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Abstract

A face detection system is presented. A new classification method using forest-structured Bayesian networks is used.

The method is used in an aggregated classifier to discriminate face from non-face patterns. The process of generating

non-face patterns is integrated with the construction of the aggregated classifier. The face detection system performs

well in comparison with other well-known methods. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Face detection is an important step in any
automatic face recognition system. Given an
image of arbitrary size, the task is to detect the
presence of any human face appearing in the
image. Detection is a challenging task since hu-
man faces may appear in different scales, orien-
tations (in-plane rotations), and with different
head poses (out-of-plane rotations). The imaging
conditions, including illumination direction and
shadow, also affect the appearance of human
faces. Moreover, human faces are non-rigid ob-
jects, as there are variations due to varying facial
expressions. Presence of other devices such as
glasses is another source of variation. Facial
attributes such as make-up, wet skin, hairs and

beards also contribute substantially to the vari-
ation of facial appearance. In addition, the ap-
pearance differences among races, and between
male and female are considerable. A successful
face detection system should be able to handle
the multiple sources of variation.

A large number of face detection methods have
been proposed in the literature. Face detection
methods can be broadly divided into: model-based
detection, feature-based detection and appearance-
based detection.

In the model-based approach, various types of
facial attributes such as the eyes, the nose and
the corner of the mouth are detected by a de-
formable geometrical model. By grouping the
facial attributes based on their known geomet-
rical relationships, faces are detected (Leung
et al., 1995; Yow and Cipolla, 1996). A draw-
back of this approach is that the detection of
facial attributes is not reliable (Leung et al.,
1995), which leads to systems that are not robust
against varying facial expressions and presence
of other devices. This approach is better suited
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for facial expression recognition as opposed to
face detection.

Among the feature-based approach, the most
obvious feature is color. It is a rather surprising to
find that the human skin color falls into a small
range in different color spaces regardless of race.
Many researchers have taken advantage of this
fact in their approach to the problem (Yang and
Waibel, 1996; Wei and Sethi, 1999). Typically,
regions with skin color are segmented to form face
candidates. Candidates are further verified on the
bases of the geometric face model. We choose not
to use color information in this paper. It is partly
because of the lack of a common color test set to
evaluate different methods.

In the appearance-based approach, human fa-
ces are treated as a pattern directly in terms of
pixel intensities (Sung and Poggio, 1998; Rowley et
al., 1998). A window of fixed size N �M is scan-
ned over the image to find faces. The system may
search for faces at multiple image scales by itera-
tively scaling down the image with some factor. At
the core of the system is a classifier discriminating
faces from non-face patterns. Each intensity in the
window is one dimension in the N �M feature
space. The appearance-based methods are often
more robust than model-based or featured-based
methods because various sources of variations can
be handled by their presence in the training set.

This paper presents a face detection system in
the appearance-based approach. The class/non-
class classification problem needs to be addressed
because it is not possible to obtain a representative
set of non-face patterns for training. Furthermore,
because of the manifold of sources of variation, a
complex decision boundary is anticipated. In ad-
dition, the classification methods should have a
very low false positive rate since the number of
non-face patterns tested is normally much higher
than that of face patterns. Also due to a large
number of patterns which need to be tested, a fast
classification step is desirable.

The paper is organized as follows. The follow-
ing section gives an overview of appearance-based
classification methods. The construction of an
aggregated classifier is described in Section 3.
Section 4 presents a new classification method
using forest-structured Bayesian networks. The

face detection system is described in Section 5.
Experimental results are given in Section 6.

2. Literature on appearance-based face detection

It is the classification method and the type of
features that characterize different appearance-
based face detection systems. Many techniques
from statistical pattern recognition have been ap-
plied to distinguish between faces and non-face
patterns. The one-class classification problem can
be solved by designing a mapping which concen-
trates the one class into a point while mapping the
other, the non-class as widely spread over the
feature space as possible as proposed by Gelsema
and coworkers (cf. Landeweerd et al., 1983).

