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Abstract

This paper describes a software architecture that allows image processing researchers to de-
velop parallel applications in a transparent manner. The architecture’s main component is an
extensive library of data parallel low level image operations capable of running on homoge-
neous distributed memory MIMD-style multicomputers. Since the library has an application
programming interface identical to that of an existing sequential library, all parallelism is com-
pletely hidden from the user.

The first part of the paper discusses implementation aspects of the parallel library, and
shows how sequential as well as parallel operations are implemented on the basis of so-called
parallelizable patterns. A library built in this manner is easily maintainable, as extensive code
redundancy is avoided. The second part of the paper describes the application of performance
models to ensure efficiency of execution on all target platforms. Experiments show that for a
realistic application performance predictions are highly accurate. These results indicate that
the core of the architecture forms a powerful basis for automatic parallelization and optimi-
zation of a wide range of imaging software.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Data parallel image processing library; Parallelizable patterns; Abstract parallel image
processing machine; Performance modeling; Homogeneous MIMD-style multicomputers

* Corresponding author.
E-mail addresses. fjseins@science.uva.nl (F.J. Seinstra), koelma@science.uva.nl (D. Koelma), geuseb-
roek@science.uva.nl (J.M. Geusebroek).

0167-8191/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-8191(02)00103-5


mail to: fjseins@science.uva.nl

968 F.J. Seinstra et al. | Parallel Computing 28 (2002) 967-993
1. Introduction

For many years it has been recognized that the application of parallelism in low
level image processing can be highly beneficial. Consequently, references to optimal
parallel algorithms [4,7,23] and dedicated parallel architectures [8,12,17] abound in
the literature. In spite of this, the gap between the areas of image processing and high
performance computing has remained large. Essentially, this is due to the fact that
the image processing community considers most parallel solutions ‘too cumbersome’
to apply. As it is unrealistic to expect image processing researchers to be experts in
parallel computing, tools must be provided to allow them to develop high perfor-
mance applications in a highly familiar manner.

The ideal solution is to provide a fully automatic parallelizing compiler. Un-
fortunately, the fundamental problem of automatic and optimal partitioning
remains unsolved. Another possibility is to design a parallel programming lan-
guage, either general purpose [20,30] or aimed at image processing specifically
[5,28]. However, in accordance with the remarks made in [18], we feel that a paral-
lel language is not the preferred solution. Even the use of a relatively small number
of language annotations is often considered cumbersome, and thus should be
avoided.

A more practical approach is to design a software library containing parallel ver-
sions of operations commonly used in image processing research. Due to the relative
ease of implementation, many such libraries have been described (for example, see
[13,14,16,27,29]). In many cases, efficiency of execution on a range of parallel ma-
chines is obtained by hard-coding a number of different implementations for each
operation, one for each platform. We feel that this solution to intra-operation opti-
mization requires too much implementation effort, and is impossible to maintain
on the long term. Also, the important aspect of inter-operation optimization (or op-
timization across library calls) is often not dealt with. For these reasons, we take
a different approach.

In our research we aim at creating an architecture for parallel low level image pro-
cessing that brings the benefits of high-performance computing to the image process-
ing community in a transparent manner (i.e., hidden from the user). The core of the
architecture is a library containing a set of abstract data types and associated pixel
level operations executing in data parallel fashion. The most distinctive aspect of our
work is that in implementing the library we take a minimalistic approach. Essen-
tially, this means that we strife to maximize operation reusability and avoid code re-
dundancy as much as possible. Apart from being relatively simple to implement, a
parallel library built in this manner is extensible, easily maintainable, and still high
in performance.

In this paper we give an overview of the complete architecture and highlight some
of the more important aspects. Section 2 shortly introduces all architecture compo-
nents, and discusses their relationships. Section 3 gives implementation details of the
parallel library, and introduces the concept of so-called parallelizable patterns. Sec-
tion 4 discusses our approach of obtaining efficiency of execution on a range of com-
puters by the application of abstract machine-based performance models. In Section
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5 model predictions are compared with results obtained on a machine from the class
of target platforms. Concluding remarks are given in Section 6.

2. Architecture for parallel low level image processing

In this section we introduce the requirements put forward in this research for the
development of the parallel image processing library that forms the core of our ar-
chitecture. This discussion is followed by an overview of the complete set of architec-
ture components.

2.1. Library requirements

The data parallel low level image processing library should adhere to the follow-
ing requirements:

1. Low threshold: To ensure that the library is of great value to the image processing
community, care should be taken to ensure that its application fits the user’s
frame of reference. For this reason, the library must be implemented such that
no need arises for the image processing researcher to obtain additional skills re-
lated to the parallelism.

2. Maintainability: To ensure longevity, the library must be extensible and easily
maintainable. Therefore, care must be taken in the implementation of the library
to avoid unnecessary code redundancy, and to enhance operation reusability.

3. Availability: For practical and economic reasons, the library must be applicable to
commonly available parallel computers. Essentially, this restricts the class of tar-
get platforms to that of general purpose, homogeneous MIMD-style multicom-
puters. Although a higher efficiency is often obtained on dedicated hardware,
the relatively low cost and high flexibility has caused general purpose machines
to be more generally available, and are therefore preferred.

4. Portability: Implementation in C++ in combination with MPI [10] is most appro-
priate to ensure portability to all target machines. In addition, no assumptions
should be made about a specific interconnection network topology. All nodes
in the system can be assumed identical, however, and each communication line
can be assumed to be as fast as any other.

5. Efficiency: Despite the requirement of library maintainability, efficiency of execu-
tion must be ensured on all machines in the class of target platforms. Efficiency, in
this respect, refers to each separate library operation, as well as to multiple oper-
ations applied in sequence.

2.2. Architecture overview
The full architecture consists of eight logical components (see Fig. 1). In this sec-

tion each component is described in short, and design choices are related to the
aforementioned requirements.
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Fig. 1. Architecture overview.

C1. Sequential image processing operations: The first component contains a large
set of sequential operations typically used by image processing researchers. As rec-
ognized in, for example, Image Algebra [21], a small set of operation classes can
be identified that covers the bulk of all commonly applied image processing opera-
tions. We have implemented each operation class as a generic algorithm, using the
C+-+ function template mechanism [26]. Each operation that maps onto the function-
ality as provided by such algorithm is implemented by instantiating the generic algo-
rithm with the proper parameters, including the function to be applied to the
individual data elements. In our current library the following set of generic algo-
rithms has been implemented:

e Unary pixel operation: Operation in which a unary function is applied to each
pixel in a given input image. Examples: negation, absolute value, square root.

e Binary pixel operation: Operation in which a binary function is applied to each
pixel in a given input image. Examples: addition, multiplication, threshold.

o Global reduction: Operation in which all pixels in a given input image are com-
bined to obtain a single result value. Examples: sum, product, maximum.

e Neighborhood operation: Operation in which several pixels in the neighborhood of
each pixel in a given input image are combined. Examples: percentile, median.

o Generalized convolution: Special case of neighborhood operation. The combina-
tion of pixels in the neighborhood of each pixel is expressed in terms of two binary
functions. Examples: convolution, gauss, dilation.

o Geometric (domain) operation: Operation in which a given input image’s domain
is transformed. Examples: translation, rotation, scaling.

