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Tracking Nonparameterized Object Contours
In Video

Hieu Tat Nguyen, Marcel Worring, Rein van den Boomgaard, and Arnold W. M. Smeulders

Abstract—We propose a new method for contour tracking in In all of these methods, the state of the objectis represented by
video. The inverted distance transform of the edge map is used as a fixed number of parameters characterizing the contour and its
an edge |nd|c_atorf_unct|on for contour detection. Usm_g the concept motion. One great advantage of this approach is the possibility
of topographical distance, the watershed segmentation can be for- f modelina the tracki timati bl f hidd
mulated as a minimization. This new viewpoint gives a way to com- ormodeling the tracking as gn e; Imaton pro em or a_ ! 9”
bine the results of the watershed algorithm on different surfaces. Markov model. Powerful estimation tools associated with this
In particular, our algorithm determines the contour as a combi- model such as the Kalman filter [7] or Monte-Carlo filters [8]
nation of the current edge map and the contour, predicted from can be used to track the parameter values over the sequence.
the tracking result in the previous frame. We also show that the - 5,516 parameterization can also be well adjusted for global as
problem of background clutter can be relaxed by taking the object well as local behavior of the snake once some knowledge about
motion into account. The compensation with object motion allows g X ) . . g
to detect and remove spurious edges in background. The exper- the object shape is available. While some papers indicate the

imental results confirm the expected advantages of the proposed difficulty of dealing with topological changes like swallow tails

method over the existing approaches. [9] or cusps [3], this, in fact, can be handled by explicitly taking
Index Terms—Contour tracking’ motion ana|ysis’ watershed al- care Of any Collision Of the contour W|th |tse|f or W|th Other
gorithm. contours, and reinitializing the contour after the collision [10].

G-snakes in [11] handle local contour deformations based on
learning from a set of training examples. The absence of domain
knowledge about the object shape, however, may cause inaccu-
HIS PAPER addresses the problem of tracking the contotcies in the tracking, especially when the motion is nonrigid.
of a moving object in video. In essence, every iteration of |n the methods of the second class, the contour is represented

a contour tracking procedure consists of updating the contif a border of a region [12], [13]. The strength of this approach
based on measurements in the current frame, taking into accagnhat it allows for contour representation of an arbitrary shape.
the results from previous iterations. Furthermore, the contour topology can be easily controlled.

According to the method used for contour detection, we clashe geodesic contour model [14] belongs to this class. It is
sify tracking methods in literature into two categories dependinged by Paragiost al. in [12] to track objects moving against
on whether the methods track a parameterized contour or a naistatic background. The method employs a modified level-set
parameterized contour. algorithm to propagate the contour toward the edges. The

Most tracking methods belong to the first class where the cofrethod, however, will fail when the camera is moving. In [13],
tour is approximated by a parametric model. For example, in thee tracking is performed by means of motion segmentation.
methods of Blake and Isard [1], [2], the contour is approximateghe watershed algorithm is employed to segment three-dimen-
by B-splines. The methods first fit a B-spline curve to intensityional (3-D) optic flow. As optic flow estimation around object
edges and then use a Kalman filter or a Monte-Carlo filter ¥goundaries is usually inaccurate, the contour obtained with the
track the B-spline coefficients. In [3], Fourier coefficients arguatershed algorithm is also inaccurate. In addition, since the
used as parameters of the contour. In several other trackingrakthod is sensitive to segmentation errors in individual frames,
gorithms [4], [5], the contour detection is performed by minithe tracking result is unstable.
mizing some energy function, using extensions from the snakerhe goal of this paper is to develop a new method that tracks
model of Kasset al. [6]. In the Kalman shakes, the Euler-Langonparameterized contours. At the same time, the new method

grange equation is the basis for the construction of the predictgghuld have the following desirable properties:
next instance of the contour. The implementation of the model

requires the contour be approximated by a polygon with a fixed
number of vertices.

I. INTRODUCTION

1) the method should have the ability to track contours under
the condition of a moving camera and the presence of
multiple moving objects;

2) the method should be able to track fast moving objects
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Fig. 1. lllustration for the tracking scheme.