Let X ¼ ðX1;X2; . . . ;XnÞ be a random variable
denoting patterns spanning the n ¼ N �M-
dimensional vector space R. Let x ¼ ðx1; x2; . . . ; xnÞ
be an instantiation of X. In addition, let Y ¼ f0; 1g
be the set of class labels, face and non-face, re-
spectively. Furthermore, let the two-class condi-
tional probability distribution be P0ðX Þ and P1ðX Þ.
Once both P0ðX Þ and P1ðX Þ are estimated, the
Bayes decision rule (Duda and Hart, 1973) may be
used to classify a new pattern:

uðxÞ ¼ 0 if log P0ðxÞ
P1ðxÞ

P k;
1 otherwise;

�
ð1Þ

where k is an estimation of the log-ratio of the
prior probability of the two classes. When it is not
possible to obtain such approximation, one may
assume equal class prior probabilities, that is
k ¼ 0. This leads to the maximum likelihood de-
cision rule. This leaves the question of how to
learn PyðX Þ effectively. Generally, it is not possible
to estimate P1ðX Þ. This problem is often ignored.
For the current face detection problem and the
current dataset, we still form both P0ðX Þ and
P1ðX Þ. As a consequence, the solution will be
specific for this dataset only. When the dataset
grows large (we have 160 000 random patches), it
will in the end be representative for the class of
non-faces.

Moghaddam and Pentland (1997) use principle
component analysis to estimate the class condi-
tional density. The vector space R is transformed
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into principle subspace E spanned by the V ei-
genvectors corresponding to the V largest eigen-
values and its complement �EE composed of the
remaining eigenvectors. The authors show that in
case of a Gaussian distribution, PyðX Þ can be ap-
proximated using the V components in the sub-
space E only. In case PyðX Þ cannot be adequately
modeled using a single Gaussian, a mixture-of-
Gaussians model can be used. A drawback of this
method is that no guidelines are given to determine
the number of dimension V. In addition, as each
pattern is projected on to a subspace before clas-
sification, a matrix multiplication is involved. This
is not desirable when the classification time is an
important factor.

Sung and Poggio (1998) present a face detection
system which models P0ðX Þ and P1ðX Þ, each by six
Gaussian clusters. To classify a new pattern, a
vector of distances between the pattern and the
model’s 12 clusters is computed, then fed into a
standard multilayer perceptron network classifier.
A preprocessing step is applied before classifica-
tion to compensate for sources of image variation.
It includes illumination gradient correction and
histogram equalization. A shortcoming of this
method is that there is no rule for selecting the
number of Gaussian clusters.

The paper by Rowley et al. (1998) is represen-
tative for a larger class of papers considering
neural networks for face detection. A retinally
connected neural network is used. There are three
types of hidden units aiming at detecting different
facial attributes that might be important for face
detection. The network has a single, real-valued
output. The preprocessing step in (Sung and
Poggio, 1998) is adopted. The system performs
well on the CMU test set (Rowley et al., 1998).

The naive Bayes classifier is used in (Schnei-
derman and Kanade, 2000). Each pattern window
is decomposed into overlapping subregions. The
subregions are assumed statistically independent.
Hence, PyðX Þ can be computed as

PyðX Þ ¼ PyðfRi; PigNr
i¼1Þ ¼

YNr

i¼1
PyðRi; PiÞ ð2Þ

for y 2 f0; 1g. Ri is the subregion of X at location
Pi and Nr is the number of subregions. The method

has the power of emphasizing distinctive parts and
encoding geometrical relations of a face, and hence
contains elements of a model-based approach as
well. A drawback of this method is the strong in-
dependence assumption. This might not lead to
high classification accuracy because of the inherent
dependency among overlapping subregions.

Colmenarez and Huang (1997) use first-order
Markov processes to model the face and non-face
distributions:

PyðX jSÞ ¼ PyðXS1Þ
Yn
i¼2

PyðXSi jXSi	1Þ ð3Þ

for y 2 f0; 1g. S is some permutation of ð1; . . . ; nÞ
and used as a list of indices. The learning proce-
dure searches for an Sm maximizing the Kullback–
Leiber divergence between the two distributions
DðP0ðX ÞkP1ðX ÞÞ:

Sm ¼ argmax
S

DðP0ðX jSÞkP1ðX jSÞÞ ð4Þ

where DðP0ðX ÞkP1ðX ÞÞ is defined as

DðP0ðX ÞkP1ðX ÞÞ ¼
X
x2R

P0ðxÞ log
P0ðxÞ
P1ðxÞ

: ð5Þ

The Kullback–Leiber divergence is a non-negative
value and equals 0 only when the two distributions
are identical. The Kullback–Leiber divergence is a
measure of the discriminative power between the
probability distributions of the two classes (Kull-
back, 1959). By maximizing this measure, it is ex-
pected that a high classification accuracy can be
achieved. The maximization problem, in this case,
is equivalent to the traveling salesman problem
(Gondran and Minoux, 1984). An heuristic algo-
rithm is applied to find an approximate solution.
An advantage of this approach is that both train-
ing and classification steps are very fast.

