
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 9, SEPTEMBER 2002 1

Tracking Nonparameterized Object Contours
in Video

Hieu Tat Nguyen, Marcel Worring, Rein van den Boomgaard, and Arnold W. M. Smeulders

Abstract—We propose a new method for contour tracking in
video. The inverted distance transform of the edge map is used as
an edge indicator function for contour detection. Using the concept
of topographical distance, the watershed segmentation can be for-
mulated as a minimization. This new viewpoint gives a way to com-
bine the results of the watershed algorithm on different surfaces.
In particular, our algorithm determines the contour as a combi-
nation of the current edge map and the contour, predicted from
the tracking result in the previous frame. We also show that the
problem of background clutter can be relaxed by taking the object
motion into account. The compensation with object motion allows
to detect and remove spurious edges in background. The exper-
imental results confirm the expected advantages of the proposed
method over the existing approaches.

Index Terms—Contour tracking, motion analysis, watershed al-
gorithm.

I. INTRODUCTION

T HIS PAPER addresses the problem of tracking the contour
of a moving object in video. In essence, every iteration of

a contour tracking procedure consists of updating the contour
based on measurements in the current frame, taking into account
the results from previous iterations.

According to the method used for contour detection, we clas-
sify tracking methods in literature into two categories depending
on whether the methods track a parameterized contour or a non-
parameterized contour.

Most tracking methods belong to the first class where the con-
tour is approximated by a parametric model. For example, in the
methods of Blake and Isard [1], [2], the contour is approximated
by B-splines. The methods first fit a B-spline curve to intensity
edges and then use a Kalman filter or a Monte-Carlo filter to
track the B-spline coefficients. In [3], Fourier coefficients are
used as parameters of the contour. In several other tracking al-
gorithms [4], [5], the contour detection is performed by mini-
mizing some energy function, using extensions from the snake
model of Kasset al. [6]. In the Kalman snakes, the Euler–La-
grange equation is the basis for the construction of the predicted
next instance of the contour. The implementation of the model
requires the contour be approximated by a polygon with a fixed
number of vertices.
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In all of these methods, the state of the object is represented by
a fixed number of parameters characterizing the contour and its
motion. One great advantage of this approach is the possibility
of modeling the tracking as an estimation problem for a hidden
Markov model. Powerful estimation tools associated with this
model such as the Kalman filter [7] or Monte-Carlo filters [8]
can be used to track the parameter values over the sequence.
Snake parameterization can also be well adjusted for global as
well as local behavior of the snake once some knowledge about
the object shape is available. While some papers indicate the
difficulty of dealing with topological changes like swallow tails
[9] or cusps [3], this, in fact, can be handled by explicitly taking
care of any collision of the contour with itself or with other
contours, and reinitializing the contour after the collision [10].
G-snakes in [11] handle local contour deformations based on
learning from a set of training examples. The absence of domain
knowledge about the object shape, however, may cause inaccu-
racies in the tracking, especially when the motion is nonrigid.

In the methods of the second class, the contour is represented
as a border of a region [12], [13]. The strength of this approach
is that it allows for contour representation of an arbitrary shape.
Furthermore, the contour topology can be easily controlled.
The geodesic contour model [14] belongs to this class. It is
used by Paragioset al. in [12] to track objects moving against
a static background. The method employs a modified level-set
algorithm to propagate the contour toward the edges. The
method, however, will fail when the camera is moving. In [13],
the tracking is performed by means of motion segmentation.
The watershed algorithm is employed to segment three-dimen-
sional (3-D) optic flow. As optic flow estimation around object
boundaries is usually inaccurate, the contour obtained with the
watershed algorithm is also inaccurate. In addition, since the
method is sensitive to segmentation errors in individual frames,
the tracking result is unstable.

The goal of this paper is to develop a new method that tracks
nonparameterized contours. At the same time, the new method
should have the following desirable properties:

1) the method should have the ability to track contours under
the condition of a moving camera and the presence of
multiple moving objects;

2) the method should be able to track fast moving objects
and should deal with abrupt motion changes;

3) the method should be able to track nonrigid objects;
4) the method should be robust to missing edges;
5) the method should be robust to image clutter.

To the best of our knowledge, none of the methods in literature
fulfills all these reasonable requirements.

1057-7149/02$17.00 © 2002 IEEE
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Fig. 1. Illustration for the tracking scheme.