In the future additional generic algorithms will be added to this list, e.g. itera-
tive and recursive neighborhood operations, and queue based algorithms. Apart
from the geometric operations the set of generic algorithms is translation invariant.
Translation variant versions of the operations will be incorporated in the future as
well.



F.J. Seinstra et al. | Parallel Computing 28 (2002) 967-993 971

C2. Parallel extensions: Three classes of routines are implemented (using MPI 1.1
[10]) that introduce the parallelism into the library: (1) data partitioning routines,
to map data structures onto a logical grid of processing units of up to 3 dimensions,
(2) data distribution and redistribution routines, to scatter, gather, broadcast, and re-
distribute data structures, and (3) routines for overlap communication, to exchange
shadow regions, such as image borders in neighborhood operations.

C3. Parallel image processing operations: For each sequential generic algorithm it
is possible to implement a separate, optimized parallel counterpart. However, this
strategy requires that for each change in the implementation of a sequential opera-
tion the related parallel operation is updated as well. As a result, library maintain-
ability is reduced.

This problem is avoided if the source code for the sequential generic algorithms is
reused in the implementation of their respective parallel counterparts. To that end,
for each generic algorithm we have defined a so-called parallelizable pattern. Each
pattern constitutes the maximum amount of work in a generic algorithm that can
be performed both sequentially and in parallel—in the latter case without having
to communicate to obtain non-local data. An extensive discussion of parallelizable
patterns is given in Section 3.

As shown in Fig. 2, implementation of a sequential generic algorithm is obtained
by concatenating basic memory operations (for the allocation and copying of data)
and a single parallelizable pattern. Parallel implementations of generic algorithms
are obtained by inserting communication operations in the concatenation of sequen-
tial library routines.

C4. Single uniform API: The image processing library is provided with an appli-
cation programming interface identical to that of an existing sequential library [15].
As such, the threshold for applying the library is low, as all parallelism is fully trans-
parent to the user.

C5. Annotated performance models: In our library we provide only one parallel im-
plementation of each generic algorithm. To ensure efficiency of execution on all

C4 - API
imageOperation( IMAGE im );

...............................................................................................

C1-S mage Pr ing Operations ! C3 - Parallel Image Processing Operations
seqGenericAlgorithm( IMAGE im, FUNC f) E parGenericAlgoritm( IMAGE im, FUNC f)
{ It
..... // memory operations (if needed) | ! // memory operations (if needed)
— parallelizablePattern(im, f); E scatterImage( im, partIm ); —

! — parallelizablePattern( partlm, f);
gatherImage( partlm, im ); —
// memory operations (if needed)

..... // memory operations (if needed)

parallelizablePattern( IMAGE im, FUNC f)
{

X L - C2 - Parallel Extensions
for all pixels in image ’im’ do '

apply function 'f’;

scatterImage( IMAGE im, partlm );
gatherImage( IMAGE partlm, im );

Fig. 2. Relationships between library components C1-C4 (note: actual code may differ).



972 F.J. Seinstra et al. | Parallel Computing 28 (2002) 967-993

target platforms, the parallel generic algorithms are implemented such that they are
capable of adapting to the performance characteristics of a specific machine. To
make these characteristics explicit, each library operation is annotated with a perfor-
mance model, as described extensively in Section 4.

C6. Benchmarking tool: For a specific machine, performance values for the model
parameters are obtained by running a set of benchmarking operations. Based on the
benchmarking results intra-operation optimization can be performed automatically,
fully transparent to the user.

C7. Algorithm specification: Besides intra-operation optimization, optimization
across library calls can be performed if information is available on the order in which
library operations are applied in a given application. Essentially, this information is
obtainable from the original program code. As implementation of a complete parser
is not an essential part of this research, we assume that a complete algorithm spec-
ification is provided in addition to the program itself.

C8. Scheduling tool: Once the performance models, the benchmarking results, and
the algorithm specification are available, a scheduling component is applied to find
an optimal solution for the application at hand. It is the task of the scheduler to re-
move redundant communication steps, and to make optimization decisions regard-
ing: (1) the logical processor grid to map data structures onto (i.e., the actual domain
decomposition), (2) the number of processing units, and (3) the routing pattern for
the distribution of data [25]. In the library implementation of each parallel generic
algorithm, requests for scheduling results are performed in order to correctly execute
the optimizations decided upon. Whether scheduling results are static only, or should
be generated and updated dynamically is still an important future research issue.

3. Parallelizable patterns in low level image processing

In this section we introduce the representation of images as applied in our library.
Based on this representation we give a generalized description of what we refer to as
parallelizable patterns. In addition, we show how such patterns are applied in the
implementation of parallel generic algorithms.

3.1. Representation of digital images

A digital image consists of a set of pixels. Associated with each pixel is a location
(point) and a (pixel) value. Here, we denote an image by a lower case bold character
from the beginning of the alphabet (i.e., a, b, or ¢). Locations are denoted by lower
case bold characters from the end of the alphabet (i.e., X, y, or z). The pixel value of
an image a at location x is represented by a(x).

The set of all locations is referred to as the domain of the image, and is denoted by
a capital bold character (i.e., X, Y, or Z). Usually, the point set is a discrete n-dimen-
sional lattice 7", with n = 1, 2, or 3. Also, the point set is bounded in each dimension
resulting in a rectangular shape for n = 2 and a block shape for n = 3. That is, for an
n-dimensional image
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X={(r,x2,....x%,) €Z":0;<x; <0, + ki — 1, ie{l,2,...,n}}, (1)

where o = (01,0, ...,0,) represents the origin of the image, and k; represents the
extent of the domain in the ith dimension.

