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In many advanced segmentation problems objects have inhomogeneous bound-
aries, hindering segmentation under uniform boundary assumption. We present a
multifeature image segmentation method, called necklaces, that exploits local inho-
mogeneities to reduce the complexity of the segmentation problem. Multiple con-
tinuous boundary features, deduced from a set of training objects, are statistically
analyzed and encoded into a deformable model. On the deformable model salient
features are identified on the basis of the local differential geometric characteristics
of the features, yielding a classification into point landmarks, curve landmarks, and
sheet points. Salient features are exploited within a priority segmentation scheme
that tries to find complete boundaries in an unknown image, first by landmarks and
then by sheet points. The application of our method to segment vertebrae from CT
data shows promising results despite their articulated morphology and despite the
presence of interfering structures. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Image segmentation, the partitioning of an image into distinct areas whose points can be
characterized according to some specific property, is commonly performed on the basis of
object boundaries. Image information that is associated with these boundaries is extracted
locally and is then linked in one or another way by a computational method. When images
contain complex ensembles of boundaries that are fractured, occluded, convoluted, or other-
wise inhomogeneous, computation may be seriously hampered under the uniform boundary
assumption. Segmentation under this premise only works well for a limited range of segmen-
tation problems where objects are smooth and their edges are well defined along the entire
boundary. It is therefore imperative to strive for segmentation that exploits inhomogeneities
rather then apprehending them as obstacles. This is viable as inhomogeneities often form
salient information and hence are suitable boundary landmarks for image segmentation.

The importance of boundary landmarks has been recognized in several works. Methods
that profit from point landmarks are proposed in, e.g., [2, 17, 20, 21, 34]. In here, the
user manually defines a set of point landmarks for computation to align it to the target
object in the image. This is disadvantageous because manual definition is time-consuming
and prone to failures. For this reason automatic landmark definition has been proposed
in, e.g., [7, 8, 10, 15, 29, 33]. Point landmarks as well as curve landmarks are defined
on geometrical or analytical grounds. Interactive detection is advocated in, e.g., [13, 27,
28], since automatic definition and detection of point landmarks are complex and prone to
errors [26]. Interaction in this case means that either a region of interest or an approximate
position of a specific landmark is given by the user to aid computation. We commemorate that
existing methods define and employ landmarks manually, automatically, or interactively, the
common denominator being the application of predefined features for landmark definition.

We conceive of landmark-based segmentation as a multifeature selection procedure aim-
ing at automatically defining and gradually exploiting landmarks. In a multifeature approach
object boundaries are defined using multiple image and shape features, often giving rise
to a repertoire of landmarks. For example, when examining the bending along the heart’s
boundary in cardiac images, curvature feature values will give a peak at the lower tip of the
outer wall. When, in addition, observing the edge structure along the heart’s boundary, this
might give a highlight at the position where the aorta enters the heart. The local deviations
in multifeature observations can be seen as landmarks with differing degrees of freedom.
We strive to learn such landmarks from a given set of training objects and to exploit them
accordingly. The question addressed in this work is how to conveniently define landmarks
and how to befittingly apply them for segmentation of volumetric image data.

The work presented in this paper is organized as follows. In Section 2 object boundary
landmarks are discussed. Attention is devoted to object boundary representation, definition
of landmarks, and their application. Section 3 focuses on landmark-based segmentation by
necklaces. Necklaces are introduced in terms of model construction, model qualification,
and model optimization. Experiments and results follow in Section 4. The paper concludes
with a discussion in Section 5.

2. OBJECT BOUNDARY LANDMARKS

We discuss requirements for boundary landmarks, their definition and application. Before
we do that we first briefly describe object representation, which plays an essential role in
defining suitable landmarks.
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2.1. Boundary Representation

In [14], the appearance of a two-dimensional object is learned from a repertoire of features.
Multiple continuous features are extracted from M training images Im(x) for m = 1, . . . , M
and Im : x ∈ �2 → �, for each of which the known segmentation is represented by smooth
curves Sm(u), S : u ∈ � → �2. For the mth learning example, the shape Sm(u), relates to
the image at the points Im(Sm(u)). This is expressed in terms of N features derived from
the shape as well as from the image. The mapping F : u ∈ � → F handles this, yielding
feature functions,

Fm(u) = [
F1

m(u), . . . , F N
m (u)

]
. (1)

This way, features are integrally captured by space curves in the N -dimensional feature
spaceF , each dimension associated with one feature. This representation allows convenient
localization of landmarks arising from multiple features of the object. The landmarks are
typically maxima, minima, and zero-crossings of the space curves, identified at the level of
derivatives by differential curve geometry.

Here, we take over the multifeature object representation in order to exploit landmarks
that appear in feature functions for image segmentation. We do this for three-dimensional
objects, extending two-dimensional concepts in [14] to three dimensions. In this case,
training images Im(x) are three-dimensional; i.e., Im : x ∈ �3 → �. Object outlines are
smooth surfaces represented by Sm(u), S: u ∈ �2 → �3. The mapping F : u ∈ �2 → F
yields feature functions

Fm(u) = [
F1

m(u), . . . , F N
m (u)

]
. (2)

Features are now conveniently captured by manifolds [22] in the N -dimensional feature
space F . In search for landmarks, we have to consider high curvature points in these
manifolds. Differential geometric surface analysis then localizes landmarks.

We briefly summarize requirements for landmarks, conforming to the ones in [24].

• Landmarks should be selective. Landmarks that do not possess characteristics that
discriminate them from other boundary points have no additional value for segmentation.

• Landmarks should be sparse. Landmarks that are abundantly present are less suitable
for concise representation of the segmentation problem.

