured performance
values to make optimizations regarding:

1. the logical processor grid to map data structures
onto (i.e., the actual domain decomposition),

2. the routing pattern for the distribution of data,

the number of processing units, and

4. the type of data distribution (e.g., broadcast instead
of scatter).

hd

70

end-o-end latency (nencontiguous at both ends) ——
sender latency (noncontiguous at beth ends)
60 [end-to-end latency (contiguous at both ends)
sender latency (coniguous at both ends)

Time (ms)

4 . . .
0 200 400 600 800 1000
Message size {bytes x 1,000}

(a)

30

measured ——
estimated: y = x * 14.25¢-03 -

o5 | estimated:y =X * 28:508-03 -

20

Time {ms)
=

T

. .
0 200 400 600 800 1000
Message size (bytes x 1,000}

Fig. 2. Values obtained on DAS [3] using MPI-LFC [5] (as in Section 5).

The scheduling results are routed back to the image
processing library to allow each operation to adapt
(optimize) its behavior at runtime.

2.1 Model Requirements

In our library, all communication algorithms are imple-
mented using the standard blocking MPI send and receive
operations. Because low level image processing operations
tend to have a bulk synchronous parallel behavior [16], [26],
usage of any of MPI's additional communication modes
will hardly result in a performance improvement, and may
even be counterproductive (see also [21]). Also, as MPI's
standard collective communication operations do not
provide all functionality required in our library’ we have
implemented multiple scatter, gather, and broadcast opera-
tions in this manner as well.

In such data exchange operations, the combined latency
of sending or receiving multiple messages in sequence may
be overlapping with the end-to-end latency of each single
message. As shown in Fig. 2a, such latency differences can
be significant. This overlap can be made explicit if a
performance model incorporates the following properties:

1. The ability to predict the time a processing unit is
busy executing either the MPI_Send() or the
MPI_Recv () operation. As the two communicating
nodes may handle the transfer of data differently
(see [5], and also requirement 3 in this section), the
communication costs at both ends should be
modeled independently.

1. The main problem with many of the operations defined in MPI 1.1 is
that a possibility to define fluctuating strides in multiple dimensions is
lacking. Although this problem is lifted in the MPI-2 definition [18] (with
the introduction of the MPI_Gatherw() and MPI_Scatterw() opera-
tions), as of yet MPI-2 implementations are not generally available.

760 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO.7, JULY 2002

2. Theability to predict the complete end-to-end latency.
Again, the end-to-end latency should be modeled
independently from the overhead at either node.

Depending on the type of domain decomposition, it may

be necessary to communicate data stored noncontiguously
in memory. Using MPI derived datatypes, it is possible to
send such data in a single communication step. As was
shown by Prieto et al. [20], [21], knowledge of a message’s
memory layout is important, as nonunit-stride memory
access may have a severe impact on performance due to
caching. In addition, the MPI send and receive operations
may even handle the transmission of noncontiguous data
differently from contiguous blocks. The MPI 1.1 definition
[17] states that it is up to the implementation to decide whether
data should first be packed in a contiguous buffer before being
transmitted, or whether it can be collected directly from where it
resides”. As shown in Fig. 2a as well, the latency for
communicating either contiguous or noncontiguous data
may be significantly different indeed. Such differences can
be accounted for if a performance model incorporates:

3. The ability to reflect the difference in sending data
stored contiguously in memory and noncontiguous
data. Again, the memory layout at the two nodes
should be modeled independently.

As a consequence from the fact that the send and receive
operations are essentially “black boxes,” it is not safe to
assume communication costs to be linearly dependent on
message size. As shown in Fig. 2b, nonlinearities—caused
by caching, buffering, packetization, changes in commu-
nication policy, ect—may be quite significant. As a final
requirement, a model should therefore incorporate:

4. The ability to provide accurate predictions over a
large range of message sizes. For the full range of
message sizes a strictly linear increase in commu-
nication costs should not be assumed.

In certain application areas, it may be important to
incorporate network contention as well. For our purposes,
however, this is not required. In Section 6, we will shortly
come back to this issue.

2.2 Relevant Models in the Literature

In the literature, a multitude of message passing models
exist. One end of the spectrum consists of models in which
communication costs are accounted for by abstracting the
interconnection network into a few parameters (e.g., LogP
[7], LogGP [1], the Postal Model [4], [6], and the standard
linear communication model as described in [8], [13], [19]).
Models with a similar level of abstraction are sometimes
integrated in a model for computation in order to evaluate
architecture and application scalability (e.g., the Latency
Metric [28]). At the other end of the spectrum are highly
parameterized models that are targeted toward a limited set
of applications or architectures only (e.g., C* [12]).

As indicated in Section 1, in our research we must restrict
ourselves to models that have an abstraction level that is at
least as high as that of MPI. Therefore, models such as LogP,
the Postal Model, or the Latency Metric would be most
suitable. However, none of these models fully complies

with the specific needs in our research. This is because in all
such models:

1. communication overhead is assumed to be identical
at both ends, and/or

2. the impact of memory layout on communication
costs is not incorporated, and/or

3. performance growth is assumed to be strictly linear
(for a complete overview, see [23]).

3 THE P-3PC MobDEL

As no model exists that meets all requirements of
Section 2.1, we introduce a new communication model.
The model, which we refer to as P-3PC, or the Parameterized
model based on the Three Paths of Communication, will be
discussed in two parts. First, we introduce a simplified
version of the complete model (called 3PC), that complies
only with the first two requirements of Section 2.1.
Subsequently, the 3PC model is extended to incorporate
the remaining two requirements.