The set of all pixel values a(x) is referred to as the range of the image, and is de-
noted by F. A pixel value is a vector of m scalar values, with m = 1, 2 or 3. A scalar
value is represented by a common data type (e.g., int, or float), or a complex number.
The set of all images having range F and domain X is denoted by F*. In summary,
ac [~ (ie, a: X — F) is a shorthand notation for

{(x,a(x)):xeXCcZ" n=123), akx)eFcC{Z",R",C} (m=1,2,3)}.
(2)

When image data is spread throughout a parallel system, multiple data structures
residing on different locations form a single logical entity. In our library, each image
data structure obtained in a scatter or broadcast operation is considered a partial im-
age. For such special type of image additional partitioning and distribution informa-
tion is available. This information includes, but is not restricted to, (1) the processor
grid used to map the original image data onto, (2) origin and size of the domain of
the original image, and (3) the type of data distribution applied (e.g., scatter or
broadcast). Partial image a residing on processing unit i is denoted by a,, ; its domain
is denoted by X;,. As data spreading cannot result in a loss of data, for each image
a € FX distributed over n processors, the union of the domains of all its partial im-
ages equals the domain of a.

The n partial images related to a together form one logical structure, referred to as
a distributed image. A distributed image is denoted by ay, and differs from a partial
image in that it does not reside as a physical structure in the memory of one process-
ing unit (unless it is formed by one partial image only). A distributed image’s domain
X4 is given by the union of the domains of its related partial images. The domains of
the partial images that constitute a distributed image may be either non-overlapping,
partially overlapping, or fully overlapping (see Fig. 3).

T ey IR R —— Ay
I T I T LA B S
| | | a | | |
| H o A o ¥ |
(@) Nooverlap (b) Partial overlap " (c) Full overlap

Fig. 3. Three examples of a distributed image aq comprising of two partial images, a,, and a, . The gray
areas represent domain overlap; the white areas represent the unique domain parts.
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Essentially, it is possible for each node to perform operations on partial images
independently. In the library, however, we make sure that each operation (logically)
is performed on distributed image data only. In all cases this results in the processing
of all partial images that constitute the distributed image. This strategy is important
to avoid inconsistencies in distributed image data.

3.2. Parallelizable patterns

As stated in Section 2.2, we try to enhance library maintainability by reusing as
much sequential code as possible in the implementations of the parallel generic algo-
rithms. To that end, for each generic algorithm we have defined a so-called parallel-
izable pattern. Each such pattern represents the maximum amount of work in a
generic algorithm that—when applied to partial image data—can be performed with-
out communication. In other words, in a parallelizable pattern all internal data ac-
cesses refer to data local to the node that executes the operation. In the following
we give a generalized description of parallelizable patterns, and show their usage
in parallel implementations.

3.2.1. Parallelizable patterns: the general case

A parallelizable pattern is a sequential generic operation that takes zero or more
source structures as input, and produces one destination structure as output. Each
pattern consists of n independent tasks, where a task specifies what data in any of
the structures involved in the operation must be acquired (read), in order to update
(write) the value of a single data point in the destination structure. In each task read
access to the source structures is unrestricted, as long as no accesses are performed
outside any of the structures’ domains. In contrast, read access to the destination
structure is limited to the single data point to be updated.

All n tasks are tied to a different task location x;, with i € {1,2,...,n}. The set TL
of all task locations constitutes a subset of the positions inside the domain of one of
the data structures involved in the operation (either source or destination). As a sim-
ple example, TL may refer to all n pixels in an image, all of which are processed in a
loop of n iterations. Each task location x; is related to the positions accessed in all
data structures involved in the operation. As such, for the parallelizable patterns rel-
evant in image processing we define four data access pattern types:

e One-to-one: For a given data structure, in each task 7; (with i € {1,2,...,n}) no
data point is accessed other than x;.

o One-to-one-unknown: For a given data structure, in each task 7; (with i€
{1,2,...,n}) not more than one data point is accessed. In general, this point is
not equal to x;.

e One-to-M: For a given data structure, in each task 7; (with i € {1,2,...,n}) no
data points are accessed other than those within the neighborhood of x;. As an ex-
ample, the 5 x 3 neighborhood of a point x = (x1,x;) € X C Y is given by

Nx)={yeY:y=zxjx+k), je{0,1,2}, ke{0,1}}. (3)
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e Other: For a given structure, in each task either all elements are accessed, or the
accesses are irregular or unknown.

A parallelizable pattern requires that for all data structures the access pattern type is
given. Essentially, all four access pattern types are applicable to source structures. In
contrast, the single destination structure can only have a ‘one-to-one’ or a ‘one-to-
one-unknown’ type. This is because—by definition—in each task only one data point
is accessed in the destination structure.

Fig. 4 shows the two parallelizable pattern types that we discern. In a type 1 par-
allelizable pattern the set of task locations has a ‘one-to-one’ relation to the destina-
tion structure. In a type 2 parallelizable pattern the access pattern type related to the
destination structure is of type ‘one-to-one-unknown’. The two parallelizable pat-
terns also differ in the type of combination operation that is permitted. In a parallel-
izable pattern of type 1 no restrictions are defined for the combination operation. In
a type 2 pattern the final combination of the intermediate result of all values read
from the source structures with the value of the data point to be updated, must be
performed by a function f() that is associative and commutative. Also, prior to ex-
ecution of a type 2 pattern, all elements in the destination structure must have a va-
lue that is ‘neutral’ for operation /(). As an example, the neutral value for addition
is 0, while for multiplication it is 1.

The two parallelizable patterns give a generalization of a large set of sequential
image operations, e.g. all operations in component C1 in Section 2.2. It should be
noted that the two types do not capture the complete set of all possible operations.
For example, operations in which the values of data points in the source structures
are updated do not fall in the category of operations currently under consideration.
The same holds for operations in which the value of each data point in the destina-
tion structure depends on values of other data points in the same destination struc-
ture. Still, all generic algorithms that do map onto the given generalization are

N X e
T R X; T R
a -to-M (* J \_/ ’7 dap = one-to-M (¥) —‘ B\
R , ﬂ
? ? f0
* AN
dap = one-to-one-unknown dap = one-to-one (1) dap = one-to-one-unknown dap = one-to-one-unknown
or other (*) or other (*) (1)

source structures destination structure source structures destination structure

(a) Parallelizable pattern, type 1. (b) Parallelizable pattern, type 2.

Fig. 4. Two parallelizable pattern types. R = read access; W = write access; dap =data access pattern;
(1) =exactly one data structure of this type; (*) =zero or more data structures of this type.
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applicable in the process of ‘parallelization by concatenation of library operations’,
as introduced in Section 2.2

3.2.2. Parallelizable patterns: general parallelization strategy

The number of elements in TL determines the number of steps executed by a par-
allelizable pattern. By providing each processing unit in a parallel system with a set
X C TL, the total amount of work is distributed. In addition, based on the access
pattern type defined for each structure involved in the operation, non-local data ac-
cesses can be avoided with minimal communication overhead.