• Landmarks should be detectable. Landmarks the presence of which cannot be con-
firmed computationally may cause erroneous solutions.

• Landmarks should be robust in their appearance. Boundary landmarks that are in-
consistent in their frequency of occurrence and that have highly variable appearance may
hamper segmentation.

These requirements are general in nature; they hold for a large number of points on and off
boundaries. We concentrate on boundary landmarks.

2.2. Definition of Landmarks

We take a differential geometric approach to find suitable landmarks from feature func-
tions, reducing landmark definition to localization of surface landmarks. Surface landmarks
are captured by the well-known first and second fundamental forms (see, e.g., [18, 31]). In
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this section we will discuss landmark definition for the case where the x, y, and z-coordinates
of a surface are the only features to consider; i.e., F : u ∈ �2 → �3.

For the surface F(u) the first fundamental form I (u, du) measures the length of a small
movement dF from the point F(u) in the direction given by du. The first fundamental
form I (u, du) is determined on the basis of the surface derivatives Fu in the u = [u1, u2]T

direction. It is defined as

I (u, du) = duT

[
Fu1 · Fu1 Fu1 · Fu2

Fu2 · Fu1 Fu2 · Fu2

]
du. (3)

For the second fundamental form the unit normal vector is needed:

n(u | F) = Fu1 × Fu2

|Fu1 × Fu2 |
. (4)

It measures the change dn of the normal vector and the change in the surface position
dF given by

II(u, du) = duT

[
Fu1u1 · n Fu1u2 · n

Fu1u2 · n Fu2u2 · n

]
du. (5)

A surface is essentially expressed by mapping these two matrices into the normal curvature,
defined as

κ0(u | F) = − dF · dn
dF · dF

, (6)

and the principal curvatures, which occur when dn and dF are aligned for a particular
direction du. The maximum curvature κ1 and the minimum curvature κ2 are defined as

κ1(u | F) = Fu1u1 · n
Fu1 · Fu1

, (7)

κ2(u | F) = Fu2u2 · n
Fu2 · Fu2

. (8)

The directions u and w in which the principal curvatures occur, the principal curvature
directions, are determined from du = (du1, du2) by solving the quadratic equation




du1du1 −du1du2 du2du2

Fu1 · Fu1 Fu1 · Fu2 Fu2 · Fu2

Fu1u1 · n Fu1u2 · n Fu2u2 · n


 = 0. (9)

An alternative to the principal curvatures is the direction independent mean curvature, κ3,
and Gaussian curvature, κ4:

κ3(u | F) = κ1κ2, (10)

κ4(u | F) = κ1 + κ2

2
. (11)
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FIG. 1. An object with four types of boundary points: flat/planar, ridge/parabolic, peak/elliptic, saddle/
hyperbolic.

For specific applications it is desirable to make these quantities scale-independent by mul-
tiplication with the surface area

δA(u | F) =
√(

Fu1

)2 + (
Fu2

)2
. (12)

In this way two surfaces that are different in size but similar in shape can be considered the
same with regard to curvature.

Two frequently used landmark localization approaches are discussed. They employ prin-
cipal curvatures κ1(u | F) and κ2(u | F), the largest curvature κ1(u | F) being the one with the
highest value.

One way of classifying surface points is based on the principal curvatures κ1(u | F)
and κ2(u | F) and associated principal directions v(u | F) and w(u | F) (e.g., [11, 33]). Two
curvature functions, κ1(s | C) and κ2(s | C), which measure the curvature of the surface along
a curve C(s), parameterized by s, that goes through the point of interest and has a tangent
equal to the corresponding principal direction at that point are determined. Zero-crossings
of the directional derivatives of these curvature functions are used to classify points as
elliptic, parabolic, or planar (see Fig. 1 and Table 1). Elliptic points can be viewed as point
landmarks, parabolic points as curve landmarks.

This approach provides a geometrically meaningful distinction between different types
of surface points. The disadvantage is that on the basis of the zero-crossing only it is not
possible to distinguish between “strong” and “weak” elliptic/parabolic points. Even almost
flat structures and minor bumps in the surface are classified as elliptic or parabolic.

TABLE 1

Shape Classification on the Basis of Zero-Crossings

of the Curvature Functions κ1(s | C) and κ2(s | C)

∇κ1(s | C) = 0 ∇κ1(s | C) = 0

∇κ2(s | C) = 0 Elliptic Parabolic
∇κ2(s | C) = 0 Parabolic Planar
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TABLE 2

Shape Classification on the Basis of the Signs of the Principal

Curvatures κ1(u | F) and κ2(u | F)

κ1(u | F) < 0 κ1(u | F) = 0 κ1(u | F) > 0

κ2(u | F) < 0 Peak Ridge Saddle
κ2(u | F) = 0 Ridge Flat Valley
κ2(u | F) > 0 Saddle Valley Pit

Another common way of classifying surface points is based on the signs of principal
surface curvatures (e.g., [1, 31]). The possible configurations are listed in Table 2. In this
case, surface points are classified into one of six basic types: peak, pit, ridge, valley, saddle,
and flat. An equivalent classification is reached by using the signs of the Gaussian and mean
curvature. Saddle points are then resolved into saddle ridge, saddle valley, and minimal
surface, yielding eight basic surface point types. Peaks pits and saddle points can be viewed
as point landmarks, ridges as curve landmarks.

The advantage of this classification approach is that a distinction is also made between
pits and peaks and between ridges and valleys which have identical shape but are embedded
differently in three-dimensional space. However, as with the previous classification scheme,
minor bumps in the surface are classified as elliptic or parabolic. The number of landmark
points derived this way can be very large. In addition the distinction between different types
of landmarks is not always clear, making them less suited for aiding segmentation.