Osuna et al. (1997) apply support vector ma-
chines (Vapnik, 1998) to the face detection prob-
lem, which aims at maximizing the margin between
classes. In order to train a large data set with
vector support, a decomposition algorithm is
proposed, in which a subset of the original data set
is used. It is then updated iteratively to train the
classifier.

One common characteristic of all methods is
that they try to capture the decision boundary by
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the model supported by their classifiers. However,
for classes with multiple sources of variation such
as human faces, the decision boundary can be very
complex. This might lead to poor accuracy per-
formance for methods that can model simple de-
cision boundaries. It might also lead to complex
classifiers with a slow classification step. Hence,
there is a need for a method which can model a
complex decision boundary while allowing fast
classification.

3. Data space exploitation and aggregated classifi-

ers

In this section, we present a method which
handles a complex decision boundary by using
multiple classifiers in aggregation. Aggregated
classifiers allow a natural way for solving the class/
non-class classification problem.

A general learning set L consists of data
fðyt; xtÞ; t ¼ 1; . . . ; Tg where the x’s are the pat-
terns and the y’s are their corresponding classes.
The learning set is used to form a classifier
uðx jLÞ, that is the class of a new pattern x is
determined by uðx jLÞ. Let fLk; k ¼ 1; . . . ;Kg
denote the K data sets to be created in order. Let
ui denote the aggregated classifier formed by using
fLj; j ¼ 1; . . . ; ig for i ¼ 1; . . . ;K. The procedure
for creating the data set is as follows:
1. Consider a set of face patterns La. In addition,
initially a set of non-face patterns L�aa

1 is created
by selecting randomly from a set of images con-
taining no human faces. La and L�aa

1 together
form L1:

L1 ¼ La [L�aa
1: ð6Þ

2. For i ¼ 2; . . . ;K, apply the face detection system
using the aggregated classifier ui	1 on a set of
images containing no human faces. False posi-
tives returned form a set of non-face patterns
L�aa

i . Apparently, these cases are hard cases for
classifier ui	1. This set L

�aa
i and the training set

of face patterns La form Li:

Li ¼ La [L�aa
i : ð7Þ

The number of classifiers K may be selected
according to the desired classification accuracy.

Because of our selection of learning sets, if any
component classifier returns a non-face decision,
the pattern is classified as non-face.

We argue that this technique is suited for the
face detection problem. A complex decision
boundary caused by the manifold of variation is
modeled by using multiple classifiers. Each has
different level of difficulty of separating the two
classes. Each component classifier need not be very
complex, which could allow a fast classification
step. In addition, the fact that a non-face pattern
can be rejected at any level improves the classifi-
cation time because of the normally large number
of non-face patterns. Significantly, since the same
face patterns, La, are used for training, the true
positive rate does not degrade multiplicatively as
the number of component classifiers increases.
Also, because the non-face patterns are generated
in a bootstrap fashion, it is expected that the false
positive rate decreases multiplicatively. This allows
a very low false positive rate.

4. Forest-structured Bayesian network classifier

In this section a new classification method for
the two-class problem is described. The method is
in the same spirit as the Markov process-based
method in (Colmenarez and Huang, 1997). How-
ever, forest-structured Bayesian networks are used
to model the joint probability distribution of each
class instead of Markov processes. We use this
method in an aggregated classifier because it has a
fast classification step.

Bayesian network is an efficient tool to model
the joint distribution of variables (Pearl, 1988).
The joint distribution PyðX1; . . . ;XnÞ can be ex-
pressed using a forest structured Bayesian network
as follows:

PyðxÞ ¼
Yn
i¼1

PyðXi ¼ xi jPi ¼ piÞ ð8Þ

for y 2 f0; 1g. Pi denote the parent of Xi in the
network structure. PyðXi ¼ xi jPi ¼ piÞ are esti-
mated from the training data Li (Eqs. (6) or (7)).
Fig. 1 illustrates a forest structured Bayesian net-
work modeling the joint distribution of six random
variables fX1; . . . ;X6g.
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We search for a network structure that maxi-
mizes the Kullback–Leiber divergence Eq. (5) be-
tween the two joint distributions.