This paper is structured as follows. In Section |l we describ#ithin C, 992(t) is searched for while taking into account close-
the general tracking scheme. Section Ill describes the stepsmess to the current edge m@&y’) as well as the predicted con-
quired before the detection of the object contour. An algorithtour 9Q®).
for object contour detection is presented in Section IV. Tracking Finally, the object contoud€)(¢) is obtained by minimizing
results are shown in Section V. Section VI discusses the paraan-energy function. The process is then repeated for the next
eter setting and the properties of the method with a verificatidrame.
of the above requirements. Every step in this scheme is elaborated upon in the two next

sections.

Il. OVERVIEW OF THE TRACKING SCHEME
[ll. EXTRACTION OF EDGE INDICATOR FUNCTIONS

This section gives the description for the general tracking _ . . . ) o
scheme, depicted in Fig. 1. This sec'tlon descrl'bes the steps taken to_obtaln the edge indi-

Let (#) be the image region occupied by the object at tHedtor functions, required for contour detection.
current timet. We want to determine the object conta@ife(z), ) o
given the contoud$2(¢ — 1) obtained from the tracking in the A Object Contour Initialization
previous frame. The object contour is bootstrapped by segmentation of the

First, the position of the object is predicted for the curreriirst frame. We use the method in [15] which performs a color
frame. To that end, we estimate the motion of the object asdgmentation, followed by merging regions undergoing similar
warp 9Q(t — 1) into the current frame. Led2(®) be the pre- motions. The merging yields accurate results when the object
dicted contour. When the prediction is accurate, the real afmotion is well described by polynomial models such as affine
ject contouv2(t) differs only marginally in shape and locationor quadratic models. In general, this is true, when the moving
from the predicted contodtQ®). Hence 9(t) is confined toa object is rigid and distant enough from the camera. When this
bandC arounddQ®), We construc€ by thickeningdQ(®). The is not the case, the method may not merge all regions on the
edge map is then computed for the current frame. Using objettject but it reduces the number of regions substantially. The
motion to the full, irrelevant edges in background are removeabject extraction then requires some user interaction.
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B. Object Motion Estimation and Contour Prediction This implies that the band separates the rest of the image into

To obtain the predicted contod@®), we first estimate the WO connected regions: an interidft;,,, and an exteriot ..
If the size of the thickening. is large enough, we assigwl;,,;

object motion between two framééx, t—1) andI(x, t) using i :

a parametric motion model, and then warp the previous contd@rthe object and\1.., to the background. Hence, only pixels
8(¢—1) onto the current framé(x, ¢). In this paper, a transla- inside the band need to be addressed. Recommendations for set-
tion model is used. The dominant translation vestgit) is esti- "9 7= are given in Section V-A.

mated by minimizing the motion-compensated prediction err

Y. Edge Detecti Back Edge R |
formulated as a sum-of-squared differences dge Detection and Background Edge Remova

This subsection describes edge detection and the removal of
vp(t) = argmin > Uxt-1)—-I(x+v,t) (1) irelevant edges in background. . .
e cai-1 We employ the Canny edge detector to detect the intensity

edges. We keep the significant edges, eliminating those whose

whereV is the velocity space. Thus, the object motion is esq;‘radient magnitude is lower than a given thresiildThe set-
mated by matching intensities in two consecutive frames, aﬂHg of T, depends on the contrast at the object contour. In gen-
without computing an optic flow field beforehand. The contoyg 5| we prefer low values &, to guarantee the presence of the
Q") is then obtained by translatiif2(t — 1) overv,(t). entire object contour in the edge map, although low valués of

One may be concerned about the limitation of the S'mp}?roduce more spurious edges. We fise= 1.0. Let @) (¢) be
translation model for describing rotation, zooming and nonrigigl . edge map detected in frarfix, t).

motion. Nevertheless, this limitation does not cause problemscqntiour detection may be affected by irrelevant edges, espe-
for the tracking algorithm. Since the magnitude of nontranslera”y those in the background which have been occluded pre-
tional motion between two consecutive frames is usually Smax”ously. When object motion is known approximately, we can
the local contour deformations, which cannot be explained Ry the background edges from the object edges as they have
pure translation, are later captured in the step of contour detggerent motion vectors. For this purpose, we project the whole
tion. _ _ - edge map of the previous fran@®’) (¢ — 1), including edges