This paper is structured as follows. In Section II we describe
the general tracking scheme. Section III describes the steps re-
quired before the detection of the object contour. An algorithm
for object contour detection is presented in Section IV. Tracking
results are shown in Section V. Section VI discusses the param-
eter setting and the properties of the method with a verification
of the above requirements.

II. OVERVIEW OF THE TRACKING SCHEME

This section gives the description for the general tracking
scheme, depicted in Fig. 1.

Let be the image region occupied by the object at the
current time . We want to determine the object contour ,
given the contour obtained from the tracking in the
previous frame.

First, the position of the object is predicted for the current
frame. To that end, we estimate the motion of the object and
warp into the current frame. Let be the pre-
dicted contour. When the prediction is accurate, the real ob-
ject contour differs only marginally in shape and location
from the predicted contour . Hence, is confined to a
band around . We construct by thickening . The
edge map is then computed for the current frame. Using object
motion to the full, irrelevant edges in background are removed.

Within , is searched for while taking into account close-
ness to the current edge map as well as the predicted con-
tour .

Finally, the object contour is obtained by minimizing
an energy function. The process is then repeated for the next
frame.

Every step in this scheme is elaborated upon in the two next
sections.

III. EXTRACTION OF EDGE INDICATOR FUNCTIONS

This section describes the steps taken to obtain the edge indi-
cator functions, required for contour detection.

A. Object Contour Initialization

The object contour is bootstrapped by segmentation of the
first frame. We use the method in [15] which performs a color
segmentation, followed by merging regions undergoing similar
motions. The merging yields accurate results when the object
motion is well described by polynomial models such as affine
or quadratic models. In general, this is true, when the moving
object is rigid and distant enough from the camera. When this
is not the case, the method may not merge all regions on the
object but it reduces the number of regions substantially. The
object extraction then requires some user interaction.
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B. Object Motion Estimation and Contour Prediction

To obtain the predicted contour , we first estimate the
object motion between two frames and using
a parametric motion model, and then warp the previous contour

onto the current frame . In this paper, a transla-
tion model is used. The dominant translation vector is esti-
mated by minimizing the motion-compensated prediction error,
formulated as a sum-of-squared differences

(1)

where is the velocity space. Thus, the object motion is esti-
mated by matching intensities in two consecutive frames, and
without computing an optic flow field beforehand. The contour

is then obtained by translating over .
One may be concerned about the limitation of the simple

translation model for describing rotation, zooming and nonrigid
motion. Nevertheless, this limitation does not cause problems
for the tracking algorithm. Since the magnitude of nontransla-
tional motion between two consecutive frames is usually small,
the local contour deformations, which cannot be explained by
pure translation, are later captured in the step of contour detec-
tion.

In practice, vector is found by an exhaustive
search in the discrete rectangular

, where and are the maximum
speeds of the object in and directions in the image plane
respectively. and are set according to the object
motion vector, estimated in the previous frame with margin

(2)

where and denote the two components of
, and is the maximal margin between the current

motion vector and the previous one due to acceleration or abrupt
changes in direction of motion. Note that the chance of an abrupt
change in motion direction is usually higher than the chance of
an abrupt change in speed magnitude. Therefore, we center
at rather than in order to capture abrupt changes in
motion direction.

For the sake of efficiency and accuracy, searching for the ve-
locity is done in a multiscale manner. Initially, the search is car-
ried out at a coarse resolution using exhaustive search. As the
exhaustive search finds the global minimum of (1), it allows for
robust object motion estimation even in case of fast translations.
At higher resolutions, is searched for only around the re-
sult found at the lower resolution.

The object motion estimated is used not only for contour pre-
diction but also for the removal of background edges in Sec-
tion III-D. Note also that the proposed method does not need to
estimate the camera motion or the motion of other moving ob-
jects in the scene.

C. Search Area Construction

The search bandis constructed by thickening . We use
the homotopic thickening [16] so thatis homotopic to .

This implies that the band separates the rest of the image into
two connected regions: an interior and an exterior .
If the size of the thickening is large enough, we assign
to the object and to the background. Hence, only pixels
inside the band need to be addressed. Recommendations for set-
ting are given in Section V-A.

D. Edge Detection and Background Edge Removal

This subsection describes edge detection and the removal of
irrelevant edges in background.

