TEMPLATE TRACKING USING COLOR INVARIANT PIXEL FEATURES

Hieu T. Nguyen and Arnold W. M. Smeulders

Intelligent Sensory Information Systems
University of Amsterdam, Faculty of Science
Kruislaan 403, NL-1098 S], Amsterdam, The Netherlands
Email: { tat,smeulder }@science.uva.nl

ABSTRACT

In our method for tracking objects, appearance features
are smoothed by robust and adaptive Kalman filters, one to
each pixel, making the method robust against occlusions.
While the existing methods use only intensity to model the
object appearance, our paper concentrates on multivalue fea-
tures. Specifically, one option is to use photometric invari-
ant color features, making the method robust te illumination
effects such as shadow and object geometry. The method is
able to track objects in real time.

1. INTRODUCTION

This paper is concerned with tracking rigid objects in im-
age sequences, using template matching. In essence, object
tracking is the process of updating the object attributes over
time. To suppress noise and achieve tracking stability, the
attributes are smoothed by a temporal filter like the Kalman
filter or Monte-Carlo filters. In contrast to many early meth-
ods that smooth position, motion and shape of the object
only, in recent years several researchers (1, 2, 3, 4] empha-
size object appearance as important attributes to track. The
temporal smoothing of object appearance enables the reli-
able detection of the object in new coming frames. In case
of tracking rigid objects, the method of [4] has several ad-
vantages over the other methods in terms of robustness to
occlusions, the automatic tuning of filter parameters and the
implementation simplicity.

The existing methods use scalar features like grey value
(1, 2, 4] or phase data [3] to describe the object appearance.
Such features have a limited description power as they ig-
nore the color information. Furthermore, the use of grey
value suffers from the sensitivity to illumination change.
The phase data {3] has some illumination independence but
the application of this kind of feature is still limited due
to its scalar nature. In this paper, based on the framework
of [4], we aim to develop an algorithm for tracking color
objects, which is insensitive to strong and abrupt illumi-
nation variations. To achieve this, the method referenced
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needs to be extended to cope with multivalue appearance
features. Furthermore, in many cases the component fea-
tures are highly correlated and the tracking algorithm shouid
also take this into account.

2. TRACKING A MULTIVALUE TEMPLATE
USING A ROBUST ADAPTIVE KALMAN FILTER

2.1. Template matching based tracking

Let £¥(t} be the image region, occupied by the tracked ob-
ject at any time moment . When the object is rigid, (2(t) is
obtained from a template region {1, via a coordinate trans-
formation ¢ : €25 — £2{t) with a reasonable number of pa-
rameters. Examples are the translational, affine or quadratic
transformations, This implies that every point x = (z,%)
in the target region $2(¢) is obtained from a corresponding
point p = (pg, py} in the template 0y as follows:

x = @(p; a(t)) 0
where a(t) denotes the parameter vector of the transforma-
tion, which is specific for §2(t). This vector determines the
position of the object in the current frame. The object mo-
tion is characterized by the deformation of ©{t) between
two consecutive frames, and can usually be modeled by the
same type of transformation.

The object appearance is represented by the collection
of feature vectors for pixels inside £2(t). The components
of such vectors may be RG B values or color invariants [5]
at the pixel considered. Let d be the number of components.
We therefore define for each point p in {2 a template feature
vector g(p,t) € B9, which represents the image features at
the corresponding point x given in eq. (1).

Let f{x,t) denote the observed feature vector of pixel x
at time ¢. The vector a(t) is estimated by matching the tem-
plate g(p, '), obtained at some earlier point in time ¢/ < ¢,
with the current image f(x,t). Usually, the previous tem-
plate is used, i.e. ¢ = £ — 1. During an occlusion, ¢’ is the
moment where the occlusion is detected. Let

r(p) = fo(p;a), t) — glp,t) (2)
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This is the residual vector between the template value g(p, t')
and the observed data f{y(p; a),¢). The matching error at
pixel p can be defined by the Mahalanobis distance: <(p) =

r{p) TR 'r{p) where R is the covariance matrix of the
residual r(p). Furthermore, in order to make the matching
robust against partial occlusions, we should downweight too
large residuals, i.e. outliers. This is achieved by using a
robust error norm p(e) where p is a robust function. We
use Huber’s function, although other functions in [6] can be
used as well:

oe) = { €2/2 if le] <¢

c(le] — ¢/2) otherwise

&

where ¢ is the cutoff threshold. Since the minimization
of the matching error requires the differentiation of p, the
bounded derivative of p effectively removes the influence
of outliers to the minimization of eq.(4) to follow. Under
the assumption that the residual r{p) has a normal distribu-
tion with zero mean, r(p) TR ‘r(p) has a chi-square dis-
tribution with d- degrees of freedom. Thus, we can set
¢ = /x5 where xj 5 is the & — th quantile of the chi-
square distribution with d degrees of freedom, and ¢ is the
level of significance, typically set to (.99.