In practice, vectorv,(t) is found by an exhaustive of the packground and other moving objects, into the current
search in the discrete rectanguleir = [~vumax, vxmax]X  framel(x, ¢) according to the object motion vectoy(t). Ob-
[=Vy max; Uy max], Wherev, max @nduy max are the maximum oot eqges will be projected onto themselves while edges of
speeds of the object in andy directions in the image plane ihe phackground and other moving objects will not. Thus, the
respectivelyv, max andv, max are set according to the objeClatier irrelevant edges can be found by looking at the discrepan-
motion vector, estimated in the previous frame with mal§in - ios petween the projected edge nap(t) and the actual edge
map©(")(t). We first compute the distance transformaf, ()
and look for pixels i) () for which the distance exceeds a
Vymax = pr(t - 1) + Awv (2) thresholdr,

Uy max = Ump(t - 1) + Av

wherev,,(t — 1) andw,,(t — 1) denote the two components of  Opaciground(t) = {X € @(I)(t)‘ d(x, ©,(t)) > 77,} 3)
v,(t — 1), andAw is the maximal margin between the current
motion vector and the previous one due to acceleration or abritere ©vqcrgrouna(t) denotes the set of background edges in
changes in direction of motion. Note that the chance of an abrdpt” (t). Results for real data are shown in Fig. 3.
change in motion direction is usually higher than the chance ofNote that some background edges persist in the following
an abrupt change in speed magnitude. Therefore, we c¥ntefases:
at0 rather tharw,,(t — 1) in order to capture abrupt changesin 1) ©,, and®@)(¢) intersect accidentally;
motion direction. 2) an edge segment has the same direction, @), and a
For the sake of efficiency and accuracy, searching forthe ve-  length exceeding the length of,(¢).
locity is done in a multiscale manner. Initially, the search is caguch edge segments, nevertheless, are usually small and iso-
ried out at a coarse resolution using exhaustive search. As Faed, and hence, have little influence on the result.
exhaustive search finds the global minimum of (1), it allows for For simplicity of notations, in the rest of the paper we also
robust object motion estimation even in case of fast translationse©(”) (¢) to denote the edge map resulting after background
At higher resolutionsy,(t) is searched for only around the reedges are removed.
sult found at the lower resolution.
The object motion estimated is used not only for contour pr&- Inverted Distance Transform of the Edge Map and the
diction but also for the removal of background edges in SeBredicted Contour
tion 111-D. Note also that the proposed method does not need toThijs subsection derives the edge indicator function, required
estimate the camera motion or the motion of other moving ofyr contour detection.
jects in the scene. The common choice for edge indicator functions is the inten-
sity gradient. In practice, however, irrelevant edges in the back-
ground or inside the object may have a higher gradient mag-
The search ban@is constructed by thickening2®). We use nitude than the object contour. For still images, this is not a
the homotopic thickening [16] so thétis homotopic ta?Q(").  problem if the initial contour is placed close to the true contour.

C. Search Area Construction
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true contour JQ(z) current edge map and the predicted contour. Hence, a new algo-
rithm with two edge indicator functions needs to be developed.

Before describing the actual algorithm, it is helpful to con-
sider how the watershed algorithm is applied in case only one
edge indicator function is used.

predicted contour

() A. Definition of the Watershed
~3€2

This subsection gives the definition of the watershed algo-
rithm applied for one relief functioi(x) using two markers
Mint andMeact-

According to [20], in case of the watershed with imposed
markers, the original relief is reconstructed. This reconstruction
makes the markers sole regional minima of the reconstructed re-

, , lief. Let f(x) be the reconstructed relief. The functiffx) can
In image sequences, however, the gradient at the contour Vaig§jefined via the recursive conditional erosion as proposed in

with time. A strictly gradient-based approach, therefore, Ieafi§0]_ (x) can also be defined in a more elegant way as follows
to unstable tracking results as it may attract the contour towetﬂ]:

irrelevant edges with high gradient values.
To overcome the problem, we need an edge indicator func- { 0, if x € Mt UMt

Fig. 2. lllustration of the calculation of the search afea

tion invariant to object motion. We choose the inverted distangéx) =

min maxh(z), ifxeC
transform of the edge map [17], [18]

YE[XMP M UMege] 2€Y (6)

