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Abstract— The statistics of texture operators on natural

images are empirically determined to conform to a Weibull

process. We explain these findings from the physical prin-

ciples of fragmentation processes. The Weibull parameters

are known to indicate the fractal dimension of the underly-

ing system. Hence, we show the Weibull process to have a

physical foundation for describing natural image statistics.
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I. Introduction

An image typically consists of a million of pixels, each
pixel being 1 value out of millions. Despite this overwhelm-
ing amount of choices to generate an image, there is a
limited amount of configurations that represent a natural
scene. In previous work, the effect of lighting conditions
on the value of a pixel is investigated [1], resulting in lo-
cal color invariance. From an analytical point of view this
effectively separates scene accidental conditions from the
true object characteristics. When seen from a reverse point
of view, this constraints the probability of a pixel color by
the light reflectance characteristics and the local coherence
with neighboring pixels. In this paper, we investigate how
spatial dependence influences the image formation process.
Hence, we consider the statistical properties of local image
structure.
Investigation of the statistics of natural images is an im-

portant topic for texture synthesis and recognition. Empir-
ical studies [2], [3], [4] concentrate on the fitting of distri-
butions to the response of linear operators for (large) sets
of images. Empirical methods lack a physical basis, hence
are difficult to interpret. The distributions determined are
not easily proven to be the correct ones. Especially when
the marginal statistics are considered important, as is of-
ten the case for reasoning in knowledge, finding the correct
distribution is crucial.
Theoretical studies based on the statistics of surface re-

flectance properties include [5], [6], [7], [8]. These methods
consider the physics of reflection to derive image statistics.
Knowledge about the characteristics of the reflecting sur-
face is explicitly assumed, for instance the slope distribu-
tion at the surface is Gaussian. Hence, there is a physical
ground and a sufficient explanation of the parameters of
the model. However, the model is only valid for a limited
amount of natural images.
In this paper, we give a physical explanation for the

statistics of local image structure of natural images. We
start our analysis by introducing the Weibull distribution
from the field of sequential fragmentation (Section II). The
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distribution originates from the study of particle distribu-
tions after milling. The Weibull distribution describes the
number of particles as function of particle size or mass,
hence the result of sieving processes. Section III gives an
theoretical viewpoint on image derivative statistics. We
confirm our findings by fitting the Weibull distribution
to the histogram of derivative responses for the Curet
database of natural textures [9], and discuss the implica-
tions.

II. The Weibull Process

The Weibull process is derived from the particle number
distribution n(m), as given by Brown [10],

n(m) = c

∫ ∞

m

n(m′)f(m′ → m) dm′ (1)

which indicates the number of fragments with mass be-
tween m and m+ dm, contributed by fragmenting all par-
ticles of mass m′ > m. The function f(m′ → m) describes
the mass distribution that results after fragmenting a heavy
mass m′. The Weibull distribution results when assuming
that small particles are more likely than larger particles to
be the result of fragmentation. Hence, the fragmentation
is a power-law process,

f(m′ → m) =

(

m

m1

)γ

, −1 < γ ≤ 0 . (2)

Inserting Eq. (2) and solving Eq. (1) results in the
Weibull probability density function [10],
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(3)

where m1 is related to the average mass, and γ the shape
parameter, −1 < γ ≤ 0. The integral form of the Weibull
distribution given by

N(> m) =

∫ ∞

m

n(m) dm = e
− 1
γ+1

(

m
m1

)γ+1

(4)

indicates the total amount of particles of mass larger than
m.
Equation (2) implies the Weibull distribution in parti-

cle mass. Conversion from mass to a size distribution is
obtained by setting

m

m1
=

(

l

l1

)3

. (5)

Brown and Wohletz [11] theoretically derived the power-
law process to describe the particle size distribution for the
crushing of particles in a mill. Thereby providing a solid



physical basis for the distributions Eq. (3) and Eq. (4).
They derived the parameter γ to be related to the fractal
dimension Df of the crushing process,

Df = −3γ (6)

where 0 ≤ Df < 3 indicates the fractal dimension of the
mass. As emphasized by Brown and Wohletz, the fractal
dimension is a geometrical entity of a system [12].