Before executing a type 1 parallelizable pattern each processing unit must be pro-
vided with a non-overlapping partial destination structure that matches the elements
in X. If the destination structure is updated but never read, the partial structure can
be created locally. Otherwise, it is obtained by scattering the destination structure
such that no overlap in the domains of the local partial structures is introduced. Be-
fore executing a type 2 pattern, each processing unit must create a fully overlapping
destination structure locally. This is always possible, as the value of all data points
must be given a ‘neutral value’, defined by the operation.

Source data structures are obtained by executing (1) a non-overlapping scatter for
each structure having a one-to-one access pattern, (2) a partially overlapping scatter
for each structure having a one-to-M access pattern type (such that in each dimen-
sion the size of each shadow region equals half the size of the neighborhood in that
dimension), and (3) a broadcast for all other structures. Alternatively, if the values of
a source structure can be calculated locally, one may decide to do so.

When a type 1 parallelizable pattern has finished, the complete destination struc-
ture is obtained by executing a gather operation. For a type 2 parallelizable pattern
this is achieved by executing a reduce operation across all processing units. Here, the
elements that have not been not updated in each local destination structure have
kept a neutral value, and assure the correctness of the final reduction. In both cases,
the result structure may be returned either to one node, or to all.

In the following, we shortly discuss parallelization of two example generic algo-
rithms, i.e. global reduction and generalized convolution. We will investigate the ac-
cess pattern types for the data structures involved in the operations. Also, for both
generic algorithms a related parallelizable pattern will be given.

3.2.3. Example: parallel reduction

Referring to the image representations introduced earlier, a sequential generic re-
duction operation performed on input image a, producing a single scalar or vector
value k, is defined as follows:

Let a € FX and & € F, then

k=Ta=Tyxa(x)=1T",a(x;) =a(x;)ya(xp)y---ya(x,), (4)

with y an associative and commutative binary operation on [F.

Fig. 5 shows that at least two sequential implementations exist for this operation.
In the first implementation, the operation is performed in one step. All data points in
a are obtained and combined to a single value, which is written out to k. In the sec-
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input image output value input image output value
(@) (b)

Fig. 5. Sequential reduction—two implementations.

ond implementation, the operation requires n steps. In each step, one data point in a
is read and combined with the current value of k.

The two implementations both constitute a specialization of one of the paralleliz-
able pattern types described in Section 3.2.1 (i.e., a type 1 pattern and a type 2 pat-
tern respectively). The first implementation is not preferred, however, as its execution
is limited to a single processor. This is because the (implicit) set of task locations TL
consists of one element only, i.e. the location of the single output value k. The second
implementation is easily run in parallel, as TL contains all locations in a. For this
implementation the input image’s access pattern type is ‘one-to-one’; for the single
result value it is ‘one-to-one-unknown’. As a result, a parallel implementation of
the generic reduction operation follows directly from the generalization of Section
3.2.2 (see Fig. 6).

3.2.4. Example: parallel generalized convolution

A generalized convolution on image a, producing image ¢, given kernel t, is de-
fined as follows:

Leta,cc FX, t € F¥ with Y = {(31,35,...,3) :| v | <k; € Z}, and with X having
dimensionality #, then

c=a0t={(xc(x):ex)=Tevalx+y) Ot(y),x € X}, (5)

where () and y are binary operations on [, and y is associative and commutative.
The extent of the domain in the ith dimension of kernel t is given by 2k; + 1. Several
common generalized convolution instantiations are shown in Table 1.

The definition states that each pixel value in the output image depends on the pix-
el values in the neighborhood of the pixel at the same position in the input image, as
well as on the values in the related kernel structure. A sequential implementation of

Local Input Image

Local Output Value
/ H g \
11 B |

Scatter Parallelizable Pattern: ! Redluce-to-all
Global Reduction |

Global

Output

Value

ERN

Global Input Image

Local Output Value

Local Input Image

Fig. 6. Example reduce-to-all operation executed on two processing units.
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Table 1

Example generalized convolution instantiations
Kernel operation O y
Convolution Multiplication Addition
Dilation Addition Maximum
Erosion Addition Minimum

the operation is presented in Fig. 7. Again, set TL is implicit, and contains all pixel
positions in the input image or the output image.

When comparing Fig. 4(a) to 7(a) it may seem that the operation directly consti-
tutes a parallelizable pattern. Fig. 7(b) shows that this is not the case, however, as
accesses to pixels outside the input image’s domain are possible. In sequential imple-
mentations of this operation it is common practice to redirect such accesses accord-
ing to a predefined border handling strategy (e.g., mirroring or tiling). A better
approach for sequential implementation, however, is to separate the border handling
from the actual convolution operation. This makes implementations more robust
and, in general, also faster. For parallel implementation this strategy has the addi-
tional advantage that the generic algorithm can be implemented such that it consti-
tutes a parallelizable pattern.

Implementation in this manner can be performed in many different ways. In our
library a so-called scratch border is placed around the original input image. The bor-
der is filled with pixel values according to the required border handling strategy. The
newly created scratch image is used as input to the parallelizable pattern. As each lo-
cal scratch image has a one-to- M access pattern, an overlapping scatter of the global
input image is required. As shown in Fig. 8, this is implemented by a non-overlap-
ping scatter followed by overlap communication. Remaining scratch border data
is obtained by local copying. Finally, the parallelizable pattern is executed, produc-
ing local result images that are gathered to obtain the complete output image. Note
that Fig. 8 gives a simplified view, as some steps of the operation are not shown. For
example, depending on the type of operation, the kernel is either broadcast or calcu-
lated locally.

E (f;i\- 0
= N T *\\ \J\~ 7 \
< 7 R N I \\
SE wWEE R o
7 W
Input Image : Input Image
R .
Kernel @ - Output Image Kernel @ e Output Image
(a) Permitted read-access (b) Forbidden read-access

Fig. 7. Sequential generalized convolution. Does not represent a parallelizable pattern, as read accesses
outside the domain of the input image are possible (see (b)).
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Border Parallelizable Pattern:
Handling Generalized Convolution

------

1
e u ) /

N ,+" Local Output Image
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Fig. 8. Example kernel operation performed using two processing units (simplified).

3.3. Discussion

The generalized description of parallelizable patterns is important as it states the
requirements for sequential implementation of a large set of generic low level image
processing operations. In addition, for each specialized parallelizable pattern imple-
mented on the basis of the generalized description, a parallelization strategy directly
follows. As such, code reusability is maximized, and library maintainability and flex-
ibility is enhanced.

It should be noted that if a sequential operation does not map onto the general-
ized description of a parallelizable pattern, we currently take no special action to ob-
tain good performance. In such situations, the operation is always executed using
one processing unit only. In the future we will investigate whether parallelization
of such operations can be generalized as well. Additional formulations may be inte-
grated in the current generalization, or may exist independently.