The above discussion motivates the definition of landmarks on the basis of a threshold
for the principal curvature values. We modify the classification scheme based on the signs
of the principal curvature and classify surface points depending on whether the absolute
values of the principal curvature κ1(u | F) and κ2(u | F) exceed a predefined threshold cs ,
where the value of cs is derived from a priori knowledge.

Three types of surface points are distinguished in this way, as illustrated in Fig. 2. We
refer to them as point landmarks, curve landmarks, and sheet points. Point landmarks are
uniquely localized due to the presence of a strong curvature in both principal directions.
Curve landmarks are well defined in only one of the principal directions. Sheet points are
only well defined in the normal direction. The points are listed in Table 3.

2.3. Application of Landmarks

When surface points are classified into point landmarks, curve landmarks, and sheet
points as defined above, it is natural to adopt a priority scheme when objects are segmented.

FIG. 2. Classification of surface points (indicated by spheres) on the basis of a threshold for the principal
curvatures: (a) point landmarks, (b) curve landmarks, and (c) sheet points.
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TABLE 3

Shape Classification on the Basis of a Threshold for the Principal

Curvatures κ1(u | F) and κ2(u | F)

κ1(u | F) < −cs −cs ≤ κ1(u | F) ≤ cs cs < κ1(u | F)

κ2(u | F) < −cs Point landmark Curve landmark Sheet points
−cs ≤ κ2(u | F) ≤ cs Curve landmark Sheet point Curve landmark
cs < κ2(u | F) Point landmark Curve landmark Point landmark

We employ the following order in finding objects:

1. Detect point landmarks. The result is a rough estimate of the position of the object by
its point landmarks.

2. Given 1, localize curve landmarks. The result is an outline of the object.
3. Detect sheet points departing from the solution of 2. The result is the location of all

boundary points.

This priority scheme makes it possible to search for curve landmarks and sheet points
once point landmarks are detected. The incremental approach has two advantages. In the
first place it makes it possible to handle complex image scenes by exploiting well-defined
information first, reducing disturbance from unrelevant image data and diminishing the
search space. Another advantage is that point landmarks reduce user interaction to point-
to-point correspondence when dealing with erroneous solutions, e.g., due to propagation of
errors made in point landmark localization.

3. LANDMARK-BASED SEGMENTATION BY NECKLACES

Landmark-based segmentation can be applied adequately within the deformable model
platform. Deformable model methods have been extensively used for image segmentation
(e.g., [4, 5, 30, 32]). To accommodate deformable models for segmentation of inhomo-
geneous boundaries, we have developed one that uses multiple features to define and ex-
ploit boundary landmarks. As its inhomogeneous and point-specific properties remind of a
necklace with different kind of beads we call it as such.

The essence of necklaces is formulated in terms of the following aspects: how the bound-
ary model is constructed, how the objective function is formulated and how optimization is
performed. Figure 3 shows the main components of the necklace segmentation technique.
They will be addressed in the following sections.

3.1. Model Construction

As in [14], we aim at learning multiple boundary features rather than defining them on
the basis of a priori geometrical or analytical knowledge. However, in contrast to [14],
where image and shape features are weighted according to the variation seen in the train-
ing feature functions, here we select them according to saliency seen in these functions.
We are aware of the fact that this may introduce shortcomings related to neglecting vari-
ational information. However, this has inconsequential effects on the concepts proposed
here.
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FIG. 3. Overview of components of the necklace segmentation technique. Note that at the start of the learning
phase, we need a set of images Im(x), m = 1, . . . , M with corresponding correct ground-truth segmentation
represented by Sm(u).

3.1.1. Shape Features

Object shape is learned from a training set of M surfaces Sm(u), m = 1, . . . , M , embed-
ded in example images Im(x). A number of shape features (e.g., curvature) are recorded
along Sm(u) to obtain a population of features. The population average for the nth feature
is

F̄n(u) = 1

M

M∑
m=1

Fn
m(u | Sm), (13)

where Fn
m(u), n ∈ {1, . . . , N } is the feature function emanating from fitting a surface through

the feature samples taken along Sm(u). The feature functions are smoothed and aligned to
properly compare features at same positions along the boundary. The variation in shape
feature values is

F̆n(u) = 1

M

M∑
m=1

∥∥Fn
m(u | Sm) − F̄n(u)2

∥∥. (14)

As shape feature we select the translation and rotation invariant mean curvature made
scale independent by multiplication with the local surface area δA(u | Sm). Apart from this,
we also learn the principal curvature values κ1(u | Sm) and κ2(u | Sm) to relieve landmark
localization in subsequent steps. Scalar and vector features form dimensions of the feature
space. Table 4 lists the features and their definition.