We employ the Canny edge detector to detect the intensity
edges. We keep the significant edges, eliminating those whose
gradient magnitude is lower than a given threshold. The set-
ting of depends on the contrast at the object contour. In gen-
eral, we prefer low values of to guarantee the presence of the
entire object contour in the edge map, although low values of
produce more spurious edges. We use . Let be
the edge map detected in frame .

Contour detection may be affected by irrelevant edges, espe-
cially those in the background which have been occluded pre-
viously. When object motion is known approximately, we can
tell the background edges from the object edges as they have
different motion vectors. For this purpose, we project the whole
edge map of the previous frame , including edges
of the background and other moving objects, into the current
frame according to the object motion vector . Ob-
ject edges will be projected onto themselves while edges of
the background and other moving objects will not. Thus, the
latter irrelevant edges can be found by looking at the discrepan-
cies between the projected edge map and the actual edge
map . We first compute the distance transform of
and look for pixels in for which the distance exceeds a
threshold

(3)

where denotes the set of background edges in
. Results for real data are shown in Fig. 3.

Note that some background edges persist in the following
cases:

1) and intersect accidentally;
2) an edge segment has the same direction as , and a

length exceeding the length of .
Such edge segments, nevertheless, are usually small and iso-
lated, and hence, have little influence on the result.

For simplicity of notations, in the rest of the paper we also
use to denote the edge map resulting after background
edges are removed.

E. Inverted Distance Transform of the Edge Map and the
Predicted Contour

This subsection derives the edge indicator function, required
for contour detection.

The common choice for edge indicator functions is the inten-
sity gradient. In practice, however, irrelevant edges in the back-
ground or inside the object may have a higher gradient mag-
nitude than the object contour. For still images, this is not a
problem if the initial contour is placed close to the true contour.
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Fig. 2. Illustration of the calculation of the search areaC.

In image sequences, however, the gradient at the contour varies
with time. A strictly gradient-based approach, therefore, leads
to unstable tracking results as it may attract the contour toward
irrelevant edges with high gradient values.

To overcome the problem, we need an edge indicator func-
tion invariant to object motion. We choose the inverted distance
transform of the edge map [17], [18]

(4)

where is the Euclidean distance fromto , and
is an arbitrary constant such that everywhere.

An algorithm for computing is given in [19]. Three-
dimensional views of this function for some simple edge maps
are shown in Fig. 4. Since the inverted distance transform has
a constant gradient almost everywhere, it can guide a contour
moving to edges over a long distance.

In order to increase tracking stability, should be close
to the predicted contour . Therefore, we use the inverted
distance transform of the predicted contour as well

(5)

Both and are exploited in the next section to
find the object contour .

IV. CONTOUR DETECTION

We now move to the most important step in the tracking
process: the detection of the object contour .

For contour detection, we employ the watershed algorithm
from mathematical morphology [17], [20], using the two regions

and as markers. The advantage of using the water-
shed algorithm on a set of two markers is that the resulting seg-
mentation always contains only two regions and the resulting
contour is always closed and simple. Furthermore, the contour
is positioned at the most significant edges within the search band

. It can be proven that the watershed algorithm yields the pre-
cise contour under certain regularity conditions. The problem
yet to be solved is that the original watershed algorithm takes
as input only one edge indicator function. We want to use two
edge indicator functions: the inverted distance transform of the
current edge map and the inverted distance transform of
the predicted contour in combination to increase the ro-
bustness of the contour detection as a compromise between the

current edge map and the predicted contour. Hence, a new algo-
rithm with two edge indicator functions needs to be developed.

Before describing the actual algorithm, it is helpful to con-
sider how the watershed algorithm is applied in case only one
edge indicator function is used.

A. Definition of the Watershed

This subsection gives the definition of the watershed algo-
rithm applied for one relief function using two markers

and .
According to [20], in case of the watershed with imposed

markers, the original relief is reconstructed. This reconstruction
makes the markers sole regional minima of the reconstructed re-
lief. Let be the reconstructed relief. The function can
be defined via the recursive conditional erosion as proposed in
[20]. can also be defined in a more elegant way as follows
[21]:

if

if

(6)
where denotes the set of all possible paths

from to the two markers. Thus, can be interpreted as
the maximal level the water from the markers has to reach before
flooding . For algorithms computing , we refer to [20] and
[22].

The object contour is now detected as the watershed line
of the relief , viewed as a mountain landscape.

can be defined formally using the concept of topographical dis-
tance [23], [24]. The topographical distance with respect to a
smooth surface is defined as the distance weighted with the
gradient norm . However, as the functionis nonsmooth in
our case, the following definition due to Meyer [23] is required.