D (x) =M —d (x’ @(D) (4) wherefx ~ M, UM.] denotes the set of all possible paths

~ from x to the two markers. Thug;(x) can be interpreted as

whered(x, ©@)) is the Euclidean distance frorto 7, and  the maximal level the water from the markers has to reach before
M is an arbitrary constant such th&t) (x) > 0 everywhere. floodingx. Foralgorithms computing(x), we refer to [20] and
An algorithm for computingl(x, ©@) is given in [19]. Three- [22].
dimensional views of this function for some simple edge maps The object contour is now detected as the watershed line
are shown in Fig. 4. Since the inverted distance transform H&sS(f) of the relieff, viewed as amountain landscapes (f)

a constant gradient almost everywhere, it can guide a cont&an be defined formally using the concept of topographical dis-
moving to edges over a long distance. tance [23], [24]. The topographical distance with respect to a
In order to increase tracking stabili#§§2(t) should be close smooth surface is defined as the distance weighted with the

to the predicted contou?2("). Therefore, we use the invertedgradientnornjV f|. However, as the functiofiis nonsmooth in

distance transform of the predicted contour as well our case, the following definition due to Meyer [23] is required.
Definition 1: Supposef is a function defined oft?. Given
RP)(x) =M —d (x, 8Q(P)) ) (5) apathy: [0, 1] — R2 connecting two pointg andy. Consider
all possible partitions of: ¢ = (y1, V2, .- ., v») Wherey; =
Both (D (x) and h{P)(x) are exploited in the next section toy(#;),t; < t2 < --- < t,,t1 =0, t, = 1. Lete; be the erosion
find the object contoud$2(¢). of f by a disk of radiugy,—1 — ~;|. The topographical variation

of f on~ is defined as
IV. CONTOURDETECTION

We now move to the most important step in the tracking TV (y) = sup Z [ () — e f(4)] (7)
process: the detection of the object contdX(z). ¢ =2

For contour detection, we employ the watershed algorithrq1 th is tak I ibl it f
from mathematical morphology [17], [20], using the two region‘é’ ere the supremum IS taken over all possible partitions ol
Definition 2: The topographical distance between two points

M+ and M., as markers. The advantage of using the water- . . . o
shed algorithm on a set of two markers is that the resulting Sip_andy e minimal topographical variation over all paths
mxtoy

mentation always contains only two regions and the resulti
contour is always closed and simple. Furthermore, the contour .

is positioned at the most significant edges within the search band Lx,y) = A,Ef,liﬂ vy (8)

C. It can be proven that the watershed algorithm yields the pre-

cise contour under certain regularity conditions. The problem Definition 3: The topographical distance from a poiato a

yet to be solved is that the original watershed algorithm tak&stM is

as input only one edge indicator function. We want to use two

edge indicator functions: the inverted distance transform of the L(x, M) = yiéljf/l L(x, y). 9)
current edge map(?)(x) and the inverted distance transform of

the predicted contour®’(x) in combination to increase the ro-An algorithm for the computation of the topographical distance
bustness of the contour detection as a compromise betweenishgiven in [23].
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(=]

Fig. 3. (a) One frame. The object being tracked is the head of a man, (b) result of the Canny detector, and (c) removal of background edges according to (3)

eachf(), we compute two topographical distance transforms to
M and M. denotedLE;L)t(x) andLg'th (x), respectively.
In [21], we prove that the watershed segmentation can be rep-
* resented as a minimization. In our case, the watershed segmen-
0 tation with respect to the relief functioff) can be obtained by
minimizing the energy function

EO(Q0) = // L0, (x) dx + // Odx  (12)
Q Qeat
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where Q;,; denotes the interior of the object contour
and ., its complement. Note thaff, ngt(x) dx =

S = fla,, ngt(x) dx, whereS = [, g ngt(x) dxisa
constant, independent 6f;,,,. Ignoring S, this energy can be
rewritten as

! > £ = [[ {100 - L0} ax  @3)
Fig. 4. (a) Some simple edge maps and (b) a 3-D view of the inverted distance i
function i(x). o

The minimization of£(-) is carried out over all possible config-

Now, let L;,,;(x) andL...(x) be the topographical distanceg!rations of€2;,,

with respect to the surfacgfrom x to M,,,, and M., respec- ‘ 5 W,
tively. WS(f) can then be defined as CBint (f ) = argyuin B (14)

int

Obviously, to find the region?;,; that minimizes this integral

WS(f) = {xlLint(x) = Lear(x)} (19 e need to collect points wheie ), (x) — L%),(x) < 0. The
The following sets result region, therefore, includes the interior catchment basin
CBmt(f(~)), but does not intersect the exterior catchment basin
CBear(fO). Its border, wherd.\),(x) — L), (x) = 0, coin-
CBine(f) ={x|Lint(x) < Lear(x)} cides with the watershed lini” S( ().

