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Abstract. We present a document analysis system able
to assign logical labels and extract the reading order in
a broad set of documents. All information sources, from
geometric features and spatial relations to the textual
features and content are employed in the analysis. To
deal effectively with these information sources, we define
a document representation general and flexible enough
to represent complex documents. To handle such a broad
document class, it uses generic document knowledge only,
which is identified explicitly. The proposed system inte-
grates components based on computer vision, artificial
intelligence, and natural language processing techniques.
The system is fully implemented and experimental re-
sults on heterogeneous collections of documents for each
component and for the entire system are presented.

Keywords: Document understanding – Logical object
classification – Reading order detection – Qualitative spa-
tial reasoning – Natural language processing

1 Introduction

Document analysis can be viewed as reversing the pro-
cess of document authoring. It is therefore important to
consider the choices an author makes. In the creation
process, the author starts with a rough idea about the
content. The author then structures his/her thoughts by
considering the logical organization of the material, e.g.,
dividing the material in chapters and deciding on the in-
tended reading order. When the final digital document
is printed on paper, the underlying logical structure of
the document is obscured by the actual layout conven-
tions. The author has, however, the possibility to encode
some of the logical information using layout typesetting
conventions, e.g., by using a specific font size, style and
arrangement on the page. Therefore, the layout struc-
ture of a printed document carries, besides the artistic
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message, some information about the logical structure.
In fact, for simple documents, a human reader can de-
termine the logical structure from layout and typeset-
ting information only. In complex documents, the human
reader completes his/her understanding of the document
structure by reading the text. Therefore, to reverse the
authoring process for document analysis purposes, both
structure and content are essential.

Generic logical structure information, needed in doc-
ument understanding, is called document knowledge. The
knowledge is encoded as a set of layout and typesetting
conventions for a document class.

The importance of document knowledge for document
image analysis was emphasized by various authors [24,19,
10,27,20,26]. Based on generalization/specialization hi-
erarchies the knowledge is organized into two, three, or
more levels. In [10], Cesarini et al. distinguish only be-
tween two types of knowledge: generic and specific. Nagy
et al. in [24] define three levels of knowledge: generic
knowledge, class-specific knowledge, and publication-
specific knowledge. For some applications more detailed
organization of document knowledge can be considered.
For instance publication-specific knowledge can have a
subclass called title-page knowledge. A nice, though brief,
survey of the type of knowledge used in prominent sys-
tems is [19].

As in this paper we focus on the analysis of het-
erogeneous collections of documents based on generic
knowledge, we adopt a basic distinction of document
knowledge into two classes: document-generic knowledge
and document-specific knowledge. The document-specific
knowledge is the document knowledge that is specific
for a narrow class of documents. The document-generic
knowledge is the document knowledge common to a broad
variety of documents. An example of document-specific
knowledge is that in ACM transactions the running text
is Times Roman, with a font size of 10 points. An ex-
ample of generic knowledge is that, usually, the title is
written in a larger font size than the paragraph text.

Obviously, a system will be more effective in docu-
ment understanding, when it uses more knowledge about
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the document class. The issue is to differentiate between
specific and generic knowledge. A system that has hard-
coded all knowledge about a given class of documents will
understand that class of documents only. A robust sys-
tem able to process a broad class of document should first
exploit the generic knowledge to assign the document to
a certain class [32], and then use specific knowledge.

Besides the generic/specific dichotomy, another as-
pect has to be considered in classifying document under-
standing systems. This is the complexity of documents
that can be handled.

Though the term document complexity is often used
in the literature, there is no standard formal definition for
it. In the context of this paper, we will refer to document
complexity in terms of the number of document objects
on the document page. For example, for reading order
detection, the more textual objects a document has, the
more complex it is. Recently, more refined definitions of
document complexity based on different document anal-
ysis tasks have been proposed [36].

Document understanding systems presented in the lit-
erature can be roughly classified into four classes of in-
creasing complexity:

– systems processing simple documents of one specific
document class [11,12,19];

– systems able to process simple documents from broad
classes [38,27,20];

– systems processing complex documents of one specific
document class [37,26];

– systems able to process a broad class of complex doc-
uments [3,35,15].

Note that systems able to process complex documents
are a superset of systems processing only simple doc-
uments. However, the systems able to process a broad
class of documents are not necessarily a superset of sys-
tems processing specific classes, as they might not achieve
the same performance as specifically designed systems.

We are interested in the systems able to process a
broad class of complex documents. The design of a sys-
tem able to process any class of documents remains still
a challenge. We believe that the latter type of systems
should:

– use a document representation able to capture the
most complex situations;

– use all generic knowledge available;
– geometric information: positioning, spatial rela-

tions, global information;
– content information: textual features, lexical in-

formation.