3.1 Partl: 3PC

Given the first two requirements of Section 2.1, we
introduce the notion of the three paths of communication,
and assume that the cost of message transmission can be
captured in three independent values:

o Tyq the cost related to the communication path at
the sender (i.e., the time required for executing the
MPI_Send () operation).

o T the cost related to the communication path at
the receiver (i.e., the time required for executing the
MPI_Recv () operation).

e Ty, the cost related to the full communication path
(i.e., the time from the moment the sender initiates a
transmission until the receiver has safely stored all
data and is ready to continue).

For each path, we assume that the communication costs can
be represented by two parameters. The transmission of any
message is expected to involve a constant amount of time,
identical to the cost of sending a 0-sized message. This cost
is captured by the mutually independent parameters ¢, ¢,
and t.s (for the sender, receiver, and full path respectively).
At the sender side this value may represent what is often
referred to as the message startup time, but we prefer not to
use this terminology to avoid unnecessary overspecifica-
tion. Also, for each transmitted byte, we assume an
“additional time,” which is captured by the mutually
independent parameters t,s, t,,, and t,;, respectively. The
three communication times (also, see Fig. 3a) involved in
the transmission of a message containing n bytes are then

given by:

Tsend(n) = tcs +n- tu87

Trecv(n) = tm‘ +n- tm"

Tfull(n) =tep+n -ty
Thus, 3PC simply constitutes a combination of three
traditional linear models as also applied in [8], [13], [19].

Note that the manner in which accurate values for the
model parameters can be obtained is independent of the

SEINSTRA AND KOELMA: P-3PC: A POINT-TO-POINT COMMUNICATION MODEL FOR AUTOMATIC AND OPTIMAL DECOMPOSITION OF... 761

;\|—| RECEIVER

0 (n-1)G L : o

(b)

Fig. 3. Communication according to (a) 3PC and (b) LogGP.

actual MPI implementation or the type of communication
hardware used. A detailed description of our method of
measurement is given in Section 5.

3.2 3PC versus LogGP

The popular LogGP model (see Fig. 3b) constitutes a superset
of all conventional models of Section 2.2. In other words, it is
possible to express models such as the Postal Model, or LogP,
in terms of the LogGP parameters. For this reason, it is
relevant toindicate that 3PC preserves the important qualities
of LogGP under the following assumptions:

tes = ter = 9,
top =20+ 1L,
tas = tar = tay = G.

Because LogGP’s o parameter tends to be equal to g (even
for relatively small messages, see [14]), 3PC is even identical
to LogGP under the given assumptions. Compared to
LogGP we feel that 3PC is easier to understand, as for each
communication path similar parameters are defined. Given
the fact that the costs for the three paths of communication
are made independent (which is not the case in any of the
other models), we conclude that 3PC is expected to be at
least as powerful as the LogGP model. Note, however, that
we do not claim that 3PC is necessarily a better alternative
to LogGP for detailed study of communication behavior. It
is introduced only for it to serve as a basis for the P-3PC
model.

3.3 Partll: P-3PC

To incorporate the last two requirements of Section 2.1, the
3PC model is “parameterized” with a cost indicator M,
representing the memory layout at the two communicating
nodes. Also, it is assumed that each “additional time”
parameter is a function of n, instead of a constant value for
all message sizes. In this extended model (called P-3PC), the
three communication times involved in a message transfer
are given by:

T@ﬁnd,]\] (’I'L) = tcs + tas,]\f(n)v
T'recv,]\ff(n) =te + tar,AM(n%
Trurp(n) = tef + tapa(n),

where M € {cc, cn, nc, nn}. These layout descriptors
indicate the four memory layout combinations at the sender
and the receiver combined. For example, cn means that a
contiguous block of data is transmitted by the sender, which
is accepted as a noncontiguous block by the receiver.

As no a priori assumptions can be made about the shape
of the “additional time” functions, a set of benchmarking
operations must be performed for several different message
sizes. One possibility is to arbitrarily choose a set of relevant
message sizes, but an adaptive benchmarking technique
could be used as well to actively search for nonlinearities in
the communication costs. In any case, based on the
benchmarking results (and in accordance with the fourth
requirement of Section 2.1), each “additional time” function
is assumed to be piecewise linear between each pair of
measured communication cost values.

3.3.1 Semiempirical Modeling

It is important to note that the semiempirical modeling
approach described above is similar to that of Xu et al.
[27], in that essential but implicit cost factors are incorpo-
rated by performing actual experiments on a small set of
sample data. To be more specific, in [27] Xu et al., follow a
two-level hierarchical modeling approach to predict the
performance of full applications. At the higher level, a
thread graph is constructed that characterizes an applica-
tion’s runtime behavior. More importantly, at the lower-
level, the elapsed times of individual code segments and
events (e.g., explicit communication steps) are estimated
using a combination of analytical and experimental meth-
ods. Essentially, each code segment is treated as a loop
construct with a certain number of iterations. By measuring
such loop construct with a small number of iterations (and
given a set of application parameters), the performance of
the same loop with an arbitrary number of iterations can be
estimated. Explicit communication events are measured
directly—in such a way that a distinction can be made
between different types of communication events as present
in operations such as barrier synchronization and locking.
Based on these measurements, the performance of full
applications can be estimated by adding the (interpolated)
costs related to each code segment and communication
event.