To find a contour which is a tradeoff between the watershed
lines on the surfaceg?) and £, we minimize the following
weighted sum of the two energy functions:

CBepi(f) ={x|Lint(X) > Legi(x)} (11)

are the catchment basins.®f;,, and M., respectively.
The deflnltlons of the topographlcal d|stange and watershed E—aED 4 (1- a)E(P)

are used in the next subsection for the combination of the wa-

tershed lines of two different surfaces. - // {a [Lgr?t(x) _ Li;)t(x)}

Qint

B. Combine Measured Edges With the Predicted Contour

This subsection presents an algorithm for finding the object
contourd$)(t), taking into account closeness to both the curre@thereq [0, 1] is a data balance coefficient. Thus,
edge map® ) (t) and the predicted conto@Q®.
A summary of the algorithm is given in Fig. 5. Qt) = arg glin E. (16)
First, the reconstruction is performed for each of the two o
edge indicator functions(!)(x) and2(")(x) according to (6). The minimization is carried out by selecting from the search
Let () andf® be the two reconstructed relief functions. FobandC, defined in Section 11I-C, the points, where the integrand

+(1- ) [LE) ) - LY (0| fax (15)
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Fig. 5. lllustration for the detection @f2(¢), a zoomed-in view of the contour detection block in Fig. 1.

a=02 =105 i = (L8

Fig. 6. lllustration of the combination of watershed lines. This experiment used two edge maps which were created from the two thin contoursiglithéss.br
The thick and highlighted contour is the result of the minimization of the energy function (15).

is negative, and adding them to the interior markey,,.. The required, the contour length is added to the energy function in
contour of the result region satisfies (15) in order to make the contour “harder” against deformation

min {aE(I) +(1-a)E® 4 /J/J(t)/
8

ds} (18)
Qint

o [Lin() - L]+ (1 - [ L&) - LEx)] = 0.

(7)
The resulting contour belongs to the following se

[[CBint(f(I))mCBint(f(p))]U [CBewt(f(I))mCBewt(f(p))]]c-

As a consequence, it lies between the two watershed li

WS(fD) and WS(f®) (see Fig. 6). The coefficient

is used to control the influence of the predicted contour to

the result contour. As observed from (17), when= 1 the B(t) = s*(t—1) (19)

contour coincides with the watershed of the surffidé. When

a < 0.5, the predicted contour has more influence. In this caséheres(t — 1) is the maximal size of the bounding box of the

the tracker tends to stick to the predicted contour, leading @9J€ct regiont2(¢ — 1) in the previous frame.

smooth changes of the tracking results. This, however, preventstarting from the segmentation result of the previous subsec-

tracking nonrigid motion of the contour. tion, the smoothing stage performs an exchange of pixels at the
The incorporation of the predicted contour into result aldeerder betweef;,, andQ..; such that the energy (18) is min-

resolves the problem of missing edges. When the object mo@ézed. For the detailed implementation we refer to [21].

into a region where there is no edge evidence between object conclusion, the object contodKX(¢) is obtained by min-

and background, the tracker keeps the contour as predicted.imizing an area functional, computed from the topographical
distances to the markers with respect to the reconstructed edge

indicator surfaceg() (x) andf® (x). The minimization of this

energy function yields a tradeoff between the watershed lines on
The watershed algorithm itself does not take the smoothnéie two surfaceg? (x) and f(x). Smoothness of the con-

of the contour into account. As a consequence, often the waur, when desired, can be imposed by adding the contour length

tershed line looks ragged. When smoothness of the contoutdshe energy.

whered is a constant and() is a coefficient which does not de-
tpend ont2;,,:. The coefficient3(¢) is meant to make the tuning
of 3 invariant to scaling. Observe that when the image is en-
largedn times, the values aE) and E(?) increasen?® times
NWhile the contour length increasegimes only. Therefore, we

C. Imposing Smoothness
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i frame T2 b fraame 50 <l frame 83
Fig. 7. Results of tracking the tennis ball in the table tennis sequence (marked by a black outline).

- — -

__

il frame ¥ b Ereme 16 ¢l rame 42

Fig. 8. Tracking results.