Having defined the matching error for one pixcl, the pa-
rameters a{t) is estimated by minimizing the total error over
the template:

al) = argmin Y- (Ve R 1) @)
P

[0

For the computational efficiency, we consider only the
twa kinds of motion, encountered most frequently in video:
translation and scaling. a(t} is then found by exhaustive
search in the quantized paramneter space in a coarse-to-fine
manner [4]. For the stability, the solution of eq.(4) is further
smoothed by a Kalman filter together with the object veloc-
ity. This smoothing is standard and can be found in many
traditional methods. See [7] for an example.

In conclusion, template matching is described by eq.
{4), once methods for estimating image features g(p, ¢) and
residual covariances R are given.

2.2. Kalman filter for tracking intensity

Following 4], the Kalman filter is employed to estimate
g(p,t). We assume here that image features g(p, ¢) for dif-
ferent pixels p are independent so that they can be tracked
indcpendently by individual Kalman filters.

The prediction and observation models for the filters are
as follows:

gip,t) = pglp.t—1)+eulpt) (9
fle(p;a(t)),t) = glp. &) +e7(p,t) (6)

where a({) is the result of eq. (4). Here, e,(p,t) and
£¢(p, t) denote the vectors of state noise and measurement
noise respectively. &, models changes of object appear-
ance due to factors such as change of the illumination con-
dition or the object orientation, and & ; models the noise in
the image signal. As common in Kalman filtering, the two
noise processes are assumed to be independent gaussians:
ew(p,t) ~ N(0,Cy) and £4{p,t) ~ N{0,Cy). Further-
more, the covariance matrices C,, and C; are assumed to
be the same for ail p. This assumption is usually valid since
all points p have a similar motion. Thus, all filters share the
same parameters.

We now derive equations for the Kalman filters con-
structed from eq. (5) and (6). Att = 0, the template is
boostraped from the observed data. We use g(p,t™) to de-
note the prediction of g(p, £) at time ¢, reserving g(p, t) for
the estimate after the filter takes the current measurement
fl¢:(p;a(t)), t) into account. Let C,(¢™) and C,(2) be the
covariance matrices of g(p, £~ ) and g(p, t) respectively. Let
r(p, t) be the residual defined by eq. (2) with¢/ = ¢ — 1.
The template is updated as follows:

gpt7) = glpt-1) (Y]
Cg(t_) Cg(t - 1) + Cw {8)
K(t) = Cu(t™)[Colt™) +Ch]™"

glp,t) = glpt7) +K)r(p,2t) )
Cy(t) = Cult7) —K()C,u(tT) (10)

Eq. (9} yields the optimal estimates for the template fea-
tures g(p, t), provided the residual is gaussian. In practice,
this assumption is often vielated due to occlusions or im-
perfections of the motion model used. To produce reliable
feature estimates, template pixels with large residual should
be removed from the filter state estimation.

Again, the criteria for outlier detection is based on check-
ing whether the Mahalanobis distance r(p)Tl_Z_lr(p) ex-
ceeds a certain threshold. On the other hand, to prevent the
possibility that g(p) may never be updated, we do not al-
low the algorithm to declare a pixel as outlier for long time.
For each pixel p, a counter n,{p) is introduced, that counts
the number of successive frames where p is declared outlier.
When n,(p) exceeds a maximally allowed value nomaz, the
template value g(p) is re-bootstrapped from the observed
value f{i2(p; a(t)). Thus, eq. (9) is replaced by:

as ineq. (9) if (p, 1) "R™'r(p, 1) < X35

8p:1) = { fle(ma(t),t) if no(p) Z omaz

glp,t7) otherwise

(1n

From now on, whenever the updating of the template is
mentioned, it refers to eq. (11).
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The turning off of the tracking at outliers is useful not
only for making the template insensitive against short-time
and partial occlusions. It is also useful in case the template
does not match exactly the object shape and contains also
pixels from the background. In such a case, background
pixels are treated as outliers

2.3. Adaptive filtering

This section considers the proper parameter settings.

The Kalman filter described requires the following pa-
rameters be known: the covariance matrix for the initial
state Cg4(0), for the state noise C,,, and for the measure-
ment noise Cy. Among these, the matrices C,, and Cy are
most critical. In practice, they are seldom known and not
even constant in time. Therefore, one would like to esti-
mate these parameters simultaneously with the states. We
use the covariance matching method (8, p. 141] which sug-
gests to compare the estimated variance of the residual with
their theoretical variance.

Let £ be the subset of ¢ without outliers, and N the
number of pixels in 2f,. The covariance of the residuais is
estimated by averaging r(p, t)r{p, t}7 over €2, and over the
last K frames:

] t
R= v >, R (12)
i=t—K+1
where
R() = Y e, oe(e,) (13
pen;

The matrix R, given by eq. (12}, is used ineq. (4) and (11).