The Kullback–Leiber divergence between two
distributions in Eq. (8) can be obtained as

DðP0ðX ÞkP1ðX ÞÞ ¼
X
x

P0ðxÞ log
Yn
i¼1

P0ðxi jpiÞ
P1ðxi jpiÞ

¼
Xn

i¼1

X
x

P0ðxÞ log
P0ðxi jpiÞ
P1ðxi jpiÞ

¼
Xn

i¼1

X
xi

X
pai

P0ðxi; piÞ

� log
P0ðxi jpiÞ
P1ðxi jpiÞ

: ð9Þ

We show that the problem of maximizing Eq. (9) is
equivalent to the maximum branching problem
(Tarjan, 1977). In the maximum branching prob-
lem, a branching B of a directed graph G is a set of
arcs such that:
1. if ðx1; y1Þ and ðx2; y2Þ are distinct arcs of B then

y1 6¼ y2.
2. B does not contain a cycle.
Given a real value cðv;wÞ defined for each arc of G,
a maximum branching of G is a branching such
that

P
ðv;wÞ2B cðv;wÞ is maximum. It can be seen

that maximizing DðP0ðX ÞkP1ðX ÞÞ is equivalent to
finding a maximum branching of a weighted di-
rected graph constructed from the complete graph
with node xi’s plus a node x0 with an arc from x0 to
all other nodes. W ði; jÞ ¼

P
xi

P
xj
P0ðxi; xjÞ log

P0ðxi jxjÞ=P1ðxi jxjÞ is the weight associated with
each arc in the graph. There are algorithms for

solving the maximum branching problem in low
order polynomial time (Tarjan, 1977).

To classify a pattern x, the Bayes decision rule
Eq. (1) is used. Similar to the method in (Colmen-
arez and Huang, 1997), fast classification of a pat-
tern can be achieved by constructing a table for all
possible values of a variable and its parent. By using
Eq. (8), the log likelihood value in Eq. (1) becomes

log
P0ðxÞ
P1ðxÞ

¼ log

Qn
i¼1 P0ðxi jpiÞQn
i¼1 P1ðxi jpiÞ

¼
Xn

i¼1
log

P0ðxi jpiÞ
P1ðxi jpiÞ

: ð10Þ

Once all possible values of log P0ðXi jPiÞ=P1ðXi jPiÞ
for all i are computed, the classification of a new
pattern can be carried out with only n additions.
This allows a very fast classification step.

5. Face detection system

The architecture of the system is adopted from
(Rowley et al., 1998). A window of size 20� 20 is
scanned over each image location to find face
patterns. The size 20� 20 is selected because it is
large enough to capture details of human faces,
while allowing a reasonable classification time.
The system searches the input image at multiple
scales by iteratively scaling down the image with a
scale step of 20% until the image size is less than
the window size.

Sources of variation are captured in the training
set: illumination and shadows, facial expressions,
glasses, make-up, hairs, beards, races and sexes.
Limited orientation and head pose, namely frontal
faces and near-frontal faces, are present.

We adopt two preprocessing operations from
Sung and Poggio (1998): illumination gradient
correction and histogram equalization. The former
reduces the effect of heavy shadows and the latter
normalizes the illumination contrast of the image.
Finally, each pattern is quantized to six levels of
gray values to enable the estimation of the discrete
probabilities. Fig. 4 shows the quantized patterns
from Fig. 3.

An aggregated classifier consisting of three
Bayesian network classifiers, i.e. u3, is used to

Fig. 1. A sample dependency model of six random variables

with a forest structured Bayesian network: P ðX1; . . . ;X6Þ ¼
P ðX1ÞP ðX2 jX1ÞP ðX3ÞPðX4 jX3ÞPðX5 jX4ÞP ðX6 jX4Þ.
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classify faces and non-face patterns. The number 3
was selected based on the tradeoff between the
false positive rate and true positive rate (see
Fig. 6). For K > 3, the true positive rate is low for
the detection task.

A postprocessing step is carried out to eliminate
overlapping detections. When overlapping occurs,
a straightforward approach would be to select the
window having the largest log likelihood value.
This generates sparse maxima, of which most are
false positives as is observed in (Rowley et al.,
1998), that is most faces detected are detected at
multiple positions nearby in place or in scale. We
have repeated the experiment and arrived at the
same conclusion. For each detected location, if the
number of detections within a predefined neigh-
borhood is less than a threshold, the location is
rejected.