V. EXPERIMENTS 5) Smoothness coefficiefit

Contour smoothing illustrates the ability to incorporate
priori knowledge about the object shape into the resulting

Let us first discuss the dependence of the algorithm on tbentour. The value ofs should be given a value compatible
parameters. with derivative of the first two terms in eq. (18) with respect

1) The thickening size. to a deformation of2;,;. In general, the coefficient for the

In case of a clear object in a clear background, we should jusgularization term is set to higher values when edge data are
setr. larger than the expected maximal displacement betweiasufficient for the determination of the object contour. In the
the true contour and the predicted contour. The displacemengigeriments shown in the next subsection, we @ise 4.0 x
caused by the nonrigidness of object and its limbs. In case of@* for the sequences in Figs. 9 and 10. In Figs. 7 and 8, we
cluttered object or background, larger values oincrease the useg = 0.
number of spurious edges in the search band, which increases
the risk of following wrong edges. We usg = 4h, whereh is B. Results
the pixel size. We have tested the proposed method for several video clips.

2) The data balance coefficient Results are shown in Figs. 7-10.

The effect of tuningx has been discussed in Section IV-B. In case of table tennis, the ball moves fast while the camera
In case of a rigid object with a simple motion, one may trugfans. When the ball hits the table, it shows an abrupt changes in
the predicted contoudQ*) more than the current edge mapmotion direction. The algorithm can follow these changes as is
©)(¢), and therefore use high valueswfo emphasize the in- seen in Fig. 7(c).
fluence of9Q(”. In case of nonrigid objects or complex motion, Fig. 8 shows another example where the algorithm demon-
since the prediction may not always be accurate, low values otrates its capability of tracking a fast moving object. The ob-
are preferred to stre€3(’)(¢). We assume equal influence fromject contour is detected well as it is seen with a high contrast
the past and the data by setting= 0.5. against the background. The object has sharp limbs and as the

3) The threshold-, for background edge compensation algorithm poses no severe smoothness constraint, the limbs are

For the usual background we set the valueoéqual tor. detected correctly.
because they both are due to the accuracy of the contour predidn the sequence of Fig. 9, the camera pans to the right,
tion. In order not to loose too much elements of the real contouracking a body of a man walking. In the middle of the
it is better to use a conservative valuergf\We user, = 1h. sequence, two children enter the scene and run in opposite

4) Maximal margin between the current speed and the prdirection of the man. Tracking is difficult as the nonrigid
vious oneAv object exhibits complex motion and moves in a cluttered

Aw should take large values in sequences where the magdwmkckground. Furthermore, in several frames, the background
tude of object speed changes abruptly, and small values wlners a similar grey intensity as the head so that the head border
the object motion is smooth. Note that a large valudofis al- is left undetected. This could be mended by selecting another
ways safe but such a value leads to high computation costs. ¥dge detector or another tuning of the edge detector. Here, we
useAv = 3h. rather demonstrate that even in the case of missing edges the

A. Parameter Setting
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Fig. 9. Tracking results.

algorithm produces approximate results, see Fig. 9(d)—(f). TheThis demand is satisfied, since we do not make any assump-

real contour is recaptured later on in the sequence as is seetidn on the motion of the camera. The camera is moving in all

Fig. 9(e). The example also illustrates the insensitivity of threxamples shown. Further, the presence of other moving objects

algorithm to the presence of multiple moving objects. in the scene does not affect the performance of the algorithm.
Another difficult situation is shown in Fig. 10(e). The motiorThis is an advantage over the method of [12].

pattern in this sequence is a rotation of the head due to which &) Ability to track fast moving objects and abrupt motion

totally different view of the object appears, followed by a movehanges

into the distance. The camera is panning slightly. When the headince the object motion is estimated by an exhaustive search

is rotating, part of the contour at the left ear is split into twé the space of translation vectors, the method is able to track

edges: an edge between the dark hair and the ear, and andésirmoving objects. This is an advantageous feature over many

edge between the hair and the background. If no regularizatimethods in literature. Note also that the algorithm is able to track

is performed, the resulting contour would stick to the first edggbrupt changes in motion direction.