The remainder of the paper is organized as follows: in
the next section we consider document analysis systems
in more detail, and we relate them with the system we
present here. In Sect. 3, we describe the document rep-
resentation model. In Sect. 4, we present our document
understanding method in depth. Performed experiments
are presented in Sect. 5, and discussed in Sect. 6.

2 Related work

Systems developed for specific limited domain classes,
such as mail automation, form processing, and process-
ing of business letters [11,12] report good results. They
implicitly or explicitly use specific knowledge. In [11], Ce-
sarini et al. present a tax-form processing system that
uses specific knowledge and interaction with the user.
The document representation is based on attributed re-
lational graphs, which allow an accurate and flexible rep-
resentation of the form class.

Lee [19] describes a systems that analyzes journals
from IEEE, specifically TPAMI. The specific knowledge
is hardcoded in rules and threshold values. Therefore it
is hard to adapt their system to other document classes.
They, however, report good results for processing docu-
ments from journals of the IEEE, other than TPAMI, as
they have the same geometric characteristics.

Walischewski [38] presents a system to process busi-
ness letters. Given class specific knowledge and a training
set, the system can adapt itself to process new document
classes. The document representation is based on an at-
tributed directed graph and spatial relations which are
appropriate for processing complex generic documents.
No textual information is used.

The use of learning modules to extract the set of rules
to map layout into logical structure from the document
knowledge leads to more adaptable systems as those pre-
sented by Sainz and Dimitriadis [27] and Li and Ng [20].
Again, these systems ignore the important role of textual
content.

Other systems process more complex, multi-article
documents such as newspapers. A prominent example
is the system developed by Tsujimoto and Asada [37];
which is tuned to process regular multi-column black-
and-white papers. Both for layout and logical struc-
ture detection, domain knowledge is hard-coded into four
transformation rules. The use of a tree based represen-
tation for the document restricts the class of documents
that can be processed. In addition, the rules work only
for the specific document class and cannot be adapted to
other classes.

In [26], Niyogi presents a system that explicitly uses
both specific and generic knowledge to process news-
papers. Textual content is not taken into account. The
document representation is based on XY-trees [25] which
limits the complexity of the documents that can be han-
dled by the system.

Klink [15] uses explicitly both specific and generic
knowledge to process different classes of documents exem-
plified by business letters and technical papers. Textual
features and geometrical relations are considered in the
classification process. The classification module is based
on fuzzy-matched rules. The fuzziness allows small vari-
ations, making the system a bit generic, thus the rules
are domain-dependent. For each document class, specific
rules are considered. In addition, the system is limited in
the variety of documents it can analyze by the use of a
tree representation for the documents. The reading order
detection problem is not addressed.



M. Aiello et. al.: Document understanding for a broad class of documents 3

In this paper, we make a step towards generality. First,
we develop a graph-based document model similar to
the one proposed in [11], but we extend it to represent
more complex document structures. Unlike other docu-
ment models, the model is not restricted to a regular lay-
out, and it allows for the representation of overlapping
document objects. Second, we design a document under-
standing system that uses the generic knowledge on both
layout and textual content. The document understand-
ing system builds on techniques from computer vision,
artificial intelligence, and natural language processing.

From computer vision we borrow statistical decision
trees based on geometric feature vectors for the classifica-
tion of textual blocks into logical objects. Similar statis-
tical methods using decision trees or neural networks on
feature vectors were used in [39,40,18,31]. Even though
the techniques used are similar, the final goal is different.
Rather than being interested in the distinction between
text and non-text for every document object, we are in-
terested in classifying all the textual document objects
into different categories, such as title, footnote, and page
number.

From artificial intelligence we borrow notions from
the field of qualitative reasoning and constraint satisfac-
tion. In particular, we consider bidimensional extensions
of Allen’s interval relations [4], that is, rectangular rela-
tions. To the best of our knowledge, bidimensional Allen
relations have been used in document image analysis in
three cases [15,33,38]. In all these approaches, bidimen-
sional Allen relations are used as geometric feature de-
scriptors, at times as labels for graphs and at other times
as layout relations among document objects. Thus, the
use of Allen relations is relegated to feature comparison,
and it is not used for performing any other kind of rea-
soning, as in the present case.

From the field of natural language processing we bor-
row the use of statistical methods such as bi-grams and
tri-grams. To the best of our knowledge, such techniques
have not been used before for reading order detection.

Comparing the whole document understanding sys-
tem proposed here with others, the main difference lies
in the step we take towards a complete detection of the
logical structure. We integrate the logical labeling and the
reading order detection modules into a document under-
standing system which can work on heterogeneous classes
of documents. Assuming the layout structure as given, we
detect the logical labels and the reading order.

3 Document description

The goal of the system presented here is to process a
broad class of documents. To this end, we introduce a
document model generic and flexible enough to capture
the most complex document structures. We consider de-
scriptors for the content and structure of the document
based on the document model.