This strategy is quite similar to the approach followed in
our research. Our higher level model consists of a so-called
application state transition graph (dissimilar to the aforemen-
tioned thread graph), which is traversed to find parallel
code with (expected) minimal execution time. At the lower-
level we use benchmarking to obtain the performance
characteristics of a set of high-level instructions that is
defined in combination with an abstract machine for
parallel image processing (the APIPM, see [24]). Most
instructions that constitute image processing tasks resemble
the loop constructs as used by Xu et al. (albeit for a more
restricted application domain). The instructions related to
communication resemble the aforementioned communica-
tion events. Due to the fact that our models are specifically

762 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO.7, JULY 2002

512x512 image, 1xP logical GPU mapping

point-to-point version
26 ¢ standard MPI version -+ b

Time (ms)

—oomeITIIT

\
24 32 40 48 56 64
P (= nr. of CPUs)

0 B‘ 1‘6
Fig. 4. Comparison of MPI_Scatterv() and OFT scatter implemented using
MPI_Send() and MPI_Recv() calls (measured on DAS using MPI-LFC).

intended for MIMD-style multicomputers (as opposed to
the models defined in [27]), and also because we focus our
modeling on regular communication patterns only, we treat
each possible communication event (i.e., a single point-to-
point communication step) as identical. Consequently and
in contrast to Xu et al., one of the cost factors that we do not
incorporate (implicitly) is contention—an overhead which
still may be significant for collective communication
operations that are never used in our work. For a more
detailed description of the benchmarking techniques that
we apply for point-to-point communication operations, we
refer to Section 5.

4 APPLICATION OF THE P-3PC MoDEL

This section shows how the P-3PC model is applied to
evaluate the communication costs involved in one of the most
essential applications in image processing, i.e., evaluation of
the differential structure of images. Examples are edge
detection (based on first and second order derivatives) and
invariants (based on ith order derivatives). Applications of
this kind are good examples of regular domain problems as
referred to in the work of Prieto et al. [20], [21].

As is well-known, a derivative is best computed using
convolution with a separable Gaussian kernel (i.e., n
1D kernels, each applied in one of the image’s n dimensions).
The size of the convolution kernel depends on the smoothing
scale o and the order of the derivative. In this example, (and in
the measurements discussed in the next section) we restrict
ourselves to firstand second order derivatives (five in total) in
the x and y direction of 2D image data, and o € {1, 3,5}. Here,
for 0 =1, the sizes of the 1D kernels for the ith order
derivative (with ¢ € {0, 1,2}) in any direction are 7, 9, and
9 pixels, respectively. For o = 3 the kernel sizes are 15,23, and
25 pixels, and for o =5 these are 23, 37, and 39 pixels,
respectively. For readers unfamiliar with image processing, it
is sufficient to know that these kernel sizes partially
determine the amount of data exchanged among neighbors
in a logical CPU grid—as is explained in more detail below.

When running such an application in parallel, three
different communication algorithms are to be executed.
First, the input image is to be spread throughout the parallel
system in a scatter operation. Second, to calculate partial
derivative images, pixels in the border regions of each partial
input image are to be exchanged among neighboring nodes
in the logical CPU grid. Finally, after having performed all

N
- A)/)\\\\
(4 - /Iz\\) \(}1\\
/ _/)\ \/[/ -
f"\/ e YauN
© ORC)

(b)

Fig. 5. Example communication trees for data scattering. (a) One-level
flat tree and (b) spanning binomial tree.

relevant (application dependent) sequential operations,
resulting image data is to be gathered at a single node, for
on-screen display or storage.

As indicated in Section 2.1, in addition to the collective
operations available in MPI, we have implemented multiple
scatter and gather operations ourselves, using standard
blocking point-to-point operations. As shown in Fig. 4, our
implementations—which, in contrast to the MPI versions,
allow definition of fluctuating strides in multiple dimen-
sions—can often compete with available MPI implementa-
tions. This indicates that many MPI distributions are not
optimized for a particular machine, a problem also
discussed in [21], [25]. Of course, in cases where the MPI
implementations are faster (and match our specific needs),
we apply these versions and use the P-3PC estimations for
our fastest implementation as an upper bound. In the
following, the modeling of such operations is restricted to
two different implementations, one based on a one-level flat
tree (OFT), and the other based on a spanning binomial tree
(SBT) (see Fig. 5).

In case of the OFT scatter operation, the root node sends
out data to all other nodes in sequence. Ifa 1 x P logical CPU
grid is assumed (where P is the number of nodes in the tree),
for each node the data sent out by the root is stored
contiguously in memory; for all other grids all data blocks
sent out are noncontiguous. In addition, for all possible grids
all data is accepted as a contiguous block at each receiving
node. As each leaf node in the OFT has to wait for all lower-
numbered nodes to be serviced by the root before it will
receive data itself, the communication costs are highest at
either the root node or at the leaf node that is last serviced
(depending on the related benchmarking results). A worst-
case P-3PC estimation of this operation is shown in the
timeOFTscatter () operation in Fig. 6. An estimation of
therelated OFT gather operation is simply obtained by setting
nc to cn, and changing all occurrences of Ti.pg t0 Tecy-

P-3PC estimation of the spanning binomial tree scatter
operation is slightly more complicated. In such an operation,
the root node sends out data to logP other nodes. Also, each
nonleaf node forwards all received data it is not responsible
for. If X is the number of nodes defined in the x-direction of
the logical CPU grid, the number of messages involving
contiguous data blocks sent out by the rootis logP — logX; the
remaining messages sent out are all noncontiguous. In
general, the communication costs will be highest at either
the root node, or the node that is logP full communication
paths away from the root. The timeSBTscatter () opera-
tion in Fig. 6 shows the worst-case P-3PC estimation of this