that is undesired. To resolve this problem, edge data are insuffi-3) Ability to track nonrigid objects

cient. A priori knowledge regarding the object shape should be The method shows a stable performance with no restrictions

used. In the example shown, the regularization of (18) preveniga camera motion as in [12], when the magnitude of nonrigid

sharp corners which usually appear in irregular shapes. motion of the object is small and the contour prediction is accu-
From Fig. 10(e)—(h) it is seen how the algorithm recoverate enough. The algorithmis less stable when the object motion
from erroneous results and recaptures the real contour. is highly nonrigid, or complicated to the degree that the esti-

mated dominant motion is very inaccurate. This usually happens
with limbed objects whose limbs obey different motions.
VI. DISCUSSION 4) Robustness to missing edge information
The combination of the current edge map and the predicted
We discuss below the achievements and remaining probleowsitour yields robustness to a short-time lack of edge data in the
with respect to the requirements put forward in the introductiogontour. In Fig. 9 specifically, the algorithm succeeds in recov-
1) Ability to track under the condition of a moving cameraring from absent edge information even when it is gone for a
and the presence of multiple motion long time.
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Fig. 10. Tracking results.

5) Robustness to image clutter

The robustness to clutter is achieved due to two factors: an
curate contour prediction and the removal of background edg _—

We illustrate this in Fig. 11. As observed, although the initic=
contour sticks to a strong spurious edge in the background
is forced to move out from this trap in the next frames due
the contour prediction. The removal of background edges al
speeds up the convergence to the real object contour.

While the background clutter can be reduced by the compe;
sation with the object motion, the clutter inside object remains
difficult problem since the interior edges have the same moti
as the contour. Another problem is that the desired contour—
not always associated with the same edge during the seque

split into different edges.

Despite robustness against missing edges and image clu
in general the proposed algorithm is not robust against occ|
sions. The reason is that the algorithm needs not only edge
formation for finding the object contour, but also intensity in!
formation for estimating object motion. When the object is Oq—'lg. 11. [lllustration of the effect of removing background edges. (a) Initial
cluded, the motion estimation will fail due to lack of data.  frame 0. Note that the contour is trapped at a strong spurious edge. (b) Result

at frame 3 without the removal of background edges. Note that the contour
prediction pulls the contour out of the trap. (c) Results at frame 3 when
background edges are removed as in Section IlI-D. Note the improvement
in comparison with (b). (d) Results at frame 5 using background edge
compensation.
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VII. CONCLUSION AND FUTURE WORK [5] N. Peterfreund, “Robust tracking of position and velocity with Kalman
snakes,”|EEE Trans. Pattern Anal. Machine Intellvol. 21, pp.

; ; 564-569, June 1999.
In this paper, anew method has been developed for tracklng i&] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour

nonparameterized contour in video. Using the inverted distance ~ models,"Int. 3. Comput. Visvol. 1, no. 4, pp. 321-331, 1987.
transform of the edge map as edge indicator function, the con{7] R. G. Brown and P. Y. C. Hwangntroduction to Random Signals and

; ; ; ; Applied Kalman Filtering New York: Wiley, 1992.
tour is prevented from bemg attracted to spurious edges Wlth[8] J. S. Liu and R. Chen, “Sequential Monte-Carlo methods for dynamic

high gradient magnitude. The estimation of the dominant object * systems,. Amer. Statist. Assqazol. 93, pp. 1031-1041, 1998.
motion allows to track fast moving objects. Contour prediction [9] S. J. Osher and J. A. Sethian, “Fronts propagating with curvature de-

; ; ; pendent speed: Algorithms based on Halmiton—Jacobi formulatidns,”
and removal of spurious edges in background by compensation Comput. Physvol. 72, pp. 12-49, 1988.

With the object motion, yield ropUStn?SS to background clutterfig) T.Mcinerney and D. Terzopoulos, “Topologically adaptable snakes,” in
Using the concept of topographical distance, we have developed Proc. IEEE Conf. Computer Vision, ICCV.IE95, pp. 840-845.

ii ; 1] K. F. Lai and R. T. Chin, “Deformable contours: Modeling and
a method for comblnlng the results of the watershed algomhrﬁL extraction,” IEEE Trans. Pattern Anal. Machine Intellvol. 17, pp.

on different surfaces. This allows to increase tracking stability  1084-1090, Nov. 1995.
by taking closeness to both the current edge map and the prB2] N. K. Paragios and R. Deriche, “A PDE-based level set approach for