4. Performance models

As shown in the previous section, in all parallel implementations both the parall-
elization granularity as well as the data dependencies have been fixed. It is the task of
the scheduler of Section 2.2 to make additional optimization decisions, e.g. relating
to the type of domain decomposition. In our architecture we rely on performance
models for the scheduler to perform this task correctly.

In this section an overview is given of the performance models. First, the require-
ments for such models are investigated. Second, a short description is given of the
abstract parallel image processing machine (APIPM) that is used as a basis for all
performance models. Finally, APIPM-based performance models are introduced
that capture the relevant behavior of all library operations.

4.1. General performance model requirements

Naturally, a performance model designed for our purposes should incorporate all
relevant tasks typically performed by data parallel image processing operations. As
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was indicated in the previous sections, in our library such tasks relate to either com-
putation or communication. Computational tasks include parallelizable patterns as
well as basic memory operations. Communicating tasks are formed by (the bulk
of) routines from the parallel extensions described in Section 2.2.

Apart from having to reflect the typical behavior of parallel low level image pro-
cessing routines, the performance models should also conform to the following
(more general) requirements:

1. Simplicity: The more detailed a model, the less manageable it is and the more ex-
pense will go into obtaining its performance measures. To reduce the costs of sta-
tic or run-time model evaluation the number of parameters in the model should
be kept to a minimum.

2. Accuracy: To make sure the scheduler can make ‘clever’ decisions regarding issues
of parallel execution, performance estimates obtained from the model should be
sufficiently accurate. The degree of accuracy is considered sufficient if good deci-
sions are made in most situations (preferably in at least 95 percent of all cases),
and poor decisions are generally avoided.

3. Applicability: In our implementations we make sure that the library is portable to
all machines in the class homogeneous distributed memory MIMD-style multi-
computers. Consequently, the related performance models must be applicable
to all such platforms as well.

The requirement of simplicity enhances applicability, but reduces accuracy.
Therefore, care must be taken in the design of the models to ensure that they produce
good estimates with relative ease.

4.2. Abstract parallel image processing machine

The design of the annotated performance models is based on the definition of an
abstract parallel image processing machine (or APIPM, see Fig. 9(a)). An APIPM
consists of one or more identical abstract sequential image processing machines
(ASIPMs), each consisting of four related components: (1) a sequential image pro-
cessing unit (SIPU), capable of executing APIPM instructions, one at a time, (2) a
memory unit, capable of storing (image) data, (3) an I/O unit, for transporting data
between the memory unit and external sensing or storage devices, and (4) data chan-
nels, the means by which data is transported between ASIPM units and external de-
vices. In a complete APIPM the memory unit of each ASIPM is connected with
those of all other ASIPMs.

The APIPM instruction set (Fig. 9(b)) consists of four classes of operations: (1)
generic image instructions, 1.e. the specialized parallelizable patterns of Section 3.2,
(2) memory instructions, for allocation and copying of (image) data, (3) I/O instruc-
tions, for transporting data between memory and external devices, and (4) communi-
cation instructions, for exchanging data among ASIPM units. For simplicity, in Fig.
9(b) the operands for each opcode are left out.
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Fig. 9. APIPM comprising of four ASIPMs, and related instruction set.

The description of the APIPM reflects a state-of-the-art homogeneous distributed
memory MIMD-style multicomputer. It differs from a general purpose machine in
that each SIPU is designed for imaging tasks only. Although a fully connected net-
work is often not present, we still have included one in the APIPM. This is because in
most multicomputer systems communication is based on circuit-switched message
routing, which makes a network virtually fully connected.

In the abstract machine multiple real-world objects must be represented, which
should be passed as parameters to the APIPM instructions. The most prominent ob-
jects are images, but kernels, matrices, and the likes, are essential as well. In the in-
struction set we do not introduce a special data representation for each of these
objects. Instead, we make use of memory references. Such references contain infor-
mation about the internal data representation, but lack any form of semantic infor-
mation. The semantics are determined by the APIPM instruction the memory
reference is passed to as a parameter.

It is important to note that for several generic image processing operations in the
instruction set data element homogeneity is required. This means that the scalar type
and the dimensionality of the elements in multiple data structures passed as parame-
ters to a single instruction must be identical. The restriction of data element homoge-
neity is enforced to acknowledge the differences between operations on homogeneous
and heterogeneous types. If homogeneity would not be required additional casting or
copying of data would be hidden inside the APIPM. For many instructions such ad-
ditional tasks constitute a significant overhead, which must be made explicit.

4.3. APIPM-based performance models

All library operations are assumed to be implemented by concatenation of
APIPM instructions only. Also, we assume that the execution time of each library
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operation can be partitioned into independent intervals, each corresponding to the
cost of a single APIPM instruction. The performance of a library operation is ob-
tained by adding the run-time costs of all APIPM instructions used.

This idea is formalized as follows. Let I = {I}, L, ...,I,} be the APIPM instruc-
tion set. Let P = {P,, P, ..., B, } be the set of performance values for all n instruc-
tions in I. We assume that, for any given system capable of running APIPM
instructions, and for each instruction in I, P, can be obtained by benchmarking.
Also, let L ={L;,L,,...,L,} be the set of all m operations implemented using
instructions in I only. For all library operations L, (x € {1,...,m}) we define
L. ={l,0L,...,1,}, in combination with the total number of occurrences (or count)
of each APIPM instruction in L;: C, = {C},+,Chy,...,Ci,~}. The expected total
execution time of each library operation L, is obtained by 7y, = > 7| C;, . P,.

A problem with the simplistic model formalized here is that most APIPM instruc-
tions are not single static entities. This is because the execution of an instruction is
often dependent on the values of its operands. Therefore, a static entity for each pos-
sible operand combination must be incorporated in our model. To avoid an explo-
sion of the number of static entities we allow each instruction /; and each value P;, to
be parameterized. As we have not discussed the operands of the APIPM instructions
we will not give a detailed overview of the model parameterization. To give a
straightforward example, however, in almost all APIPM instructions a ‘datatype’ pa-
rameter is incorporated (e.g., giving ;('int’) and 7;('float’)). Also, a ‘data-input-size’
parameter is required for most performance values in P (e.g., giving Pj,(datatype) (5iZ€)).
Note that the choice of model parameters is dependent on the actual library imple-
mentation of each APIPM instruction. For a complete overview we refer to [24].

As it is our goal to include no knowledge of underlying hardware, it is not advis-
able to make strict assumptions about performance growth rates in relation to data
input size. For this reason we take a semi-empirical modeling approach. This means
that benchmarking is performed for multiple data input sizes. To capture non-linear
performance growth, for each instruction, between each pair of measured perfor-
mance values, performance growth is then assumed to be piecewise linear. As bench-
marking is outside the scope of this paper, no additional details will be given here.