SEINSTRA AND KOELMA: P-3PC: A POINT-TO-POINT COMMUNICATION MODEL FOR AUTOMATIC AND OPTIMAL DECOMPOSITION OF... 763

// X = nr. of nodes in z-direction of logical CPU grid

double timeOF Tscatter() {
M+ (X .eq. 1) ? cc: nc
timel < (P — 1) - Tsend,m (imw - imh/P)
time2 < (P — 2) - Tseng,n (tmaw - imh/P) + Tryn, v (imw - imh [P)
return max(timel, time?2)
}
double timeSBTscatter() {
timel + 0.0
time2 <+ 0.0
for (i=1; i.leq.logP - logX; i++)
timel < timel + Tyepng, cc(imw - imh/(2 - 4))
time2 < time2 + Ty cc(dmw - imh/(2 - 1))
for (i=logP-logX+1; i.leq.logP; i++)
timel < timel + Tyepg,ne(imw - imh/(2 - 1))
time2 < time2 + Ty ne(imw - imh /(2 - 1))
}
return max(timel, time2)
}
double timeBorderExchange() {
return (2 - Tpyig pn (bw - imh) + 2 - Tpygp co((fmw + 2 - bw) - bh))

// P = total nr. of nodes
// imw = image width
// imh = image height

// bw = border width
// bh = border height

Fig. 6. P-3PC estimation of OFT & SBT scatter and border exchange.

operation. An estimation of the related SBT gather operation
is obtained as before.

A well-known method to implement the Gaussian
convolution operations is to extend the domain of the
image structure with a scratch border that, on each side of the
image in dimension #, has a size of about half the 1D kernel
applied in that dimension. When executed in parallel,
neighboring nodes in the logical CPU grid need to exchange
pixel values to correctly fill the borders of all extended
partial images. In our library, the exchange of border data is
executed in four communication steps (see Fig. 7). First,
each processing unit sends a subset of its local partial image
to the neighboring unit on its right side in the logical CPU
grid (if such neighbor exists). When a unit has accepted this
block of data (i.e., after a full communication path period), it
subsequently transmits a subset of its local partial image to
its neighboring node on the left. As shown in Fig. 7, these
steps in the border exchange algorithm always involve
noncontiguous blocks of data. Similarly, in the next two
steps, border data is exchanged in upward and downward
direction, in both cases involving contiguous blocks only.
Thus, the timeBorderExchange () operation in Fig. 6
gives a worst-case P-3PC model for this routine.

5 MEASUREMENTS AND VALIDATION

To validate the P-3PC model, we have performed a
representative set of benchmarking operations. For each

(8]

Fig. 7. Border exchange (right-left and down-up).

communication path and memory layout combination
measurements were performed using four different message
sizes, arbitrarily set at 1K, 50K, 100K, and 500K (all 4-byte
values). In addition, benchmarking was performed for 0-
sized messages as well. Note that these values are not chosen
to best match the communication characteristics for one
particular parallel computer. These sizes are representative
for messages transmitted in many image processing applica-
tions and are set identically for all machines. Also, note that,
the sizes applied by the benchmarking tool of Fig. 1 can be
user-defined as well; the sizes given here are used by default.

Clearly, there is a tradeoff between the number of
benchmarking operations to be performed and the obtain-
able estimation accuracy. Still, the predefined set of only
four message sizes is generally sufficient to obtain highly
accurate performance estimations for the much larger range
of message sizes encountered in a real application. In this
respect, it is important to note that, in the measurements
presented below, actual message sizes range from 192 bytes
up to 8 MB.

To give full insight in the benchmarking process, Fig. 8
gives a simplified overview in pseudocode. To measure
communication for noncontiguous data, a fixed number of
100 memory blocks (a conservative estimate of the number
of blocks possibly used in a real application, and again a
default setting) is combined in a single derived datatype
definition. For contiguous data, only one block is used in
such definition. Measurements for the send and receive
paths are obtained by letting one node continuously send
data to another node. Full communication path measure-
ments are obtained by subsequently sending out a message
of size “bufsize,” and receiving a 0-sized message. As
these operations are similar to those applied by many others
in the literature we leave all further interpretation to the
reader.

5.1 Distributed ASCI Supercomputer (DAS)

The first set of measurements was performed on the 128-node
homogeneous DAS-cluster [3]located at the Vrije Universiteit

764 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO.7, JULY 2002

if (sendLayout .eq. NONCONTIGUOUS)

else

for (i=1:nrRounds) {
if (myCPU() .eq. 0) {
if (pathType .eq. SEND) {
timel + MPI_Wtime();

time2 +— MPI_Wtime();

timel < MPI_-Wtime();
time2 < MPI_Wtime();

} else if (pathType .eq. FULL) {
timel < MPI_Wtime();
time2 < MPI_Wtime();

}
} else if (myCPU() .eq. 1)

return (total/nrRounds);

}

double timePath(int pathType, int bufsize, int sendLayout, int recvLayout, int nrRounds) {
MPI_Type_vector(100, bufsize/100, 2*bufsize/100, MPI_FLOAT, &sendType);

MPI_Type_vector(1l, bufsize, bufsize, MPI.FLOAT, &sendType);

MPI_Send(buf, 1, sendType, 1, ...);

total < total + time2-timel,;
} else if (pathType .eq. RECV) {

MPI_Recv(buf, 1, recvType, 1, ...);
total + total 4+ time2-timel;