Definition 1: Suppose is a function defined on . Given
a path connecting two points and . Consider
all possible partitions of : where

, , . Let be the erosion
of by a disk of radius . The topographical variation
of on is defined as

(7)

where the supremum is taken over all possible partitions of.
Definition 2: The topographical distance between two points
and is the minimal topographical variation over all paths

from to

(8)

Definition 3: The topographical distance from a pointto a
set is

(9)

An algorithm for the computation of the topographical distance
is given in [23].
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Fig. 3. (a) One frame. The object being tracked is the head of a man, (b) result of the Canny detector, and (c) removal of background edges according to (3).

Fig. 4. (a) Some simple edge maps and (b) a 3-D view of the inverted distance
functionh(x).

Now, let and be the topographical distances
with respect to the surfacefrom to and , respec-
tively. can then be defined as

(10)

The following sets

(11)

are the catchment basins of and , respectively.
The definitions of the topographical distance and watershed

are used in the next subsection for the combination of the wa-
tershed lines of two different surfaces.

B. Combine Measured Edges With the Predicted Contour

This subsection presents an algorithm for finding the object
contour , taking into account closeness to both the current
edge maps and the predicted contour .

A summary of the algorithm is given in Fig. 5.
First, the reconstruction is performed for each of the two

edge indicator functions and according to (6).
Let and be the two reconstructed relief functions. For

each , we compute two topographical distance transforms to
and denoted and , respectively.

In [21], we prove that the watershed segmentation can be rep-
resented as a minimization. In our case, the watershed segmen-
tation with respect to the relief function can be obtained by
minimizing the energy function

(12)

where denotes the interior of the object contour
and its complement. Note that

, where is a
constant, independent of . Ignoring , this energy can be
rewritten as

(13)

The minimization of is carried out over all possible config-
urations of

(14)

Obviously, to find the region that minimizes this integral
we need to collect points where . The
result region, therefore, includes the interior catchment basin

, but does not intersect the exterior catchment basin
. Its border, where , coin-

cides with the watershed line .
To find a contour which is a tradeoff between the watershed

lines on the surfaces and , we minimize the following
weighted sum of the two energy functions:

(15)

where is a data balance coefficient. Thus,

(16)

The minimization is carried out by selecting from the search
band , defined in Section III-C, the points, where the integrand
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Fig. 5. Illustration for the detection of@
(t), a zoomed-in view of the contour detection block in Fig. 1.

Fig. 6. Illustration of the combination of watershed lines. This experiment used two edge maps which were created from the two thin contours with low brightness.
The thick and highlighted contour is the result of the minimization of the energy function (15).

is negative, and adding them to the interior marker . The
contour of the result region satisfies

(17)
The resulting contour belongs to the following set:

.
As a consequence, it lies between the two watershed lines

and (see Fig. 6). The coefficient
is used to control the influence of the predicted contour to
the result contour. As observed from (17), when the
contour coincides with the watershed of the surface. When

, the predicted contour has more influence. In this case,
the tracker tends to stick to the predicted contour, leading to
smooth changes of the tracking results. This, however, prevents
tracking nonrigid motion of the contour.

The incorporation of the predicted contour into result also
resolves the problem of missing edges. When the object moves
into a region where there is no edge evidence between object
and background, the tracker keeps the contour as predicted.

C. Imposing Smoothness

The watershed algorithm itself does not take the smoothness
of the contour into account. As a consequence, often the wa-
tershed line looks ragged. When smoothness of the contour is

required, the contour length is added to the energy function in
(15) in order to make the contour “harder” against deformation

(18)

where is a constant and is a coefficient which does not de-
pend on . The coefficient is meant to make the tuning
of invariant to scaling. Observe that when the image is en-
larged times, the values of and increase times
while the contour length increasestimes only. Therefore, we
use

(19)

where is the maximal size of the bounding box of the
object region in the previous frame.

Starting from the segmentation result of the previous subsec-
tion, the smoothing stage performs an exchange of pixels at the
border between and such that the energy (18) is min-
imized. For the detailed implementation we refer to [21].