4.4. Extended model for point-to-point communication

Whereas the model described in Section 4.3 is sufficient for all sequential APIPM
instructions, for the two communication instructions an extension is required. Firstly,
this is because an accurate prediction of the end-to-end communication time usually
cannot be obtained by considering the time a processor is busy executing a SEND
or a RECV instruction alone. Secondly, in its current form the model does not closely
match the capabilities of the communication instructions as defined in MPI. Most no-
tably, the impact of a message’s memory layout on communication costs is not incor-
porated in the model. This is an important point, as one of the tasks of the scheduler
of Section 2.2 is to make decisions regarding the domain decomposition of a given
application. Depending on the type of such domain decomposition, it may be neces-
sary to communicate data stored non-contiguously in memory. Using MPI’s derived
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datatype mechanism it is possible to send such data in a single communication step.
As was shown in the recent work of Prieto et al. [19], knowledge of a message’s mem-
ory layout is important, as non-unit-stride memory access may have a severe impact
on performance due to caching. Also, the MPI operations may handle the transmis-
sion of non-contiguous data differently from contiguous blocks, possibly causing ad-
ditional overheads due to the packing of data into a contiguous buffer.

For these reasons we have designed an extended model for point-to-point commu-
nication. The model, called P-3PC (or the parameterized model based on the three
paths of communication), closely resembles other models described in the literature
(e.g., the Postal Model [3,6], LogP [9], and LogGP [1]). As we have shown in [25],
the model is capable of modeling many essential communication patterns as used
in data parallel image processing applications. In addition, and in contrast to the
models mentioned above, it is also capable of accurately predicting the communica-
tion costs related to any type of domain decomposition.

The model introduces the notion of the three paths of communication, and assumes
that the cost of transferring a message from a sender to a receiver is captured in three
independent values:

o Tina: the cost related to the communication path at the sender (i.e., the time re-
quired for executing the SEND instruction).

o T.: the cost related to the communication path at the receiver (i.e., the time re-
quired for executing the RECV instruction).

o T the cost related to the full communication path. This value represents the
end-to-end delivery time, or the time from the moment the sender initiates a trans-
mission until the moment the receiver has safely stored all data and is ready to
continue.

For each path we assume that the transmission of a message involves a constant
amount of time, which is captured by the mutually independent parameters i, ¢,
and z¢ (for the sender, receiver, and full path respectively). In addition, for each com-
munication path we assume an ‘additional time’ (#, ., and z,; respectively) which is
a function of the number of bytes transmitted. To capture differences in the sending
of contiguous and non-contiguous data, the model is parameterized with a cost in-
dicator M, which represents the memory layout at the two communicating nodes.
The three communication times (see also Fig. 10) involved in the transmission of
a message containing n bytes are then given by:

Tscnd,M(”) =l + tasAM(n),
Trecv,M(n) =l + tar,M(n)y (6)

Ty (n) = tep + tap e (n),

where M € {cc, cn, nc, nn}. These four layout descriptors indicate the four possible
memory layout combinations at the sender and the receiver combined. For example,
cn means that a contiguous block of data is transmitted by the sender, which is
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Fig. 10. Communication according to the P-3PC Model. In this particular example a single node transmits
two separate messages to the same receiver in sequence. The three communication paths are indicated ac-
cording to the definitions in the text.

accepted non-contiguously by the receiver. For a complete description of the P-3PC
model we refer to [25].

4.5. Discussion

The most important advantage of the APIPM-based performance models is that
predictions are based on very high level instructions. Modeling on the basis of much
lower level instructions is possible as well, but execution times of such instructions
tend to be less independent than those of higher level instructions. This is mainly
caused by possible optimizations performed by the compiler used. Also, obtaining
accurate values for lower level instructions is much more difficult. This is due to
the inherent intrusiveness of the benchmarking process.

Our models resemble the model described in [22], which was used for general ma-
chine characterization based on an abstract Fortran machine (AFM). The instruc-
tion set used in this model incorporates the primitive operations available in
Fortran. As performance evaluation on the basis of the AFM proved to be highly
accurate, we expect results of a similar accuracy for the higher level APIPM-based
performance models.

A possible drawback of our models is that the instructions and related performance
values are parameterized with quite a large number of instruction behavior and work-
load indicators. Obtaining accurate performance values for all possible combinations
of parameters is both costly and difficult. However, it is possible to combine several
parameters to obtain a more general indicator. As an example, promising candidates
for parameter merging are those that relate to data structure sizes (e.g., width, height,
depth, etc.). In addition, a benchmarking tool should allow a user to set regions of
interest, to restrict the set of all possible measurements. For this reason we feel that
the performance models are both powerful and useful for our purposes.

5. Performance measurements and validation

In this section we show how a realistic image processing application, implemented
using our library, is executed in parallel. The application is highly relevant as it in-
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corporates all generic algorithms as referred to in Section 2.2. First, a description is
given of the underlying algorithm. Next, both a straightforward sequential imple-
mentation as well as the related parallel implementation are discussed. Finally, mea-
sured results are compared with APIPM model predictions.

5.1. Detection of lines in images

As discussed in [11], the problem of detecting (curved) lines in images is solved by
considering the second order directional derivative in the gradient direction, for each
possible line direction. This is achieved by applying anisotropic Gaussian filters, pa-
rameterized by orientation 0, smoothing scale g, in the line direction, and differenti-
ation scale o,, perpendicular to the line, given by

1
bagﬂwl) : (7)

Gy,0y,0

Y (x,¥,04,0,,0) = 0,0,|f7

When the filter is correctly aligned with a line in the image, and ¢,, 6,, are optimally
tuned to capture the line, filter response is maximal. Hence, the per pixel maximum
line contrast over the filter parameters yields line detection:

R(x,y) = arg max ' (xX,9, 0, Gy, 0). (8)

This directional filtering problem can be implemented sequentially in many differ-
ent ways. For each orientation 6 it is possible to create a new filter based on a,, and
0,. In effect, this yields a rotation of the filters, while the orientation of the input im-
age remains fixed. Another possibility is to keep the orientation of the filters fixed,
and to rotate the input image instead. Yet another solution is to integrate the notion
of orientation in the filter operation itself. In this case image pixels are accessed ac-
cording to the size of the neighborhood as well as the given orientation.

In this example, we have implemented the operation by applying fixed filters to
rotated image data. We have chosen this implementation as we expect it to be the
solution preferred by most image processing researchers. As such, the implementa-
tion reflects parallelization problems encountered in a realistic situation. We do
not claim, however, that this implementation provides optimal performance when
executed either sequentially or in parallel.