MPI_Send(buf, 1, sendType, 1, ...
MPI_Recv(buf, 0, recvType, 1, ...);

total + total + ((bufsize .eq. 0) 7 (time2-timel)/2 :

// matching send and recv calls at node 1 are not shown

// definition of ’sendType’

// definition of 'recvType’ is similar

// measure send path

// measure receive path

// measure full path

);

(time2-timel)-2-t. ¢);

Fig. 8. Pseudocode for benchmarking all path-layout combinations. The constant time values ¢, t.., and t.; are obtained if bufsize equals zero.

in Amsterdam. All measurements were performed using
MPI-LEC [5], an implementation which is partially optimized
for the DAS. The 200 Mhz Pentium Pronodes (with 128 MByte
of EDO-RAM) are connected by a 1.2 Gbit/sec full-duplex

Myrinet network, and run RedHat Linux 6.2.
The performance values obtained for this machine are

presented in Table 1. The values indicate that transmitting
noncontiguous data indeed has a significant impact on
performance. In this case, the additional overhead is due to
the fact that MPI-LFC uses a contiguous send-buffer for
noncontiguous data. To preserve the elegance of the
benchmarking code, we have measured multiple “constant
time” values for each communication path (m = 0). These
additional values do not affect the estimations presented in
this section in any way.

TABLE 1
Benchmarking Results Obtained on DAS (in us)

m=0 | m=1K m=50K | m=100K m=500K
Tyend,ce(m) 598 | 61.72 | 4355.45 | 10246.77 | 58596.98
Teend,cn(m) 8.04 | 60.74 | 4363.35 | 9853.95 | 57141.29
Toond.ne(m) 7.93 | 248.88 | 5722.00 | 15142.74 | 90478.81
Tacndnn(m) | 829 | 133.88 | 5582.23 | 14137.45 | 87870.27
Trecv,cc(m) | 14.86 | 58.08 | 5754.93 | 12037.78 | 60062.70
Trecv,en(m) | 14.89 | 127.30 | 9527.59 | 19467.08 | 98016.47
Trecv,ne(m) | 14.43 | 46.56 | 5517.28 | 12364.45 | 61446.05
Treconn(m) | 14.82 | 125.05 | 9340.63 | 19685.86 | 98275.11
Truil,ecc(m) | 23.61 | 131.39 | 4506.32 | 11007.89 | 61277.46
Trugten(m) | 2554 | 214.10 | 8665.39 | 19195.53 | 97219.23
Truune(m) | 27.05 | 206.94 | 6696.30 | 18015.91 | 95546.60
Trutnn{m) | 24.47 | 287.89 | 11746.29 | 25652.54 | 132399.20

In the following, we show the results as obtained for
the example application of Section 4. For each of the
communication algorithms, we have been careful to keep
the intrusiveness of the measurements to a minimum. All
P-3PC estimations are obtained as in Fig. 6. Also, in all
situations, we compare our results with those obtained
with LogGP. To avoid using a particularly bad value for
the “G” parameter, we assume a piece-wise linear
dependence on message size in the LogGP model as
well. In addition, to be able to use the measured values of
Table 1, we have reduced the P-3PC model into LogGP in
the following manner: g =t., L =1, and G =t,5.. As
indicated in Section 3.2, this reduction makes P-3PC
identical to LogGP. Still, to overcome any problem the
reader may have with this interpretation of the model, in
the remainder we will refer to it as LogGP*.

In Fig. 9a results are presented for a 512? floating point
image, which is mapped onto a 1x16 logical CPU grid. The
graph shows results for the two available implementations
of the scatter and gather routines, as well as for the border
exchange (for all o € {1, 3,5}). For such data decomposition,
all messages involve contiguous blocks only. This is even
the case for the border exchange, as no node has a neighbor
to its left or right. The graph shows that P-3PC and LogGP*
are both quite accurate for this type of data decomposition.
As was to be expected, the estimations obtained from the
two models are comparable, although P-3PC seems to do
marginally better. Apparently, introduction of the three
communication paths indeed produces a slightly more
accurate model. Here, the differences are marginal, how-
ever, and provide no justification for P-3PC’s added
complexity.

SEINSTRA AND KOELMA: P-3PC: A POINT-TO-POINT COMMUNICATION MODEL FOR AUTOMATIC AND OPTIMAL DECOMPOSITION OF... 765

@
3

W Measured
EP3PC
OLogGP*

o
3

=
s

B Measured
BP-3PC
OLogGP*

Time (ms)
p o ow
3 8

>

o i T

SCAT_OFT SCAT_SBT GATH_OFT GATH_SBT EXCH(1) EXCH(3) EXCH(5)

=

40

Time (ms)
2 N e @
s 2 B 8 B

SCAT_OFT SCAT_SBT GATH_OFT GATH_SBT EXCH(1) EXCH(3) EXCH(5)

o
S

Time {ms)
2
g

o
3

o

(@) (b)
60 60
EMeasured EMeasured
50 WP3PC 50 WpP3PC [
CLogGP* ELogGP*
40 - 40
@ @
£ £
o 30 a 30 1
E E
F =
20 20
10 10 —
o 0
SCAT_OFT SCAT_SBT GATH_OFT GATH_SBT EXCH(1) EXCH(3) EXCH () SCAT_OFT SCAT_SBT GATH_OFT GATH_SBT EXCH(1) EXCH(3) EXCH(5)
(©
250 1000
EMeasured B Measured
200 EP3PC 200 HP-3PC
Z LogGP* MLogGP*

SCAT_OFT SCAT_SBT GATH_OFT GATH_SBT EXCH(1}) EXCH(3) EXCH(5)
(e)