3.1.2. Image Features

As the gray-level patterns about a boundary point will often be similar in different images,
we also statistically capture the image data along the object boundary. The statistics of image
features along Im(Sm(u)) are computed analogously to the shape statistics,

F̄n(u) = 1

M

M∑
m=1

Fn
m(u | Im, Sm), (15)



104 GHEBREAB, SMEULDERS, AND PFLUGER

TABLE 4

Shape Features in Our Implementation

Feature Dimension Definition

1st principal curvature F1
m(u | Sm) k1(u | Sm)

2nd principal curvature F2
m(u | Sm) k2(u | Sm)

Mean curvature F3
m(u | Sm) (k1(u | Sm) ∗ k2(u | Sm))/δA(u | Sm)

Note. First principal curvature values F1
m(u | Sm) form the first dimension of F and

second principal curvature values F2
m(u | Sm) form the second dimension. The third di-

mension is formed by scale independent mean curvature values F3
m(u | Sm).

and corresponding variance,

F̆n(u) = 1

M

M∑
m=1

∥∥Fn
m(u | Im, Sm) − F̄n(u)2

∥∥. (16)

To highlight specific structures in the image while suppressing unrelevant ones, we use
filter information obtained from the structure tensor. The structure tensor is commonly used
to capture the local three-dimensional structure of the image (e.g., [7, 16, 23, 35]), as it
contains more information about the image than gradient information only. For an image
position I (x) it is defined by

M(x; σd ) =

 Ix1 (x; σd )Ix1 (x; σd ) Ix1 (x; σd )Ix2 (x; σd ) Ix1 (x; σd )Ix3 (x; σd )

Ix1 (x; σd )Ix2 (x; σd ) Ix2 (x; σd )Ix2 (x; σd ) Ix2 (x; σd )Ix3 (x; σd )
Ix3 (x; σd )Ix1 (x; σd ) Ix3 (x; σd )Ix2 (x; σd ) Ix3 (x; σd )Ix3 (x; σd )


, (17)

where σd is the differentiation scale and (.) denotes smoothing with scale σs to obtain the
dyadic product. The matrix elements Ixi denote partial image derivatives, defined as the
convolution of the image with derivatives of a Gaussian function,

Ixi (x; σd ) = I (x) ∗ Gxi (x; σd ).

The eigenvalues λ1 ≥ λ2 ≥ λ3 of M(x; σd ) are used to define image feature functions. When
all eigenvalues are sufficiently large this indicates a pointlike structure. The feature function
F4

m(u | Im, Sm) records a boundary in an image filtered to highlight such point-like structures.
Two eigenvalues, λ1, λ2, much larger than the smallest eigenvalue λ3 indicate a point on
a curve-like structure. The feature function F5

m(u | Im, Sm) records a boundary in an image
filtered to highlight such tubular structures. Similarly, F6

m(u | Im, Sm) measures intensity
values in an image which has been processed to highlight sheet-like structures. The image
features are listed in Table 5.

The normalization constant ct in Table 5 reflects the minimum required image variation
for an image point to be highlighted as one of the three boundary point types. This way
we can focus on strong point landmarks and curve landmarks while disregarding image
variations caused by minor bumps in the object boundary or by noise.

At this point we have a statistical description of the object of interest. The relevant
information is contained in the N = 6 dimensional population average feature function
F̄(u) = [F̄1(u), . . . , F̄6(u)] and variation F̆(u) = [F̆1(u), . . . , F̆6(u)]. We transfer this in-
formation to the segmentation phase.



NECKLACE METHODS IN IMAGE SEGMENTATION 105

TABLE 5

Image Features in Our Implementation

Feature Dimension Definition

Image point landmarks F4
m(u | Im , Sm) 1 − e− λ3

ct

Image curve landmarks F5
m(u | Im , Sm) 1 − e− λ2

ct

Image sheet landmarks F6
m(u | Im , Sm) 1 − e− λ1

ct

Note. F4
m(u | Im , Sm) highlights point landmarks, F5

m(u | Im , Sm) highlights
curve landmarks, and F6

m(u | Im , Sm) highlights sheet points.

3.2. Model Qualification

For segmentation of an unknown image we exploit landmarks found in F̄(u).

3.2.1. Deformable Surface

The deformable surface st (u), st : u ∈ U ⊂ �2 → �3 is used to actively find an object
in the unknown image I0(x). It deforms in time t to suggest new features extracted from it
and the image it lives in, to be compared to F̄(u) and F̆(u) as the statistics from learning.
The initial deformable surface s0(u) is the average of the aligned training shapes,

s0(u) = 1

M

M∑
m=1

Sm(u). (18)

On the deformable surface, point landmarks, curve landmarks, and sheet points are localized.
This is done by investigating at path positions u whether the principal curvatures of the
population average F̄(u) exceed the predefined threshold cs . For instance, if at F̄n(u) the
statistical average of both principal curvatures exceeds the predefined threshold, than st (u)
is considered a point landmark. Hence,

UA = {u| − cs > κ1(u | F̄) > cs, −cs > κ2(u | F̄) > cs}, (19)

UB = {u| − cs > κ1(u | F̄) > cs, −cs < κ2(u | F̄) < cs}, (20)

UC = {u| − cs < κ1(u | F̄) < cs, −cs < κ2(u | F̄) < cs}. (21)

The disjoint sets UA,UB,UC together contain all path positions, with st (u) for u ∈ UA being
point landmarks, st (u) for u ∈ UB curve landmarks, and st (u) for u ∈ UC sheets points.

3.2.2. Objective Function

To qualify the deformable surface when it is in an unknown image I0(x), an objective
function is defined that measures how much a recorded boundary deviates from the pop-
ulation average. The deviation is calculated in terms of the above defined local shape and
image features. An integration is carried to compute a global measure of deviation for all
N features measured along I0(st (u)). Denoting the N feature functions emanating from
I0(st (u)) by ft (u) = [ f 1(u), . . . , f N (u)], the global objective function summarizes the fit
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as follows

�(st | F̄, F̆, ft ) =
∫

u

1

N

N∑
n=1

ωn(u)θn(u | F̄n, F̆n, f n) du. (22)

The weight function ωn(u) is the actual feature selector. For each feature n it indicates the
relative importance of that feature based on the mean curvature of the population average
for feature n, denoted by κ3(u | F̄n). Currently, ωn(u) selects one feature and turns off others:

ωn(u) =
{

1 if κ3(u | F̄n) > κ3(u | F̄ i ), i ∈ {1, . . . , N }, i = n

0 otherwise.
(23)

The local objective function θn(u | F̄n, F̆n, f n) measures the distance between expected and
recorded values for feature n. To ensure a controllable distance measure, the Mahalanobis
distance [9] is computed using population average and variation information obtained from
learning. For the nth feature this means

θn(u | F̄n, F̆n, f n) = v(u)

(
F̄n(u) − f n(u)

F̆n(u)

)2

. (24)

The local objective function is controlled by means of weighting function v(u). It regulates
the contribution of point landmarks, curve landmarks, and sheet points to the objective
function value using prespecified weights vA, vB , and vC :

v(u) =




vA if u ∈UA

vB if u ∈UB

vC if u ∈UC .

(25)

The weights are positive and subjected to the following constraint:

vA + vB + vC = 1. (26)

In the priority scheme discussed in Section 2.3, the first step is performed using the weight
settings vA = 1, vB = 0, vC = 0, step two using vA = 0, vB = 1, vC = 0, and step three
using vA = 0, vB = 0, vC = 1. The weights may also be set such that features along the
entire surface contribute to the definition of the object, constrained according to Eq. (26).

3.3. Model Optimization

The optimization of the deformable surface corresponds to the minimization of the objec-
tive function. Optimization only effects the geometry of the initial surface st=0 by changing
the position of surface points while keeping the same uniform parameterization. The aim
is to find the optimal deformable surface s f (u), such that

s f = argmin
st

�(st | F̄, F̆, ft ). (27)

Optimization involves two main steps for each surface point. In the first step a new suggested
position is calculated based on the fit quality of the deformable surface. This is followed by
movement of the deformable surface in order to reposition each point as close as possible
to the newly preferred position.
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3.3.1. Search Scheme

We adopt a priority scheme when optimizing the deformable surface; different surface
points are fitted to the image data at different times and in different number of dimensions.
The aim is to first search for well-defined points in the image and to exploit solutions thereof
for obtaining an optimal global fit.

We consider optimization a function of scalars α, β, and γ . These parameters are associ-
ated at each surface point with the normal vector n(u | st ), the maximum principal direction
v(u | st ), and the minimum principal direction w(u | st ), respectively. These local surface
properties make it possible to steer segmentation in ways that take into account physical
object properties.

The suggested movement, or drive d(u | st ), that works on a surface point st (u) to move
it to the newly preferred position is formulated as a linear combination:

d(u | st ) = αn(u | st ) + βv(u | st ) + γ w(u | st ). (28)

In this way, movement is restricted to well-defined directions, permitting search spaces
of different dimensions for different types of points as illustrated in Fig. 4. Moreover, the
magnitude of the movement can be easily controlled by predefining the range of acceptable
values for the optimization parameters.

Fitting the deformable surface to the image data is performed in four steps, following
the priority scheme discussed in Section 2.3. In the first step deformable surface point
landmarks are fitted to corresponding image point landmarks. The fit is performed in three
dimensions where the search space is naturally spanned by the normal vector n(u | st ) and
the principal curvature directions v(u | st ) and w(u | st ). Accordingly, optimization reduces
to finding the optimal values for α, β, and γ , defining the the quantity in Eq. (28).

The user may fit a restricted number of selected point landmarks by pointing and clicking
in the image to steer the segmentation. User interaction yields initial values for parameters
α, β, and γ . That is, interaction with image point xp yields parameter values for which
holds

xp = st (u) + d(u | st ), u ∈ UA. (29)

The solution obtained by solving this linear system of equations forms the departure point
for the computational method. The optimal values for α, β, and γ are automatically searched
for in the vicinity of the point of interaction.

FIG. 4. Three types of search spaces: (a) one-dimensional for sheet points, (b) two-dimensional for curve
landmarks, and (c) three-dimensional for point landmarks.
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In the next step, curve landmarks are fitted to the image data departing from the previous
result. Optimization is done away from point landmarks; i.e., first curve landmarks close
to point landmarks are optimized, then curve landmarks at greater distances. In this way
we further exploit earlier found solutions. The location of curve landmarks in the image
is searched for in a two-dimensional space spanned by the normal vector n(u | st ) and the
maximum principal curvature v(u | st ). Optimization corresponds to finding the optimal
values for α and β, while γ is set to zero. Consequently, the driving force working on curve
landmark st (u), u ∈ UB , is fixed by

d(u | st ) = αn(u | st ) + βv(u | st ). (30)

Sheet points are then fitted to the image data to find all remaining boundary points. First those
sheet points are optimized that are close to curve landmarks than sheet points at greater dis-
tance for the same reason as mentioned above. The location of sheet points in the image is ob-
tained by fitting surface points st (u), u ∈ UC to the image data in the normal direction only:

d(u | st ) = αn(u | st ). (31)

So far point landmarks, curve landmarks, and sheets points have been optimized separately.
In the final step all surface points are optimized once again in their respective dimensions
to obtain a global solution and to fine tune results. This is especially important in light of
the step-by-step segmentation scheme where errors made in early steps may be propagated.
A final optimization accounts for this.