The main body of the sequential implementation is presented in pseudocode in
Listing 1. The program starts by rotating the original input image for a given orien-
tation 0. In addition, for all (v, 0,) combinations the filtering is performed by six
library operations executed in sequence. First, £7:%¢ and 5%+ (or Filteredl IM
and Filtered?2_IM, respectively) are produced by executing two generalized con-
volutions, each with the appropriate parameters. For cost effectiveness the Gaussian
convolutions are performed by applying two 1-dimensional filters in both cases.
Next, the result of Eq. 7 is obtained by executing two binary pixel operations, one
having an image, the other having a constant value as argument. Finally, the result
image is rotated back to match the orientation of the input image, and the maximum
response image is obtained.
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FOR all orientations § DO
Rotated IM = GeometricOp(Original IM, "rotate”, 6);
FOR all smoothing scales g, DO
FOR all differentiation scales oy DO

Filtered1 IM = GenConvOp(Rotated_IM, "gauss”, o, 0y, 2, 0);
Filtered2_.IM = GenConvOp(Rotated_IM, "gauss”, 0w, 0y, 0, 0);
Detected_IM = BinPixImArgOp(Filtered1IM, ”absdiv”, Filtered2_.IM);
Detected_IM = BinPixCnstArgOp(Detected_IM, "mul”, oy * 0w);
BackRotated_IM = GeometricOp(Detected_IM, "rotate”, —0);
Contrast_IM = BinPixImArgOp(Contrast_ IM, "max”, BackRotated_IM);

Listing 1: Pseudo code for the directional filtering program.

Fig. 11(a) gives a typical example of an image that is used as input to the program.
The result obtained after applying the program for a reasonably large parameter
subspace of (a,,0,,0) is shown in Fig. 11(b). On a state-of-the-art sequential ma-
chine the program may take from a few minutes up to several hours to complete,
depending on the size of the input image and the extent of the chosen parameter sub-
space. Consequently, for the directional filtering program parallel execution is highly
desired.

5.2. Parallel execution

As all parallelization issues are shielded from the user, the pseudocode of Listing 1
directly constitutes a program that can be executed in parallel as well. Optimization
of the efficiency of the program is to be taken care of by the scheduling component.
As a fully functional scheduling tool is not yet available in the current version of our
architecture, we have created two different schedules for the program by hand. In the
first schedule a/l library operations are forced to run in a data parallel manner, using
all available processors. The second schedule differs from the first in that the last two
operations in the innermost loop of the program are run on one node only.

In both schedules the Original_IM structure must be broadcast to all nodes.
This is because the structure is applied in the initial rotation operation, which expects
it to have a data access pattern of type ‘other’. This broadcast needs to be performed
only once, as Original_IM is not updated in subsequent operations. In addition, in

APOLLO COMMAND AND SERVICE MODULES
ENGINE LOCATIONS

Fig. 11. (a) Typical 1000 x 554 input image obtained from the Apollo training manual “Apollo Spacecraft
& Systems Familiarization” (March 13, 1968). National Aeronautics and Space Administration (NASA),
Office of Policy and Plans, NASA History Office. Used by kind permission. (b) Maximum response image
obtained after application of the directional filtering program.
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both schedules the first four operations in the innermost loop can be executed locally
on partial image data structures. The only need for communication is in the ex-
change of image borders (shadow regions) in the two Gaussian convolution opera-
tions.

In the first schedule the last two operations in the innermost loop are run in par-
allel as well. This requires the distributed image Detected_IM to be available in full
at each node, because it has an access pattern of type ‘other’ in the back-rotation op-
eration. This can be achieved by executing a gather-to-all operation, which is logi-
cally equivalent to a gather operation followed by a broadcast. Finally, a partial
maximum response image Contrast_IM is calculated on each node, which requires
a final gather operation to be executed just before termination of the program. In the
second schedule the last two operations are not executed in parallel. As a result, the
intermediate result image Detected_IM needs to be gathered to the single node
that produces both the back-rotated image, as well as the complete maximum re-
sponse image.

As stated before, it is the purpose of the scheduling tool to correctly pick the op-
timal solution out of the two competing schedules. In the next section we will show,
among other things, that the performance models as used in our architecture are
powerful enough to allow the scheduler to make such decisions correctly. Note, how-
ever, that the schedules as presented here only refer to optimization across library
calls. As will also be shown in the next section, intra-operation optimization (such
as choosing the optimal mapping of data structures on a logical grid of processing
units) can be performed on the basis of our performance models as well.

5.3. Performance evaluation

To initialize the APIPM-based performance models we have performed a small
set of benchmarking operations. For each instruction used in the directional filtering
program not more than two measurements were performed, i.e. for input sizes of
200% and 1000 elements. Model predictions for each instruction and for each re-
quired input size were obtained as indicated in Section 4.3.

The benchmarking operations, as well as the directional filtering program were ex-
ecuted on the 24-node homogeneous DAS-cluster (Distributed ASCI Supercomputer
[2]) located at the University of Amsterdam. All nodes in the cluster contain a 200
MHz Pentium Pro with 64 Mbyte of EDO-RAM, and are connected by a 1.2
Ghbit/sec full-duplex Myrinet SAN network. The nodes run the RedHat Linux 6.2
operating system. At the time of writing, four nodes in the system were unusable.
As a consequence, performance results are presented only for a system of up to 20
processing units.

Based on intuition alone a programmer would have great difficulty deciding which
of the two schedules described in the previous section should be executed. Clearly, a
schedule is preferred if the set of operations unique to that schedule is faster than
the set of operations unique to another schedule. Hence, for the directional filtering
program the first schedule is preferred if:
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00 (Protate (5128 /N) + Prnax (8512 /N) + Pocast (8iz€)) + Peather (size)
< 00 (Protare (812€) + Prax(size)), 9)

where N denotes the number of nodes, and 0o the size of the parameter subspace.
For the first schedule the large number of broadcasts is expected to have a significant
impact on performance. For the second schedule the many rotations of non-parti-
tioned image data is expected to be costly.

Based on the benchmarking results we are able to decide which schedule is opti-
mal. As shown in Fig. 12 (depicting the complete execution time of both schedules),
our models indicate that the first schedule is always preferred—for any number of
processing units. Clearly, broadcasting a full-sized image structure is not as expen-
sive as performing the complete image rotation sequentially on one node. The ‘hops’
in the graph of schedule 1 are explained by the fact that the broadcast operation is
implemented using a spanning binomial tree (SBT), which has a cost related to log V.