16

12
v
=
° & @ Measured
ig mP-3PC

O LogGP*
4
0

OFT (1x16) OFT (16x1) SBT (1x16) SBT (16x1)
Tree Type & Logical CPU grid

(9)

Time (ms)
M & Ed
] & 2
o H g g
—_
(o}
=

SCAT_OFT SCAT_SBT GATH_OFT GATH_SBT EXCH(1) EXCH(3) EXCH(5)
16
12
w
£
o 8 @ Measured
E HP-3PC
O LogGP*
4
0

OFT (1x16) OFT {16x1) SBT (1x16) SBT {16x1)
Tree Type & Logical CPU Grid

(h)

Fig. 9. Measurements (DAS) versus P-3PC & LogGP* estimations (1). (a) 5122 image on 1 x 16 CPU grid. (b) 5122 image on 16 x 1 CPU grid. (c) 5122
image on 8 x 1 CPU grid. (d) 5122 image on 32 x 1 CPU grid. () 1,024% image on 16 x 1 CPU grid. (f) 2, 048% image on 16 x 1 CPU grid. (g) Scatter (2562

image). (h) Gather (256> image).

As can be seen in Fig. 9b, for a 16 x 1 data decomposi-
tion, P-3PC outperforms LogGP* by far. This is because for
such decomposition all messages involve noncontiguous
data at the sender side. Figs. 9c and 9d show similar results
for 8 x1 and 32 x 1 decompositions. A comparison for
larger image data structures is shown in Figs. 9e and 9f.
Although most P-3PC estimations are highly accurate,
deviations from actual measurements are usually due to
small inaccuracies in the performance values obtained by
benchmarking. Sometimes, algorithm performance is also
slightly degraded by contention in the network—an effect
not accounted for by P-3PC. However, the impact of
memory layout on performance is always more significant

than that of contention. Note that this matches the results of
[20], [21].

Figs. 9g and 9h show that the P-3PC model indeed allows
the scheduler of Section 2 to make correct optimization
decisions. According to the LogGP* model, scattering or
gathering a 256 floating point image is about as expensive
for each communication tree and data decomposition. In
practice this is not true, however, and P-3PC gives much
more accurate estimations at all times.

Fig. 10 gives results for the communication algorithms
applied to all possible decompositions involving 16 nodes.
Again, P-3PC outperforms LogGP* in almost all situations.
It is interesting to see in Figs. 10a, 10b, 10c, and 10d that,

766 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO.7, JULY 2002

60 60
50 50
40 _ 40
- @
g E
2 30 =1 o 30 EMeasured
£ mp-3PC E mp-3pC
20 MLogGP* 20 OLogGP*
10 L 10
" [
1x16 28 axd e 16x1 1x16 2x8 44 8x2 16x1
Logical CPU grid Logical CPU grid
(a) (b)
50 50
50 50
0 0
))
E E
2 30 O Measured = 30 O Measured
E P-3PC E mP-3PC
20 OLogGP* 20 OLogGP*
10 10
[[
1x16 2x8 axa 8x2 16x1 1x16 2x8 ax4 8x2 16x1
Logical CPU grid Logical CPU grid
(©) (d)
25 25
2 20
@15 w15
E E
" OMeasured " T Measured
E 10 WP-3PC E 10 WP-3PC
OLogGP* OLogGP*
5 5
0 MJ:.—L—[I:J]—L 0
1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 2] 16x1
Logical CPU grid Logical CPU grid

(e)

®

Fig. 10. Measurements (DAS) versus P-3PC & LogGP* estimations (2). (a) OFT Scatter image (5122). (b) SBT Scatter image (5122). (c) OFT Gather
image (512%). (d) SBT Gather image (5122). (e) Exchange (5122 image, o = 1). (f) Exchange (5122 image, o = 5).

while for all but the 1 x 16 decomposition, P-3PC is
somewhat pessimistic, the estimations get better for decom-
positions that are “closer” to 16 x 1. This is explained by the
fact that in the benchmarking phase, noncontiguous
communication is measured using blocks that have quite
a significant distance from one another in memory. Thus,
caching can become a significant factor, which is indeed
expected to be most prominent in a 16 x 1 decomposition
(again, see also [20], [21]).

Figs. 10e and 10f show that P-3PC gives accurate
estimates for the border exchange algorithm for all data
decompositions as well. Whereas LogGP* indicates that a
4 x 4 decomposition is always optimal (which is explained
by the fact that the amount of border data is smallest when
each partial image is square), P-3PC correctly prefers the
2 x 8 decomposition. Because the exchange of border data
may be performed hundreds of times in a realistic
application (for example, see [10] for such application that
even applies values of ¢ > 5), these results are important
indeed. For additional results obtained on the DAS (also
including sequential computation), we refer to [24].

5.2 Beowulf at SARA

The second set of tests was performed on the 40-node
Beowulf-cluster located at SARA, Amsterdam. On this
machine, measurements and benchmarking were performed
using MPICH-1.2.0 [11]. The 700 Mhz AMD Athlon nodes
(with 256 MByte of RAM) are connected by a 100 Mbit/sec
switched Ethernet network, and run Debian Linux 22.17.

Because the Beowulf cluster is heavily used for other
research projects as well, we have been able to use only
eight nodes at a time. Fig. 11 presents results for all
algorithms, using a 5122 floating point image which is
mapped ontoa 1 x 8 grid as well as a 8 x 1 grid. The graphs
show that the two models are both quite good in all cases,
but P-3PC again provides more accurate estimations. It is
clear that the MPICH implementation is much better than
the MPI-LFC implementation used on the DAS. Any
additional overhead due to nonunit-stride memory access
is not caused by buffer copying, but can be attributed to
caching alone. Although less significant on the Beowulf
cluster, this is exactly the effect Prieto et al. have shown to
be important on other parallel machines [20], [21].