Furthermore, as movement of one surface point almost always suggests a similar move-
ment of neighboring surface points, we choose to distribute the force working on a single
surface point along the entire deformable surface. That is, we preserve the shape of the
deformable surface as much as possible when fitting a specific surface point by simul-
taneously estimating the correct position for deformable surface points that have not yet
been optimized. This means that, given drive d(ui | st ) working on surface point st (u j ), the
following movement of st (u j ), ∀u j ∈ U , is performed to obtain the next preferred position,

st+1(u j ) = st (u j ) + d(ui | st )e
−(δ/cd ), (32)

where δ = D(st (ui ), st (u j )) denotes the Euclidean distance between surface points st (ui )
and st (u j ). The constant cd > 0 is a predefined value controlling the magnitude of the
distribution. A small value for the distribution constant influences the shape of the surface
in the immediate neighborhood of the point under optimization, while a large value also
effects the shape of the deformable surface at large distances. This is illustrated in Fig. 5.

FIG. 5. The left upper point-landmark is repositioned causing deformation of the entire surface: (a) initial
surface, (b) deformation with a low distribution constant, (c) deformation with a large distribution constant.
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3.3.2. Initialization

The inherent difficulty in deformable model methods is that searching for a minimum
over a nonconvex function is possible only under predefined conditions that lead to the
desired solution [6]. As the objective function is typically nonconvex, it might have many
local minima. As a consequence the use of a local optimization method will usually find
only local minima, and therefore it becomes necessary to place the initial surface close to
the true boundary to obtain acceptable results.

We allow the user to specify an initial guess that is close to a local minimum. The initial
surface for the object at hand is placed in the image and aligned with the sought object
boundary by transformation. The user translates, rotates, and scales the a priori deformable
surface until an acceptable first guess is obtained. Starting from the user initialization the
optimization method refines the initial guess to fit to the image data. In this context, the
purpose of initialization here is to bootstrap optimization.

3.4. Implementation

In our implementation we use B-spline surfaces. B-spline surfaces have been chosen be-
cause they allow analytic computation [12, 25] and hence an easy derivation of local second
order surface properties. Apart from this, the influence of control points is limited to well-
defined surface intervals providing local control of surface manipulation. This simplifies
user-steered adjustments of locally undesirable results.

The B-spline surface is a collection of B-spline curves [25]. Taking st (u) as an example,
the surface is defined as the set of all points given by the following expression for all
parameter values of u = [u1, u2]T ,

st (u) =
J∑

j=1

L∑
l=1

B j
p(u1)Bl

q (u2)b j,l , (33)

where b j,l is the array of J × L control points. The B j
p(u1) are B-spline basis functions

of degree p − 1 in u1 direction, which are p − 2 times continuously differentiable. The
Bl

q (u2) are the basis functions of degree q − 1 in u2, which are q − 2 times continuously
differentiable. A set of knots in a path parameter interval relating to the control points is used
to define the basis functions. For an analytic expression of B-spline basis functions see [25].

For the calculation of new shapes during the optimization process we need the points
P j,�, j = 0, . . . , J, � = 0, . . . , L , which are the interpolation points of st (u) at u = [u j

1, u�
2]T .

They are defined as

P j,� = st
(
u j

1, u�
2

) =
J∑

j=1

L∑
l=1

B j
p

(
u j

1

)
Bl

q

(
u�

2

)
b j,l . (34)

Powell’s method is used in combination with Brent’s line minimization method [3] to
calculate new suggested positions for the control points. This variant of coordinate descent
optimization minimizes each parameter in turn using Brents line search minimization. The
method cycles repeatedly through all parameters. It discards one coordinate dimension in
favor of another one if this is a better candidate. The process is repeated after each cycle
of minimization, until a stable solution is found for the objective function. Although being
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slower than gradientdescent approaches, Powell’s method has the distinct benefit that no
derivatives for the objective function need to be known.

4. EXPERIMENTS AND RESULTS

The application to evaluate the proposed necklace method deals with 20 CT images of
vertebrae. The CT images are acquired on a Philips SR 700 CT at 140 kV (Philips Medical
Systems, Best, The Netherlands). They were scanned at a resolution of approximately
225 × 225 Wm and slice thickness of 0.5 mm. The images concern the lumbar part of the
human spine, exhibiting considerable variation in shape and gray-level appearance even
among normal patients.

Four steps are involved in the evaluation procedure: (1) manually outlining and aligning
vertebral boundaries for composing the training set, (2) statistically analyzing features in
the training set for construction of the vertebra model, (3) segmenting vertebral boundaries
in new unknown images, and (4) comparing segmentation results with the known solutions.
These steps are performed in two distinct phases: learning and segmentation.

In the learning phase the medical expert provides ground-truth segmentations by indi-
cating three-dimensional points in three two-dimensional orthogonal slices of the volume
data. This is done only one time and within one day. A total of 144 points are positioned
along a single vertebra boundary, forming the interpolation points for B-spline surfaces.
The resulting B-spline surfaces and corresponding images are added to the training set.
Subsequently, image and shape features are taken at 400 samples along each surface in the
training set, then statistically analyzed.

The testing phase involves segmentation of the vertebra images with the help of the
necklace model. The segmentations are then compared with the ground truth delineations.
This is done using a cross-validation technique [19], as splitting the limited amount of
20 vertebra images into separate fixed learning and testing categories would result in an
insufficient number of test and learning cases. Figure 6 shows the population average shape
of the vertebra in our training set.

4.1. Experiments

The experiments investigate the benefit of landmark-based segmentation with help of
necklaces over segmentation under uniform and smooth boundary assumption. We concen-
trate on landmarks that emanate from the curvature of the vertebra surface; i. e., landmarks

FIG. 6. The population average vertebra surface st=0(u): (a) side view, (b) upper view, and (c) frontal view.
Its shape is controlled by 144 interpolation points.
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are defined only on the basis of high value positions in F̄1(u) and F̄2(u) under the assump-
tion that in this application saliency is predominantly due to vertebra shape. Apart from this,
feature selection is done according to the type of surface point: at point landmarks features
F3(u) and F4(u) are evaluated, at curve landmarks features F3(u) and F5(u), and at sheet
points F3(u) and F6(u). In this way we always take into consideration shape features while
exploiting saliency in the image data.