To test the accuracy of our performance models we have executed the directional
filtering program for both schedules. The resulting mean execution times for each
run are included in the graph of Fig. 12 as well. Error bars are not shown, as the
performance of the DAS is quite stable. In most situations measured lower and up-
per bounds are within 0.5 s of the mean execution times. The presented results indi-
cate that the model predictions for both schedules are highly accurate—for any
number of processors. Even worst case predictions are within 5.5% of the measured
values. It is noteworthy, however, that our models are slightly optimistic in all situ-
ations. This is explained by the well-known fact that the performance measured in a
benchmarking process tends to be somewhat higher than what is actually obtained in

600 T T T T T T T T T T
model predictions for schedule 2 — Schedule 1
measurements for schedule 2 © #CPUs | Predicted | Measured
model predictions for schedule 1 -----
measurements for schedule 1 + 1 543.509 556.696
4 2 281.690 290.105
4 153.949 159.903
6 115861 120952
8 93247 96.851
10 86.417 89.342
1 12 71371 80914
14 70910 74618
16 66.064 69.397
=z 18 68.833 72411
Y i 20 65818 69.579
‘E Schedule 2
o
< #CPUs | Predicted | Measured
1 543.387 556.112
200 |- g 2 391157 401.020
4 315.106 321.753
L 6 290.104 294.923
8 277.146 281.777
T 10 269.893 273.113
100 - Tl 1 12 264.709 268.763
""""" R S S S 14 261.007 265.181
16 258230 262,711
18 256.396 261.183
0 L L ) | ! L L N ) 2 20 254.668 260.249

2 4 6 8 10 12 14 16 18 20 22
Number of processors
Fig. 12. Comparison of model predictions and measurements for the two program schedules. Results for
directional filtering of extended Apollo image of size 1098 x 1098, and for a parameter subspace including
12 orientations and 4 (g,, 6,,)) combinations.
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Fig. 13. Comparison of predictions and measurements for input image of size 707 x 707, and for a para-
meter subspace including 36 orientations and 4 (¢,,5,) combinations.
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Fig. 14. Predicted scaled speedup and predicted impact on communication, both for schedule 1.

a real application. Similar results obtained for a smaller input image, but for a larger
parameter subspace are shown in Fig. 13.

Given schedule 1, we can calculate the number of nodes for which the program is
fastest. As is shown in the left half of Fig. 14, our models predict that maximum
speedup (10.16) is obtained on 64 nodes; adding more processors is counterproduc-
tive. It can be derived from the graph that the efficiency of the program drops dra-
matically from 96.5%, 88.2%, and 72.9% for 2, 4, and 8 nodes respectively, to 51.4%,
30.5%, and 15.9% for 16, 32, and 64 nodes respectively. This is due to the large im-
pact of communication, and especially the repeated broadcast. The right half of Fig.
14 shows that for 16 nodes the program spends almost half of its time communicat-
ing. For 64 nodes 84.1% of the time is lost in all communication steps combined, and
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Fig. 15. Comparison of predicted and measured execution times for multiple processor grids. Left: 10982
image, 48 (0, 0,, g,,) combinations. Right: 707> image, 144 (0, ,, 5,,) combinations.

71.1% in broadcasting only. If the image processing researcher would have produced
a sequential implementation with rotating filters instead of a rotating image, parallel
performance may have been significantly better.

In the results given thus far, we have implicitly assumed that all image data was
partitioned in a row-wise manner—or, in the terminology of Section 2.2, mapped
onto a logical 1 x N grid of processing units. In certain situations it may be beneficial
to use a different type of CPU grid. This is because a different data mapping may
result in a change in the set of communication operations to be performed (e.g., over-
lap communication in generalized convolution). Also, due to a difference in the mem-
ory layout of data communicated between nodes performance gains may be obtained
(see Section 4.4). In Fig. 15 it is shown that our performance models indeed can
make a distinction between multiple logical processor grids consisting of 16 nodes.
For the two cases shown, a 2 x 8 grid is optimal, which is both predicted by our
models as well as measured. For this example application the execution times for
each logical grid differ only marginally. We need to stress, however, that for time-
critical (i.e., real-time) applications such differences may be relevant indeed. For
more results related to this issue, we refer to [25].

6. Conclusions and future work
In this paper we have described a software architecture that allows an image pro-

cessing researcher to develop parallel applications in a transparent manner. The core
of the architecture is formed by an extensive data parallel image processing library
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that has a programming interface identical to that of an existing sequential library.
Application of the library is not expected to be considered ‘cumbersome’, as it fully
adheres to the image processing researcher’s frame of reference.

In the paper we have addressed two important architecture design issues. First, it
is shown how maintainability problems, as encountered in similar architectures, are
resolved. We have described how code reusability is enhanced by the application
of so-called parallelizable patterns. Essentially, such patterns define the maximum
amount of work that can be executed by a single processing unit without having
to communicate to obtain data values that reside elsewhere. As such, the patterns
are applicable both in sequential as well as in parallel implementations of library
operations. In addition, we have shown how specialized parallelizable patterns are
obtained for typical low level image processing operations. In conclusion, by incor-
porating specialized parallelizable patterns, we feel that our library is extensible, eas-
ily maintainable, and still high in performance.

The second important topic deals with the problem of obtaining efficiency of
execution on a range of parallel machines. We have shown that, by applying do-
main-specific performance models, knowledge is obtained regarding the execution
behavior of all library operations. Each operation is implemented such that, based
on this knowledge, its execution can be adapted to obtain higher performance. Also,
we have shown how the models are applied to perform optimization across library
calls. Experiments show that, for a realistic application, our performance models
are highly accurate. Given these results we are confident in that the architecture’s
core forms powerful basis for automatic parallelization and optimization of a wide
range of image processing applications.

As an important note we should state that, although all parallelism is hidden in-
side the library, much of the efficiency of parallel execution is still in the hands of the
library user. As shown in the previous section, if a sequential implementation is pro-
vided that requires expensive communication operations when run in parallel, pro-
gram efficiency may be disappointing. Therefore, the library user should be aware
of the fact that certain operations are expensive, and should be avoided as much
as possible. Any programmer knows that this requirement is not new, however, as
a similar requirement holds for sequential implementation as well.

In the near future we will focus our attention on the creation of a fully functional
scheduling component. Also, we will extend the set of generic algorithms in compo-
nent C1 of Section 2.2. If required, the generalized definition of parallelizable pat-
terns will be adapted accordingly. Finally, we will continue implementing example
programs to investigate the implication of parallelization of typical applications, es-
pecially in the area of real-time image processing.

In conclusion, our approach to implementing an architecture for parallel image
processing resolves many problems often encountered in comparable environments.
Most importantly, our work shows that it is possible to ensure architecture maintain-
ability, without having to compromise on the efficiency of execution. Given this re-
sult, we strongly believe that our approach is applicable in other research areas as
well, especially when the set of typical operations is limited—as is the case in low
level image processing.
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