5.1. Data for training

For the purpose of this paper, a set of 1112 face
examples was gathered from the Internet without
selection. Color images were converted to gray-
scale images. Fig. 2 gives 30 randomly selected face
examples. The dataset is split into two subsets at
random: 1000 faces examples are used to create the
training set and 112 used to create the test set.
Thirty face patterns of size 20� 20 are extracted

from each original face examples by rotating the
images about their center points by one random
less than 10�, scaling by one random value selected
from the interval 0.9 and 1.1, translating by one
random value less than 0.5 pixel, and mirroring as
in (Rowley et al., 1998). Fig. 3 illustrates 30 face
patterns generated from one face example. In to-
tal, 33 360 face patterns were created (Fig. 4 shows
the quantized patterns from Fig. 3).

Fig. 2. Thirty of 1112 randomly selected face examples.

Fig. 3. An example of all 30 face patterns generated from each

face example, yielding 30 000 patterns to train the system.

Fig. 4. Quantization to six levels of gray values of the patterns

shown in Fig. 3. Note the preservation of geometrical layout

after gray value normalization.
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A set of 929 images containing no faces was also
collected from the Internet. 360 000 non-face pat-
terns are extracted from the images by randomly
selecting a square from an image and subsampling
it to patterns of size 20� 20. Fig. 5 contains 30
non-face patterns. From the next level downwards,
non-face patterns were generated as described in
Section 3.

The dataset of 33 360 face and 360 000 non-face
patterns is split into two subsets at random: the

training set consists of 30 000 face and 160 000
non-face patterns, and the test set consists of 3360
face and 200 000 non-face patterns. This test set is
referred to as the pattern test set, LT. The face
patterns of the two subsets were generated from
two separate sets of face examples.

6. Experimental results

6.1. Experiment with the number of component
classifiers K

Fig. 6 shows the receiver operating characteristic
curves for the four aggregated classifiers u1, u2, u3

and u4 on the pattern test set LT. At a low false
positive rate an aggregated classifier with higher
value of K achieves higher true positive rate. How-
ever, saturation occurs with K > 1, i.e. it is not
possible to achieve higher true positive rate even at
high false positive rate. This is due to the fact that
the true positive rate of the previous levels puts an
upper bound on the achievable rate of the next level.

6.2. Experiment with the Bayesian network classi-
fier

Fig. 7 shows the receiver operating character-
istic (ROC) curves of the three different classifiers

Fig. 5. Thirty non-face patterns randomly selected from the set

of 160 000 non-face patterns.

Fig. 6. The receiver operating characteristic (ROC) curves for u1, u2, u3 and u4 on the pattern test set LT.
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on the pattern test set LT: the Markov process
classifier (Colmenarez and Huang, 1997), the naive
Bayes classifier (Duda and Hart, 1973) and our
method, the Bayesian network classifier u1. Our
method outperforms both the Markov process
classifier and the naive Bayes classifier.

As an aside, it is interesting to see that the
Markov process classifier performs better than the
naive Bayes classifier only when the false positive
rate is smaller than 6%.

6.3. Experiment on the full image test set

The system is evaluated using the CMU test set
(Rowley et al., 1998). This test set consists of 130
images with a total of 507 frontal faces, including
images of the MIT test set (Sung and Poggio,
1998). The images were collected from the World
Wide Web, scanned from photographs and news-
paper pictures, and digitized from broadcast tele-
vision. There is a wide range of variation in image
quality. It should be noted that some authors re-
port their results on a test set excluding five images
of line draw faces (Schneiderman and Kanade,
2000), which leaves this test set with 125 images
with 483 labeled faces only. We use the ground-
truth with 507 faces as in (Rowley et al., 1998).

Table 1 shows the performance of our face de-
tection system in comparison with systems in

(Rowley et al., 1998) on the CMU test sets. It can
be seen that with an equivalent detection rate,
Bayesian network based method gives about half
the number of false detections in comparison with
the neural network method (Rowley et al., 1998).
Fig. 8 illustrates the detection result on some im-
ages of the CMU test set.

7. Discussion and conclusion

In this paper we have considered the face de-
tection task as a representative of the class/non-
class classification problem where the class is
subjected to many sources of variation. The

Table 1

Evaluation of the performance of the aggregated Bayesian

networks, u3, as compared to the neural network, NN (Rowley

et al., 1998) on the CMU test set (Rowley et al., 1998)

MFs Rate FDs

Our system

u3 47 90.7% 264

System in (Rowley et al., 1998)

NN, System 5 48 90.5% 570

NN, System 6 42 91.7% 506

NN, System 7 49 90.3% 440

NN, System 8 42 91.7% 484

The criteria are: the number of missed faces (MFs), the true

detection rate (rate) and the number of false detects (FDs).