III. Image Derivative Statistics

Local image structure is completely determined by the
Taylor expansion of the image at a given point (x, y),
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Êxy Êyy
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The measurement is obtained by integrating over a certain
spatial extent, the observation scale σ. Differentiation may
be transported using Gaussian derivative filters,

Êxnym(x, y) = E(x, y) ∗Gxnym(x, y;σ) (8)

which results in the well-known N-Jet [13]. The coefficients

of the Taylor expansion of Ê(x, y) together form a complete
representation of the local image structure. Truncation of
the Taylor expansion results in an approximate represen-
tation, the local equivalence class.
The respective statistics of each of the N-Jet components

reflect the dependence between neighboring pixels. For the
zeroth order measurement, the statistics are represented by
the histogram of the Gaussian smoothed image intensity.
The histogram is, neglecting smoothing effects, invariant
under permutations of the pixels. Hence, the zeroth order
statistics do not include joined statistics, and are irrelevant
when considering pixel dependence.
Of considerable importance is the statistics of the first

order derivatives,

Êl ≡
∂E

∂l

[

intensity

length

]

(9)

where l indicates x or y. For construction of the response
probability density function one takes a given response in-
terval and sums over its spatial occurrences. When con-
sidering a unity step along the response ∂Êl, one considers
a certain variable distance ∂x in the spatial domain. This
distance depends on the local image function Ê.
As a result from scale-space theory, we consider that

small details are occurring more often than large struc-
tures [14]. This is a direct implication of causality. Diffu-
sion of numerous small structures will result in fewer large
structures. Inversely, increasing magnification at large
structures will resolve many smaller structures One may
rephrase the statement in that, when resolving power in-
creases, large structures will break-up into new structures,
of which some of them are relatively large, but most of them
will be small details. Hence, in one dimension, resolving a

structure of length l into smaller structures yields a struc-
ture size distribution of

f(l′ → l) =

(

l

l1

)3γ

(10)

where l′ → l indicates the resolving of the structure l′ into
smaller structures of size l. The parameter l1 is related
to the average step size. The exponent 3γ includes the
conversion Eq. (5) from size to mass. Equation (10) implies
the Weibull distribution in length rather than mass.
Simoncelli [3] empirically found the generalized Lapla-

cian,

P (c) = ze−|
c
s |
p

(11)

to fit to the marginal statistics of wavelet coefficients. Here,
c indicates the wavelet coefficient, and s indicates the vari-
ance. The exponent p is related to γ in Eq. (4). The gener-
alized Laplacian is the integral form Eq. (4) of the Weibull
distribution. We have given a physical explanation for the
empirical results as obtained by Simoncelli [3].
The Weibull shape parameter γ is related to the fractal

dimension of the image as given by Eq. (6). Estimating γ
from the histogram of image derivative responses indicates
the fractal dimension of the image, as given by Eq. (6).
Note that Df is a strictly spatial property of an image. In
conclusion, causality, the atlas principle, implies a Weibull
distribution of structure size.

IV. Experiments

To give empirical evidence for our theory, we applied ex-
periments on the Curet database of material textures [9].
For all 61 materials, we took a frontal view with arbitrary
lighting direction, imaging setup number 42 from the 205
available per material. In this way, we could proceed with
an automatic segmentation by selecting a rectangular ma-
terial area from the images. We selected an area of 300 by
200 pixels from the center of the image. Horizontal Gaus-
sian derivatives (σ = 3 pixels) were calculated over the
material region, and a 256 bin histogram was constructed.
The integral form of the Weibull distribution was fitted
to the absolute value of the histogram, see Figure 1. The
fitted shape parameter γ̂, Eq. (4), was used to calculate
the fractal dimension Df (x) Eq. (6) of the image. The
experiment was repeated for the vertical derivative, and a
measure of anisotropy was derived by considering the ra-
tio between the horizontal and vertical fractal dimensions,
Γ = Df (x)/Df (y).
The results, together with the Kullback-Leibler diver-

gence for goodness of fit are shown in Table I. The or-
ange peel is not correctly segmented, and contains a black
background area. Hence, the zero bin contains an dispro-
portionally large value. The limestone and lettuce leaf his-
tograms contain long tails with counts close to zero. Hence,
the calculation of the Kullback-Leibler divergence becomes
instable and deteriorates. The statistics of ribbed paper (x-
direction), the corduroy (y-direction), and for the painted
spheres (all directions), are the only materials for which
the derivative response was clearly not Weibull distributed.