6 CONCLUSIONS

In this paper, we have presented the new P-3PC model for
predicting the execution time of communication algorithms
implemented using MPI's standard point-to-point opera-
tions. P-3PC incorporates the notion of the “three paths of
communication,” and accounts for differences in
performance at the sender, the receiver, and the full
communication path. In addition, P-3PC models the impact
of memory layout on communication costs, and accounts
for costs that are not linearly dependent on message size.
Compared to similar models, P-3PC has the potential for
higher predictive accuracy due to its close match with the
capabilities and possible behavior of MPI's point-to-point
operations.

SEINSTRA AND KOELMA: P-3PC: A POINT-TO-POINT COMMUNICATION MODEL FOR AUTOMATIC AND OPTIMAL DECOMPOSITION OF... 767

120
B Measured
100 WP-3PC
DOLogGP*
80
G
E
2 60
E
=5
40 -
20 —
SCAT_OFT SCAT_SBT GATH_OFT GATH_SBT EXCH(1) EXCH(3) EXCH(5)
(a)
120
EMeasured
100 WP3PC [~
[LogGP*
80
@
£
< 60
£
=
40
20 —

SCAT_OFT SCAT_SBT GATH_OFT GATH_SBT EXCH(1) EXCH(3) EXCH(5)

(b)

Fig. 11. Measurements (Beowulf) versus P-3PC and LogGP* estimations.

P-3PC’s predictive power is essential to perform the
important task of automatic and optimal decomposition
of regular domain problems. Although designed for this
specific task, we expect the model to be relevant in other
research areas as well. It is important to note, however,
that P-3PC suffers from the same problem as other
models that abstract from the actual network topology
(see also [7]). The model cannot discriminate between
algorithms that cause severe network contention, and
those that do not. In our research this is not a problem, as
we only apply communication patterns that are expected
to perform well on most network topologies used today.
Still, because P-3PC is similar to the LogGP model, it can
easily be extended to account for contention, in the same
manner as described in [2].

It should also be noted that we do not claim the P-3PC
model to give a precise characterization of all types of
memory access. Any cost factors other than those related to
contiguous and noncontiguous memory access are implicit
(such as specific cache behavior, differences between pro-
grammed I/O and DMA transfer, etcetera), but still can be
captured due to the semiempirical modeling approach
described in Section 3.3.1. In this respect, an extension to the
P-3PC model that would give a more detailed characteriza-
tion of non-unit-stride memory access, would be to incorpo-
rate a stride parameter that captures the actual distances
between contiguous blocks transmitted in a single commu-
nication step. We have not included such parameter as the
results obtained with the current model were shown to be
sufficiently accurate.

As the P-3PC model stresses the importance of bench-
marking to obtain accurate values for the model para-
meters, one may argue that the predictive power of the model
is limited. However, the model does not specifically enforce
a large number of measurements to be performed. As for
models that incorporate a similar level of abstraction, a set
of three or four measurements for each communication path
may already be sufficient enough to obtain accurate
predictions. The P-3PC model merely acknowledges that
nonlinearities in communication costs may be significant (as
shown in Section 2.1) and should be accounted for.

We are aware of the fact that an evaluation of P-3PC is
never complete. However, the evaluation as presented in
this paper—incorporating two fundamentally different
interconnection networks, and two different MPI imple-
mentations—has shown the model to be highly accurate in
estimating the communication costs related to any type of
domain decomposition used in a realistic image processing
application. As such, we have shown P-3PC to be useful as a
basis for automatic and optimal decomposition within the
extensive application area of regular domain problems.
Also, because P-3PC is capable of modeling behavior that
was shown to be problematic in [20], [21], we expect the
model to be applicable to the very same machines and MPI
implementations as well.

ACKNOWLEDGMENTS

The authors would like to thank Andrew Bagdanov, Zeger
Hendrikse (University of Amsterdam), and Henk Sips
(Delft University of Technology) for their comments on a
preliminary version of this paper. The authors would also
like to thank the anonymous reviewers for their thoughtful
and constructive comments. This work was supported by
NWO (Nederlandse Organisatie voor Wetenschappelijk
Onderzoek) under grant 612-11-000.

REFERENCES

[1] A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman,
“LogGP: Incorporating Long Messages into the LogP Model—One
Step Closer Towards a Realistic Model for Paralle]l Computation”
Proc. Symp. Parallel Algorithms and Architectures (SPAA), pp. 95-105,
July 1995.

[2] C. Andras Moritz and M.I. Frank, “LoGPC: Modeling Network
Contention in Message-Passing Programs,” IEEE Trans. Parallel
and Distributed Systems, vol. 12, no. 4, pp. 404-415, Apr. 2001.

[3] H.E. Bal et al., “The Distributed ASCI Supercomputer Project,”
Operating Systems Rev., vol. 34, no. 4, pp. 76-96, Oct. 2000.

[4] A.Bar-Noy and S. Kipnis, “Designing Broadcasting Algorithms in
the Postal Model for Message-Passing Systems,” Math. Systems
Theory, vol. 27, no. 5, pp. 431-452, 1994.

[5] R.AF.Bhoedjang, T. Riihl, and H.E. Bal, “LFC: A Communication
Substrate for Myrinet,” Proc. Conf. Advanced School for Computing
and Imaging (ASCI '98), pp. 31-37, June 1998.