To compare landmark-based segmentation using necklaces with conventional segmenta-
tion we also study segmentation under uniform boundary assumption. To this end we reduce
the necklace method to one without landmarks (a) by learning and applying F3(u) and F4(u)
along the entire boundary and (b) by optimizing each point of the deformable surface in
three dimensions, regardless of the dimensionality of the features at the surface points.

We perform three segmentation experiments both for landmark-based segmentation and
for the conventional way of segmentation. The ground-truth shape model is transformed
to the initial deformable surface by translating it with −15 ≤ χ ≤ 15 voxels, rotating it
by −10◦ ≤ ψ ≤ 10◦ along the z coordinate, or scaling it by 0.9 ≤ σt ≤ 1.1 times with
respect to a center point. The deformable surface is then fitted to the image data using
the Powell optimization procedure, with equilibrium defined as a 10% or smaller change
in maximal 50 iterations for line search and a maximum of 50 calls to line search. The
curvature threshold is fixed at cs = 0.03. In the first three steps of the priority scheme the
weights vA, vB , and vC are turned either on or off depending on the segmentation aim,
whereas in the global optimization step they are set to vA = 0.5, vB = 0.3, and vC = 0.2.
The image features are obtained using differentiation scale σd = 3.0 and smoothing scale
σs = 4.0. The normalization constant ct is set to 100.

4.2. Results

Evaluating the spatial accuracy of the necklace method amounts to comparing the ex-
tracted vertebral segments with ground truth, which is not predetermined, but rather is a
function of the test data and the accuracy of the human expert. The distance between the seg-
mented surface and the target surface is measured using the root squared metric error, which
computes the average Euclidean distance between points in the proposed solution and points
in the ground truth. The Euclidean distance is computed using a discrete error formula,

εd = min
0≤δ<L

1

L

L−1∑
l=0

‖Sm(ul) − s f (ul + δ)‖, (35)

where Sm(u) is the ground-truth solution and s f (u) is a point on the optimized deformable
surface. This error metric is used commonly for measuring the accuracy of a point sample
distribution.

The first row in Fig. 7 shows the average Euclidean distance between the segmentation
result (with and without landmarks) and the ground-truth solution for different transfor-
mations. The flatness of the graphs is an indication of the capture range of the deformable
surface. It can be seen that even small rotations negatively influence segmentation, while
translations and scaling up to ±5 pixels and scaling with ±0.04 produce acceptable re-
sults with Euclidean distance less than 5. In most cases landmark-based segmentation
achieves a higher reduction in Euclidean distance; i.e., the result is closer to the true solu-
tion. Sometimes the result is worse. We attribute this to the fact that when point landmarks
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FIG. 7. Comparison of segmentation results with and without application of landmarks. Top row shows the
average Euclidean distance of results to ground-truth shape for (a) translation, (b) scaling, (c) rotation. Bottom
row shows the average Mahalanobis distance of result to population average for, (d) translation, (e) scaling, (f)
rotation.

are localized and fixed wrongly; e.g., because the sought image landmark point is out
of the capture range of the deformable surface, it has a considerable negative affect on
the subsequent localization of other points. We conclude that landmark-based segmentation
using necklaces outperforms conventional segmentation when point landmarks are localized
well.

The second row in Fig. 7 indicates how the average Euclidean distance corresponds to
the average Mahalanobis distance of the segmentation result to the population average. It
can be seen that the Mahalanobis distance after optimization is lower then at the beginning,
meaning that the final deformed surface has feature values closer to population average than
the initial deformable surface. Landmark-based segmentation obtains a larger reduction in
Mahalanobis distance when starting from a scaled version of the ground-truth shape. For
translation and rotation landmark-based segmentation yields higher reduction in some cases,
and lower in other ones. Note that for the vertebra application the objective function is much
more sensitive for translation and rotation than for scaling, presumably due to the dense
context of the segmentation scene with ribs and other organs easily disturbing the fit of the
vertebra model.

From Fig. 7 we observe that even when the initial deformable surface is the ground-truth,
the optimization brings the deformable surface to rest at an average of a little under a 4-
voxel distance. The minimal voxel distance of 4 is largely due to variation in assignment
of ground truth by the expert. For our stochastic model such a variation is the lower bound
in accuracy of what the algorithm is capable of finding back. In a four-time repetition of
the ground-truth assignment under similar conditions we found a variation of 4.4, 4.9, and
6.7 voxels for point-landmarks, curve landmarks, and sheet points respectively. We expect an
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improvement of performance proportional to the accuracy of the ground-truth segmentation,
either by more precise individual assignment or by using larger amounts of salient points
per vertebra.

Furthermore, we partially ascribe the minimal voxel distance of 4 to the fact that the model
was built from different types of lumbar vertebrae (L1, L2, L3, L4, and L5), which may
have led to a population average that does not sufficiently resemble any of the segmented
vertebra. This causes the deformable surface sometimes to shift away from its correct
position in order to comply to the population average. We note that it is essential to use as
much invariant features as possible to reduce the effect of the population average features
to the accuracy of the segmentation result, e.g., considering image features after histogram
equalization.