In conclusion, the object contour is obtained by min-
imizing an area functional, computed from the topographical
distances to the markers with respect to the reconstructed edge
indicator surfaces and . The minimization of this
energy function yields a tradeoff between the watershed lines on
the two surfaces and . Smoothness of the con-
tour, when desired, can be imposed by adding the contour length
to the energy.
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Fig. 7. Results of tracking the tennis ball in the table tennis sequence (marked by a black outline).

Fig. 8. Tracking results.

V. EXPERIMENTS

A. Parameter Setting

Let us first discuss the dependence of the algorithm on the
parameters.

1) The thickening size
In case of a clear object in a clear background, we should just

set larger than the expected maximal displacement between
the true contour and the predicted contour. The displacement is
caused by the nonrigidness of object and its limbs. In case of a
cluttered object or background, larger values ofincrease the
number of spurious edges in the search band, which increases
the risk of following wrong edges. We use , where is
the pixel size.

2) The data balance coefficient
The effect of tuning has been discussed in Section IV-B.

In case of a rigid object with a simple motion, one may trust
the predicted contour more than the current edge map

, and therefore use high values ofto emphasize the in-
fluence of . In case of nonrigid objects or complex motion,
since the prediction may not always be accurate, low values of
are preferred to stress . We assume equal influence from
the past and the data by setting: .

3) The threshold for background edge compensation
For the usual background we set the value ofequal to

because they both are due to the accuracy of the contour predic-
tion. In order not to loose too much elements of the real contour,
it is better to use a conservative value of. We use .

4) Maximal margin between the current speed and the pre-
vious one

should take large values in sequences where the magni-
tude of object speed changes abruptly, and small values when
the object motion is smooth. Note that a large value ofis al-
ways safe but such a value leads to high computation costs. We
use .

5) Smoothness coefficient
Contour smoothing illustrates the ability to incorporatea

priori knowledge about the object shape into the resulting
contour. The value of should be given a value compatible
with derivative of the first two terms in eq. (18) with respect
to a deformation of . In general, the coefficient for the
regularization term is set to higher values when edge data are
insufficient for the determination of the object contour. In the
experiments shown in the next subsection, we use 4.0
10 for the sequences in Figs. 9 and 10. In Figs. 7 and 8, we
use .

B. Results

We have tested the proposed method for several video clips.
Results are shown in Figs. 7–10.

In case of table tennis, the ball moves fast while the camera
pans. When the ball hits the table, it shows an abrupt changes in
motion direction. The algorithm can follow these changes as is
seen in Fig. 7(c).

Fig. 8 shows another example where the algorithm demon-
strates its capability of tracking a fast moving object. The ob-
ject contour is detected well as it is seen with a high contrast
against the background. The object has sharp limbs and as the
algorithm poses no severe smoothness constraint, the limbs are
detected correctly.

In the sequence of Fig. 9, the camera pans to the right,
tracking a body of a man walking. In the middle of the
sequence, two children enter the scene and run in opposite
direction of the man. Tracking is difficult as the nonrigid
object exhibits complex motion and moves in a cluttered
background. Furthermore, in several frames, the background
has a similar grey intensity as the head so that the head border
is left undetected. This could be mended by selecting another
edge detector or another tuning of the edge detector. Here, we
rather demonstrate that even in the case of missing edges the
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Fig. 9. Tracking results.

algorithm produces approximate results, see Fig. 9(d)–(f). The
real contour is recaptured later on in the sequence as is seen in
Fig. 9(e). The example also illustrates the insensitivity of the
algorithm to the presence of multiple moving objects.

Another difficult situation is shown in Fig. 10(e). The motion
pattern in this sequence is a rotation of the head due to which a
totally different view of the object appears, followed by a move
into the distance. The camera is panning slightly. When the head
is rotating, part of the contour at the left ear is split into two
edges: an edge between the dark hair and the ear, and another
edge between the hair and the background. If no regularization
is performed, the resulting contour would stick to the first edge
that is undesired. To resolve this problem, edge data are insuffi-
cient.A priori knowledge regarding the object shape should be
used. In the example shown, the regularization of (18) prevented
sharp corners which usually appear in irregular shapes.

From Fig. 10(e)–(h) it is seen how the algorithm recovers
from erroneous results and recaptures the real contour.

VI. DISCUSSION

We discuss below the achievements and remaining problems
with respect to the requirements put forward in the introduction.

1) Ability to track under the condition of a moving camera
and the presence of multiple motion

This demand is satisfied, since we do not make any assump-
tion on the motion of the camera. The camera is moving in all
examples shown. Further, the presence of other moving objects
in the scene does not affect the performance of the algorithm.
This is an advantage over the method of [12].