; ; ; ; _ detection and tracking of moving objects,”Rmoc. Int. Conf. Computer
dicted contour into account for the detection of the object con Vision, 1998, pp. 11391145,

tour. As the contour detection is done via energy minimizationj13) ch. Gu, “Multivalued morphology and segmentation-based coding,”
a priori knowledge about the object shape can be incorporated Ph.D. dissertation, Ecole Polytechnique Federale de Lausanne, Lau-
when needed. sanne, Switzerland, 1995.
. . . 0[14] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contolrs,”
The algorithm can be improved in several ways. We woul J. Comput. Vis.vol. 22, no. 1, pp. 61-79, 1997.
like to improve the edge indicator functidr{x) in such a way [15] H. T. Nguyen, M. Worring, and A. Dev, “Detection of moving objects

s : in video using a robust motion similarity measur5EE Trans. Image
that it is not affected by spurious strong edges, and at the same Processingvol. 9, pp. 137-141, Jan. 2000.

time, takes the strength of weak edges into account. Concernings] J. Serrajmage Analysis and Mathematical MorphologyNew York:
the motion estimation, one can apply the Kalman filter to ~ Academic, 1982.

P : : : ; 17] S. Beucher and F. Meyer, “The morphological approach of segmenta-
smooth object's trajectory. The filter yields a better estimate Of tion: The watershed transformation,” Mathematical Morphology in

the motion vector, when it is known beforehand that the object  |mage Processing. Dougherty, Ed.  New York: Marcel Dekker, 1992,
motion is smooth. As noted in Section IlI-D, the compensation ch. 12, pp. 433-481.

: : ; : : . 418] D. L. Cohen and I. Cohen, “Finite element methods for active contour
with ObJeCt motion will not remove the edge segments, WhICH models and balloons for 2D and 3D imagd&EE Trans. Pattern Anal.

are parallel tov,,(¢) and longer than the length of,(¢). This Machine Intell, vol. 15, pp. 1131-1147, 1993.
property can be exploited for a further removal of those edged19] G. Borgefors, “Distance transforms in digital image€dmput. Vis.,

: ; : Graph., Image Processvol. 34, pp. 344-371, 1986.
although this also removes some object edges with the sa ] F Meyer and S. Beucher, “Morphological segmentatiod,” Vis.

property. Finally, we point out some directions to tackle the Commun. Image Represeniol. 1, no. 1, pp. 21-46, Sept. 1990.
problem of occlusions. To handle partial occlusions one caf?l] H. T. Nguyen, M. Worring, and R. van den Boomgaard. (2000) Wa-

ot ; ; : ; tersnakes: Energy-driven watershed segmentation. Intelligent Sensory
employ the robust statistic [25] in the estimation of ObjeCt Information Systems Group, Univ. of Amsterdam. [Online]. Available:

motion. To cope with larger occlusions one needs a template to  http://www.science.uva.nl/research/reports-isis/2000/ISISreport12.ps.
store the object appearance. Occlusions can be detected whe? L. Vincent, “Morphological gray scale reconstruction in image analysis:

: : : Applications and efficient algorithms|JEEE Trans. Image Processing
the object appearance at the current frame is too different from vol. 2, pp. 176-201, 1993,

the previous frame. The template is also used as a memory f@f3) F. Meyer, “Topographic distance and watershed linsigihal Process.

recapturing the object when it comes out from the occlusion  vol. 38, no. 1, pp. 113-125, July 1994.
[26] [24] L. Najman and M. Schmitt, “Watershed for a continuous function,”

. . Signal Processvol. 38, no. 1, pp. 99-112, Jul. 1994.
In general, the algorithm exhibits good performance whenzs] s ayer and H. S. Sawhney, “Layered representation of motion video

the object is not cluttered and the nonrigidity in object motion using robust maximum-likelihood estimation of mixture models and
: : : ; : MDL encoding,” inlICCV '95, Cambridge, 1995, pp. 777-784.

IS n,Ot too hlgh' When the ObJeCt IS CIUttereq \,Nlth a complex 26] H. T. Nguyen, M. Worring, and R. van den Boomgaard, “Occlusion ro-
motion, using pure edge data seems not sufficient. In this case, = pust adaptive template tracking,” Rroc. IEEE Conf. Computer Vision,
other information such as edge motionapriori knowledge ICCV'2001, 2001, pp. |: 678-683.

regarding the object shape should be incorporated.
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