To obtain an impression of the computational gains of our algorithm, we also observe how
fast the initial model converges to a stable solution. We perform 10 segmentations where we
observe the number of calls to the objective function, the reduction in Mahalanobis distance,
and the reduction in Euclidean distance. For landmark-based segmentation a total of 4104
calls are required on average, taking on average a little over 1 min to reach equilibrium. The
average reduction in Mahalanobis distance is 0.7, corresponding with an average reduction
in Euclidean distance of approximately 1.4. Conventional segmentation requires on average
9055 calls, with an average reduction in Mahalanobis distance of 0.43 and in Euclidean
distance of 1.1. We attribute the computational efficiency to the reduction of search space of
solutions for curve landmarks (2D) and sheet points (1D). The fact that landmark solutions
are propagated to estimate adjacent boundary points on the same and other vertebrae, also
contributes to an increase in computational efficiency.

We give a segmentation illustration of the fourth lumbar vertebra. Segmentation departs
from the population average vertebra shape in contrast to the above experiments which
have been conducted starting from the ground-truth shape. To get an impression of the
tree-dimensional context of the image data and the deformable surface in it, Fig. 8 gives
three different views of the scene. Figure 8a shows a volume rendering of the image data
on the basis of a threshold for gray-value intensity, providing a visual means of compar-
ing results from the deformable surface approach with those based on thresholding. The
three-orthogonal slices through the image data show intensity values of the original image.
Figure 8b shows how the deformable surface and the volume rendering relate by super-
imposing the surface on the rendering. Figure 8c shows another view of the deformable

FIG. 8. Three views of the segmentation scene: (a) volume rendering of the 3D data block with orthogonal
intensity slices, (b) volume rendering of the 3D data block with initial model superimposed, (c) initial model
embedded in 3D data block visualized by orthogonal intensity planes.
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FIG. 9. An example segmentation with initial and final deformable surface superimposed on the intensity
slices through the volume data. Top row shows the initial situation: (a) upper view, (b) frontal view, (c) side view.
Bottom row shows result after deformation: (d) upper view, (e) frontal view, (f) side view.

model. As the planes cut the deformable surface, only parts of it in front of the plane are
visible.

The top row in Fig. 9 illustrates the initial deformable surface from three different per-
spectives (see Fig 8 for context). The bottom row illustrates the segmentation result. The
images show how the deformable surface correctly moves to the upper and lower surfaces of
the vertebral body. At some parts the model moves only slightly toward the target boundary
or even moves away from it to comply with the population statistics.

5. DISCUSSION AND CONCLUSION

In conclusion, in this work we present an inhomogeneous and point-enhanced deformable
model called a necklace. The necklace aims at exploiting salient information in images
containing sophisticated objects and constellations. Saliency is determined on the basis of
multiple features observed along object boundaries in a given training set. Multiple features
from multiple objects, forming a collection of manifolds in multidimensional feature space,
are averaged and inspected for landmarks on the basis of the second order structure of the
population average. A distinction is made between point landmarks, curve landmarks, and
sheets points depending on the number of dimensions with extreme values for the curvature
of the manifolds. Along the entire manifold features are selected that give saliency. They
are subsequently employed in a priority scheme to search for boundaries in new unknown
images. Point landmarks are detected in three-dimensional image areas, plausibly boot-
strapped by interaction. Starting from detected point landmarks, curve and sheet landmarks
are detected in respectively two-dimensional and one-dimensional areas. A final detection
of all points provides a global segmentation solution.
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The method has in common with other landmark-based methods such as [8, 21] that
it exploits salient image and shape information for segmentation. However, in contrast to
mainstream landmark-based segmentation, we focus not on a single basis for a landmark
but rather on trying to learn landmarks emanating from multiple features. What makes
our approach different from methods with the same aim such as [27] is that we cast more
than just one feature in a multivariate functional feature space to identify a repertoire of
landmarks automatically. Apart from this, feature selection is carried out to exploit the
most discriminative feature at each point along the object boundary. This way the unique-
ness of features is exploited as much as possible along the entire boundary. Furthermore,
to make segmentation less distracted and more efficient the search for boundaries is per-
formed in relevant dimensions only, specified by the directions in which points are uniquely
defined.

The necklace method is suited for interactive segmentation. Point landmarks are sparse
and have a unique zero-dimensional character forming excellent conditions for steering
purposes in three dimensions. They permit the user to conveniently perform segmentation
by easily making a one-to-one correspondence between point landmarks on the deformable
surface and point landmarks in the image, enhancing indigenous integration of interaction
and computation to avoid graphically editing solutions in a post mortem sense. Where
the experiment results suggest that a better localization of point-landmarks improves the
performance of the necklace method it may give the operator a natural place in accrediting
the whole segmentation process.

In the experiments described in the previous section we determine landmarks on the basis
of a single feature, the curvature, and apply two features for fitting the deformable surface
to the image data. We did not investigate how the necklaces behave with landmark selection
from a large number of features. It is straightforward to extend Eq. (23) to the case where
more features are selected at each point. We expect that more accurate results are obtained
by (a) tuning vA, vB , vC locally such that features along the entire surface contribute to the
definition of the object at all steps of the priority scheme and (b) reestimating the positions
of deformable surface points at all steps of the priority scheme rather than fixing them. In
the definition of features a number of other issues remain unexplored when the sign of the
principal curvatures is included in the definition of landmarks. Also the influence of the
path parameterization and the number and distribution of the sample points over the surface
requires more study. We leave these aside for future work.

We arrive at the conclusion that the necklace method, particularly when used in com-
bination with user interaction, may help segmentation of complex scenes where a multi-
dimensional feature set is needed to properly capture a boundary locally. Necklaces work
well when object segmentation using one or two straightforward features fails due to lack
of a simple definition of the object boundary.
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