2) Ability to track fast moving objects and abrupt motion
changes

Since the object motion is estimated by an exhaustive search
in the space of translation vectors, the method is able to track
fast moving objects. This is an advantageous feature over many
methods in literature. Note also that the algorithm is able to track
abrupt changes in motion direction.

3) Ability to track nonrigid objects
The method shows a stable performance with no restrictions

on camera motion as in [12], when the magnitude of nonrigid
motion of the object is small and the contour prediction is accu-
rate enough. The algorithm is less stable when the object motion
is highly nonrigid, or complicated to the degree that the esti-
mated dominant motion is very inaccurate. This usually happens
with limbed objects whose limbs obey different motions.

4) Robustness to missing edge information
The combination of the current edge map and the predicted

contour yields robustness to a short-time lack of edge data in the
contour. In Fig. 9 specifically, the algorithm succeeds in recov-
ering from absent edge information even when it is gone for a
long time.
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Fig. 10. Tracking results.

5) Robustness to image clutter
The robustness to clutter is achieved due to two factors: an ac-

curate contour prediction and the removal of background edges.
We illustrate this in Fig. 11. As observed, although the initial

contour sticks to a strong spurious edge in the background, it
is forced to move out from this trap in the next frames due to
the contour prediction. The removal of background edges also
speeds up the convergence to the real object contour.

While the background clutter can be reduced by the compen-
sation with the object motion, the clutter inside object remains a
difficult problem since the interior edges have the same motion
as the contour. Another problem is that the desired contour is
not always associated with the same edge during the sequence.
As the object changes pose, it may happen that the contour is
split into different edges.

Despite robustness against missing edges and image clutter,
in general the proposed algorithm is not robust against occlu-
sions. The reason is that the algorithm needs not only edge in-
formation for finding the object contour, but also intensity in-
formation for estimating object motion. When the object is oc-
cluded, the motion estimation will fail due to lack of data.

Fig. 11. Illustration of the effect of removing background edges. (a) Initial
frame 0. Note that the contour is trapped at a strong spurious edge. (b) Result
at frame 3 without the removal of background edges. Note that the contour
prediction pulls the contour out of the trap. (c) Results at frame 3 when
background edges are removed as in Section III-D. Note the improvement
in comparison with (b). (d) Results at frame 5 using background edge
compensation.
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VII. CONCLUSION AND FUTURE WORK

In this paper, a new method has been developed for tracking a
nonparameterized contour in video. Using the inverted distance
transform of the edge map as edge indicator function, the con-
tour is prevented from being attracted to spurious edges with
high gradient magnitude. The estimation of the dominant object
motion allows to track fast moving objects. Contour prediction
and removal of spurious edges in background by compensation
with the object motion, yield robustness to background clutter.
Using the concept of topographical distance, we have developed
a method for combining the results of the watershed algorithm
on different surfaces. This allows to increase tracking stability
by taking closeness to both the current edge map and the pre-
dicted contour into account for the detection of the object con-
tour. As the contour detection is done via energy minimization,
a priori knowledge about the object shape can be incorporated
when needed.

The algorithm can be improved in several ways. We would
like to improve the edge indicator function in such a way
that it is not affected by spurious strong edges, and at the same
time, takes the strength of weak edges into account. Concerning
the motion estimation, one can apply the Kalman filter to
smooth object’s trajectory. The filter yields a better estimate of
the motion vector, when it is known beforehand that the object
motion is smooth. As noted in Section III-D, the compensation
with object motion will not remove the edge segments, which
are parallel to and longer than the length of . This
property can be exploited for a further removal of those edges,
although this also removes some object edges with the same
property. Finally, we point out some directions to tackle the
problem of occlusions. To handle partial occlusions one can
employ the robust statistic [25] in the estimation of object
motion. To cope with larger occlusions one needs a template to
store the object appearance. Occlusions can be detected when
the object appearance at the current frame is too different from
the previous frame. The template is also used as a memory for
recapturing the object when it comes out from the occlusion
[26].

In general, the algorithm exhibits good performance when
the object is not cluttered and the nonrigidity in object motion
is not too high. When the object is cluttered with a complex
motion, using pure edge data seems not sufficient. In this case,
other information such as edge motion ora priori knowledge
regarding the object shape should be incorporated.
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