Fig. 7. The receiver operating characteristic (ROC) curves of three classifiers: the Markov process classifier (Colmenarez and Huang,

1997), the naive Bayes classifier (Duda and Hart, 1973) and the Bayesian network classifier u1.
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sources of variation include position of the face
relative to the camera, illumination condition,
non-rigid characteristic of the face, and presence

of other devices. The appearance variation is also
caused by differences among races, and between
male and female. In addition, the classification

Fig. 8. Output of the system on some images of the CMU test set (Rowley et al., 1998). MFs is the number of missed faces and FDs is

the number of false detections.
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method must have a very low false positive rate
and a fast classification step.

Our face detection system performs well. On the
CMU test set it achieves detection rate of about
90% with an acceptable number of false alarms. In
comparison with other methods, our classification
method using Bayesian networks outperforms re-
lated methods (namely the Markov process
method (Colmenarez and Huang, 1997) and the
naive Bayes classifier (Duda and Hart, 1973), as
shown in Fig. 7). On the CMU test set, our system
performs better than the neural network method
(Rowley et al., 1998). Our system gives about half
the number of false alarms at an equivalent de-
tection rate (see Table 1).

Approximately half of the missed detections are
caused by rotated angles (see Fig. 8, image D).
Large in-plane rotation or out-of-plane rotation
are not handled with this method. When the subject
has the intention of looking into the camera, false
negatives are rare. In fact, the missed detection in
image D is one of the very few cases. Poor image
conditions, such as low brightness and strong
shadows, account for about one third of the missed
detections (see the three examples in image E). In
order to resolve this a special image enhancement
preprocessing step might help. The remaining
missed detections are caused by various reasons
including the sizes of the faces being too small.
Among the false positives, in 30 cases out of 264,
the patches do appear as human faces (see the false
alarm in image E and the top two false alarms in
image F). Other cases might be eliminated by fur-
ther postprocessing. Given the large number of
tested windows (Rowley et al., 1998), our method

makes only one incorrect classification out of each
300 000 tests.

Table 2 summarizes the parameters used by our
system. The number of patterns created from one
example (parameter 1) becomes saturated, that is
the performance of the system does not improve
by increasing this value. All parameters from 2 to 6
are identical to (Rowley et al., 1998) to permit a
fair comparison.

As concerns parameter 7, because our method
uses a memory-based histogram for probability
density estimation, there is a limitation on the
number of discrete levels to be used. During the
training process, at six discrete levels, each histo-
gram takes up 44 MB of memory. At eight discrete
levels, each histogram would take up about 78
MB. Discretization causes loss of information, but
does not necessarily reduce the classification ac-
curacy. With higher number of discrete levels,
more training data are needed to characterize the
distributions. Furthermore, we still can distinguish
face patterns from non-face patterns at six discrete
gray values. An experiment with four discrete
levels (data not shown) indicates a slightly de-
graded performance. For the purpose of this pa-
per, 6-level discretization is appropriate. A higher
number of levels might improve the performance
of the system.

As concerns parameter 8, setting the value of K
to 4 does not help because the true positive rate is
low, see Fig. 6. Regarding the last parameter, the
thresholds of all classifiers are set to 0. Neverthe-
less, the threshold of the last classifier may vary,
reflecting the tradeoff between true positive and
false positive rate of the system.

Table 2

System parameters and their values

Phase Parameter Value

Learning 1 Number of patterns per one example 30

2 Random rotating range (degree) Uniform over ½	10;þ10�
3 Random scaling range Uniform over ½0:9; 1:1�
4 Random translating range (pixel) Uniform over ½	0:5; 0:5�

Learning and runtime 5 Window size (pixel) 20� 20

6 Scale step 20%

7 Number of discrete levels 6

Runtime 8 K, number of classifiers 3

9 Threshold per classifier 0
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Our system makes use of the symmetry prop-
erty of the human face only implicitly by the
mirroring operation on the training face examples.
It is interesting to investigate how symmetry can
be encoded in the Bayesian network prior to the
learning phase. It is important to note, however,
that structural biases and lighting may affect the
symmetry property.

In conclusion, this paper presents a face detec-
tion system using an aggregation of Bayesian
network classifiers. The use of an aggregated
classifier is well suited for the class/non-class
classification problem in the visual domain, where
a complex decision boundary is anticipated due to
many sources of variation. In addition, aggregated
classifiers allow a very low false positive rate and
fast detection.
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