Note that these images consists mainly of regular texture.
These represent a deliberately created texture, not an im-
age of a chaotic process. This confirms our view, that most
natural images are fractal in nature.

Note that the fractal dimension as derived from the his-
togram indeed estimates the spatial surface roughness, as
can be derived by visual inspection of the materials, see
Figure 2 and http://www.cs.columbia.edu/CAVE/curet/.

V. Discussion

We theoretically derived the statistics of local structure
in natural images to follow a Weibull distribution. The
derivation is explained from the physical principles of frag-
mentation processes. Thus we provide a physical expla-
nation for the empirical results as obtained by Simoncelli
[3].

We have shown that the fitting parameters estimated
from Gaussian derivative response distributions indicate
the fractal dimension, a strictly spatial property of an im-
age. We demonstrated our point by experiments on the
Curet database [9]. For 58 out of 61 images the Weibull
distribution fitted well to the derivative statistics. As ex-
pected, the estimated fractal dimension indicates material
surface roughness. The materials corduroy, ribbed paper,
and painted spheres did not fit the Weibull distribution, as
their structure is deliberately created to be highly regular.

The Weibull distribution arises when a scene is chaotic
at all scales. A large class of natural scenes are fractal [12].
Hence, these images fulfill the property that more detail is
added while zooming in. This causality, the atlas principle,
implies a Weibull distribution of structure size.

The dual process of fragmentation is sieving. Nature
“applies” sequential fragmentation of structures to refine
a scene. Measurement involves the sieving of the scene to
sort out the structures present. Since both processes are
dual, one can make no distinction between fragmentation or
sieving from the final result. Hence, sieving an image with
arbitrary mesh size will result in a Weibull distribution for
the local statistics. Scale-space filtering [14] is considered
to be the sieving process dual to resolving power. The
choice of the mesh size, hence the filter scale, will not affect
the statistical result, except for a reparameterization.

We intent to use the Weibull distribution to parameterize
local image structure in large pictorial databases. Similar-
ity between images may now be expressed by similarity be-
tween the Weibull parameters, accelerating retrieval perfor-
mance. Future research include the assesment of geomet-
ric and photometric invariant properties from the Weibull
model.
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TABLE I

Fitting results for the Curet dataset.

Material KL γ Γ Df (x)
Peacock Feather 0.0271 -0.76 1.03 2.28
Sponge 0.0551 -0.66 1.06 1.99
Moss 0.0434 -0.65 1.05 1.96
Aluminum Foil 0.0015 -0.59 0.99 1.77
Limestone 0.1501 -0.59 0.96 1.76
Orange Peel 0.6233 -0.57 1.03 1.72
Lettuce Leaf 0.2151 -0.55 0.92 1.66
Insulation 0.0420 -0.53 1.02 1.60
Straw 0.0432 -0.52 1.15 1.57
Soleirolia Plant 0.0166 -0.52 0.93 1.56
Cracker b 0.0714 -0.51 0.96 1.54
Concrete c 0.0008 -0.51 1.06 1.52
Roof Shingle zoomed 0.0253 -0.50 0.87 1.51
Wood a 0.0288 -0.50 1.17 1.51
Crumpled Paper 0.0134 -0.50 0.97 1.49
Roof Shingle 0.0130 -0.49 0.98 1.46
Salt Crystals 0.0056 -0.48 1.01 1.45
White Bread 0.0563 -0.48 0.99 1.45
Plaster b zoomed 0.0116 -0.47 1.11 1.41
Tree Bark 0.0490 -0.47 0.93 1.40
Corn Husk 0.0356 -0.46 1.22 1.38
Artificial Grass 0.0005 -0.44 0.97 1.32
Styrofoam 0.0426 -0.44 0.96 1.32
Leather 0.0105 -0.44 0.87 1.31
Cracker a 0.0087 -0.43 1.18 1.30
Slate b 0.0296 -0.43 0.91 1.29
Slate a 0.0504 -0.43 0.91 1.28
Human Skin 0.0366 -0.43 0.96 1.28
Rug b 0.0075 -0.42 0.92 1.26
Lambswool 0.0103 -0.42 1.09 1.26
Felt 0.0025 -0.42 1.10 1.25
Rough Tile 0.0151 -0.42 0.94 1.25
Rabbit Fur 0.0034 -0.42 1.21 1.25
Stones 0.0016 -0.42 0.94 1.25
Terrycloth 0.0174 -0.41 0.96 1.24
Plaster b 0.0035 -0.41 0.92 1.22
Rough Paper 0.0003 -0.41 1.27 1.22
Loofa 0.0056 -0.40 1.09 1.20
Concrete b 0.0131 -0.40 0.99 1.20
Brown Bread 0.0124 -0.39 0.89 1.17
Linen 0.0130 -0.39 1.00 1.16
Wood b 0.0091 -0.39 0.95 1.16
Brick b 0.0421 -0.38 0.80 1.15
Polyester 0.0049 -0.38 1.03 1.14
Quarry Tile 0.0090 -0.37 0.99 1.11
Corduroy 0.0048 -0.37 -2.47 1.11
Frosted Glass 0.0112 -0.36 0.90 1.09
Concrete a 0.0531 -0.36 0.74 1.08
Cotton 0.0051 -0.36 3.72 1.08
Cork 0.0089 -0.35 0.87 1.06
Brick a 0.0072 -0.35 0.89 1.06
Pebbles 0.0009 -0.34 0.87 1.03
Polyester zoomed 0.0127 -0.34 0.86 1.01
Velvet 0.0099 -0.33 0.81 1.00
Plaster a 0.0029 -0.33 0.88 0.99
Rug a 0.0001 -0.33 0.85 0.99
Sandpaper 0.0050 -0.32 0.83 0.97
Rough Paper zoomed 0.0023 -0.30 0.75 0.90
Rough Plastic 0.0098 -0.26 0.59 0.79
Painted Spheres 0.0415 -0.05 0.12 0.14
Ribbed Paper 0.1235 14.89 -31.01 -44.66