By comparing R with the theoretical variance of t(p, t),
whichis C4(t™) + C;. one of the two noise covariance ma-
trices can be readjusted if the other one is known before-
hand. Tuning one matrix is usually sufficient for the filter to
adapt to changes of object orientation or illumination. Let
us assume the measurement noise Cy is known, then the
state noisc is estimated as:

Cuo=R-C;-Cy(t—1) (14)

This re-estimation of C,, is especially useful when the ob-
ject orientation or the illumination condition changes. In
these cases, object appearance features change faster, lead-
ing to the increase of R, and hence, the increase of C,, as
well. The higher value of C,, actually puts more weights
for the observation data in the output of the Kalman filter,
and therefore, keeps the template up-to-date with the object
appearance.

It remains to specify Cy and the initial values for C,,
and C,. They are set such that initially the states and mea-
surements have equal weights:

C; = 0.5R(1), Cy,(0) =0 and C,(0} = 0.5R(1) (15)

Using eq. (14} and (15), all noise parameters are set
automatically.

2.4. Severe occlusion handling

The rejection of outliers, described in eq. (11), makes the
template robust against short-time and partial occlusions.
Severe occlusions are usually indicated by high number of
ocutliers. Tn this case, it is better to turn off the tracking for
the entire template. An occlusion is declared when the frac-
tion of outliers exceeds a predefined percentage

N-N'

AL {16)

where N is the number of pixels in R, and as before, N’ is
the number of pixels in R’. During the occlusion, the tem-
plate and parameters are not updated. Finding the end of
the occlusion relies on the assumption that the maximal du-
ration of the occlusion is limited to L frames. Let t, be the
time the occlusion is detected. The template is then matched
with the frames from ¢, to t, + L. The end of the occlusion
is the frame, yielding the minimum costin (4). To save com-
putations, we do not consider all L frames and skip frames
with exponentially increasing steps. The typical sequence
of frame numbers to visit is then 5,7,11,19,35 etc. The tem-
plate is re-initialized from the new object features, once the
end of occlusion has been determined.

There is a relation between v and 7,mez in eq. (11).
Tlomax Must be large enough so that the template remains
unaffected at first frames of the occlusion, where the frac-
tion of outliers is still below . Thus, we set:

Nomax = Z (]7)
K
where & is the ratio of the minimal occlusion speed to the
template width. We set &k = 5% and v = 25%. Hence,

TNomaz = B

3. EXPERIMENTS

We applied the presented method for tracking three kinds of
features: image intensity 2 + G + B as proposed in {4], the
(R, G, B) vector, and the photometric features suggested by
[5]. In the latter case features of a pixel are computed as:

—_— R . C —_— G . C f— \ B .
“= max{G, B} ° max{B, R}’ 8= max{ R, (}}’
(18)

where R, G, B are the usual color values. These features
have been shown to be invariant to shadow and object ge-
ometry orientation with respect to camera while retaining
intrinsic object properties [5].
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b) frame - 78

d) frame 270

c) frame 188

Fig. 1. Tracking results using color invariants. aj.b).c):
with an complete occlusion. d} with an abrupt change of
Hlumination, created by turning off one of the light sources.

algorithm | number of clips correctly
where the tracking | detected
is successful occlusions
intensity 16 17
RGB 16 17
C1C2C3 11 14

Table 1. Tracking in movie. In total, there are 20 clips
which contain 21 complete occlusions. The average dura-
tion for each clip is 150 frames,

In the first experiment, the algorithms were tested for 2
video sequence created by ourselves. This scquence con-
tains several complete occlusions and abrupt changes of il-
Iumination. The tracking result with the algorithm using
color invariants is shown in Figure 1. While the algorithms
using intensity and RGB lost track at the moment of the
abrupt change of illumination, the tracker with color in-
variants vector (18) successfully tracked the chject over the
whole sequence.

In the second experiment, we tested the algorithms with
several clips in an action movie. These clips contain many
occlusions but not much abrupt illumination changes. The
results are shown in Tab.l. As observed, while both the
aigorithms using intensity and RGB values exhibit a good
and comparable performance, the algorithm using color in-
variants has an inferior performance. The reason is that the
invariants throw away some informaticn of object appear-

ance. Further research is therefore needed to determine the
criteria of switching to a specific feature type.

In our PC (Pentium 1, 400 MHz) the average tracking
time is approximately 0.005 seconds per frame, and hence,
fast enough for real time applications.

4. CONCLUSION

This paper proposes a method for tracking rigid objects in
image sequences using template matching. While shape
and motion are smoothed in a similar manner as traditional
methods, multivalue appearance features are smoothed in-
dependently by robust and adaptive Kalman filters, allow-
ing for the accurate detection of the object. In particular, the
rejection of outliers in observations using the Mahalanobis
distance aliows the efficient handling of occlusions. At the
same time, the tracker can tune its parameters to adapt to
changes of the object erientation or illumination conditions.
The usefulness of the algorithm has been illustrated with the
tracking of color invariants.
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