[6] J. Bruck et al., “On the Design and Implementation of Broadcast
and Global Combine Operations Using the Postal Model,” IEEE
Trans. Parallel and Distributed Systems, vol. 7, no. 3, pp. 256-265,
Mar. 1996.

[71 D. Culler et al., “LogP: Towards a Realistic Model of Parallel
Computation,” Proc. Fourth ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming, pp. 1-12, May 1993.

[8] LT. Foster, Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley, 1995.

[9] A. Geist et al., PVM: Parallel Virtual Machine—A Users’ Guide and
Tutorial for Networked Parallel Computing. MIT Press, 1994.

[10] J.M. Geusebroek, A.W.M. Smeulders, and H. Geerts, “A Minimum
Cost Approach for Segmenting Networks of Lines,” Int'l].
Computer Vision, vol. 43, no. 2, pp. 99-111, July 2001.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard,” Parallel Computing, vol. 22, no. 6,
pp- 789-828, Sept. 1996.

[12] S.E. Hambrusch and A. Khokhar, “C®: A Parallel Model for
Coarse-Grained Machines,”]. Parallel and Distruted Computing,
vol. 32, no. 2, pp. 139-154, 1996.

[13] Z.]Juhasz, “An Analytical Method for Predicting the Performance
of Parallel Image Processing Operations” The |. Supercomputing,
vol. 12, nos. 1/2, pp. 157-174, 1998.

[14] M. Lauria, “LogP Characterization of FM on the VU’s DAS
Machine,” technical report, Dipartimento di Informatica e
Sistemistica, Univ. di Napoli Federico II, 1997.

768

(15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

[20]

(27]

(28]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO.7, JULY 2002

O.A. McBryan, “An Overview of Message Passing Environ-
ments,” Parallel Computing, vol. 20, no. 4, pp. 417-444, Apr. 1994.
W.F. McColl, “Scalability, Portability and Predictability: The BSP
Approach to Parallel Programming,” Future Generation Computer
Systems, vol. 12, pp. 265-272, 1996.

Message Passing Interface Forum, “MPL: A Message-Passing
Interface Standard (version 1.1),” technical report, Univ. of
Tennessee, Knoxville, Tenn., June 1995.

Message Passing Interface Forum, “MPI-2: Extensions to the
Message-Passing Interface,” technical report, Univ. of Tennessee,
Knoxville, Tenn., July 1997.

N. Nupairoj and L. M. Ni, “Performance Evaluation of Some MPI
Implementations on Workstation Clusters,” Proc. 1994 Scalable
Parallel Libraries Conf. (SPLC” 94), pp. 98-105, Oct. 1994.

M. Prieto, LM. Llorente, and F. Tirado, “A Review of Regular
Domain Partitioning,” SIAM News, vol. 33, no. 1, Jan. 2000.

M. Prieto, .M. Llorente, and F. Tirado, “Data Locality Exploitation
in the Decomposition of Regular Domain Problems,” IEEE Trans.
Parallel and Distributed Systems, vol. 11, no. 11, pp. 1141-1149, Nov.
2000.

E.J. Seinstra and D. Koelma, “Modeling Performance of Low Level
Image Processing Routines on MIMD Computers,” Proc. Conf.
Advanced School for Computing and Imaging, (ASCI ’99), pp. 307-314,
June 1999.

F.J. Seinstra and D. Koelma, “P-3PC: A Simple and Accurate
Model of Point-to-Point Communication,” technical report, ISIS,
Faculty of Science, Univ. of Amsterdam, The Netherlands, Dec.
2000.

FEJ. Seinstra, D. Koelma, and J.M. Geusebroek, “A Software
Architecture for User Transparent Parallel Image Processing on
MIMD Computers,” Proc. Seventh Int’l Euro-Par Conf. (Euro-Par
2001), pp. 653-662, Aug. 2001.

Al]. van der Steen and R. van der Pas, “A Performance Analysis of
the SGI Origin 2000,” Proc. Third Int'l Meeting Vector and Parallel
Processing, pp. 534-547, June 1998.

L.G. Valiant, “A Bridging Model for Parallel Computation,”
Comm. ACM, vol. 33, no. 8, pp. 103-111, Aug. 1990.

Z. Xu, X. Zhang, and L. Sun, “Semi-Empirical Multiprocessor
Performance Predictions,” . Parallel and Distributed Computing,
vol. 39, no. 1, pp. 14-28, 1996.

X. Zhang, Y. Yan, and K. He, “Latency Metric: An Experimental
Method for Measuring and Evaluating Parallel Program and
Architecture Scalability,”]. Parallel and Distributed Computing,
vol. 22, no. 3, pp. 392-410, 1994.

Frank J. Seinstra received the MSc degree in
computer science from the Vrije Universiteit in
Amsterdam in 1996. He is currently finishing the
PhD thesis (entitled: “User Transparent Parallel
Image Processing”) at the University of Amster-
dam. His research interests include parallel and
distributed programming, automatic paralleliza-
tion, performance modeling, and scheduling,
especially in the application area of image and
video processing.

Dennis Koelma received the MSc and PhD
degrees in computer science from the University
of Amsterdam in 1989 and 1996, respectively.
The subject of his thesis is "A Software
Environment for Image Interpretation”. Cur-
rently, he is working on Horus: a software
architecture for doing research in accessing
the content of digital images. His research
interests include image and video processing,
software architectures, parallel programming,

databases, graphical user interfaces, and image information systems.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