For each material, the Kullback-Leibler divergence (KL), the Weibull

exponent γ, the anisotropy Γ = Df (x)/Df (y), and the horizontal

fractal dimension Df (x) are given. Results are sorted by fractal di-

mension Df (x).
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Fig. 1. The sponge, straw, and aluminum foil images from the Curet dataset [9]. The sponge edges are mainly caused by shadow. The straw
is highly anisotropic, and edge detection is performed along its dominant orientation. Edges in the aluminum foil are caused by specular
reflectance. The derivative histograms for each image and the fitting to a Weibull distribution are shown.

[4] J.H. van Hateren and A. van der Schaaf, “Independent com-
ponent filters of natural images compared with simple cells in
primary visual cortex,” Proc. R. Soc. Lond. B, vol. 265, pp.
359–366, 1998.

[5] K. J. Dana and S. K. Nayar, “Histogram model for 3d textures,”
in Proc. CVPR. 1998, IEEE Computer Society.

[6] J. J. Koenderink and A. J. van Doorn, “Illuminance texture due
to surface mesostructure,” J. Opt. Soc. Am. A, vol. 13, no. 3,
pp. 452–463, 1996.

[7] J. J. Koenderink, A. J. van Doorn, K. J. Dana, and S. Nayar,
“Bidirectional reflection distribution function of thoroughly pit-
ted surfaces,” Int. J. Comput. Vision, vol. 31, pp. 129–144,
1999.

[8] B. van Ginneken and J. J. Koenderink, “Texture histograms as
a function of irradiation and viewing direction,” Int. J. Comput.
Vision, vol. 31, pp. 169–184, 1999.

[9] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink,
“Reflectance and texture of real world surfaces,” ACM Trans
Graphics, vol. 18, pp. 1–34, 1999.

[10] W. K. Brown, “A theory of sequential fragmentation and its
astronomical applications,” J. Astrophys. Astr., vol. 10, pp. 89–
112, 1989.

[11] W. K. Brown and K. H. Wohletz, “Derivation of the weibull
distribution based on physical principles and its connection to
the rosin-rammler and lognormal distributions,” J. Appl. Phys.,
vol. 78, pp. 2758–2763, 1995.

[12] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H.
Freeman and Co., New York, NY, 1983.

[13] L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and
M. A. Viergever, “Scale and the differential structure of images,”
Image Vision Comput., vol. 10, no. 6, pp. 376–388, 1992.

[14] J. J. Koenderink, “The structure of images,” Biol. Cybern., vol.
50, pp. 363–370, 1984.



Fig. 2. The Curet dataset [9] sorted by horizontal fractal dimension Df (x).