3.1 The document model

Models for document representation need at least two dis-
tinct structures: one for the layout information, to encode
the presentation of the document, and one for the logical
information, organizing the content into related logical
entities. Usually, models allow for only one layout struc-
ture per document page, and one logical structure per
document. Complex documents, however, require several
views on both the layout and logical information.

In the model we propose, a document D is a set G
of layout or geometric structures, and a set L of logical
structures:

D = 〈G,L〉.
The set of layout structures G is a collection of views

G = {g1, ..., gn}. The layout structure gi is a set Oi
g of

geometric document objects, and a set Ri
g of geometric

relations among them:

gi = 〈Oi
g,Ri

g〉.
Hence, each type of geometric relation is represented

as a graph. The vertices are the document objects, and
an edge represents the existence, and possibly the value,
of a named relation between the document objects. This
graph can be a tree for a simple relation, but in general,
it is a directed graph.

The set of logical structures L is defined in a similar
way as a collection of views: L = {l1, ..., lm}. A logical
structure li is a set Oi

l of logical document objects and a
set Rl

i of logical relations:

li = 〈Oi
l ,Rl

i〉.
The set of logical document objects Ol

i in view i holds
the content of the logical elements of the document and
the meaning represented as a logical label. The logical
structures are represented as weighted graphs.

3.2 Document object description

Document objects are the basic elements used in the doc-
ument representation. As defined in the document model,
the document objects are part of both the geometric and
the logical structures.

For the purpose of this paper, we consider picture and
text document objects. Pictures are only considered as a
whole. Different granularities for text elements are con-
sidered, such as characters, words or text-blocks. Here,
we take text-blocks as the smallest entities carrying a
logical meaning.

The shape of the document objects is assumed to be
rectangular. For non-rectangular shapes, we simply con-
sider the bounding box.

A description of the layout using content information
and the positioning of document objects on a page, i.e.,
bounding boxes, is sufficient to reproduce the original
document image, and, for instance, to print it on paper.
Therefore, to describe a geometric document object, two
main categories of features are used:
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Fig. 1. The definitions of exact (left) and TBRR (right) rect-
angle model relations shown for the X coordinate. In the mid-
dle is an illustration. For simplicity, only the direct relations
are illustrated; the inverse relations are obvious. The interval
b is ‘fixed’, while the interval a is ‘sliding’ from left to right
showing the possible relative positions. The borders of size T
are drawn at the endpoints of b

– geometric features;
– content features.

For each geometric document-object a set of features
is determined. This feature vector is selected such that it
describes, as accurately as possible, the instantiation of
a document in a class.

To describe the content of documents in a broad doc-
ument class, generic features are required. The features
are:

– the aspect ratio - defined as the ratio between width
and height of the bounding box;

– the area ratio - defined as the ratio between block area
and the page area;

– the font size ratio - defined as the block font size di-
vided by the most frequently used font size in the
document;

– the font style - defined as an enumerated type, with
possible values: regular, bold, italic, underline;

– the content size - defined as the number of characters;
– the number of lines.

This feature vector will be completed with another
feature, based on the neighborhood relation, which is de-
fined in the following section.

For a large heterogeneous collection of documents
there is a limited number of logical document objects
common to all of them [23]. Therefore, only the following
textual document objects are considered as logical labels:
Title, Body, Caption and Page Number.

3.3 Layout structure description

Besides the layout description presented above, which is
needed for reproduction of the document image, explicit
geometric relations are needed for understanding the lay-
out. These geometric relations fall into two major classes:

– global arrangement of objects on the page;
– spatial relations between objects on the page.

For representation of spatial relations between objects
represented by their bounding box, we use qualitative re-
lations. First, consider the extension of Allen’s interval
relations [4], originally devised for 1-D temporal inter-
vals, to two dimensions [22,38,8]. On both the X and
the Y axis the thirteen relations: precedes, meets, over-
laps, starts, during, finishes, equals, and their inverses are
considered. Abbreviations of these interval relations used
in the rest of the paper are p, m, o, s, d, f, e, pi, mi, oi,
si, di, fi, where the last six are the inverses of the first
six, respectively.

Due to the inherent inaccuracy in document image
analysis, relations based on exact coincidence of points
are of little use. Thus, we make a shift in the interpre-
tation of Allen’s relations. Instead of considering two in-
terval extremes to be equal if they share the same coor-
dinates, we consider them equal if they are closer than a
fixed distance T. This can be dually seen as if the bound-
ing boxes have a thick boundary. We name the set of 13
Allen’s relations thus interpreted Thick Boundary Rect-
angle Relations (TBRR).

The thickness of the boundary is the same for all ob-
jects in the document and it is fixed with respect to the
page size. The best values for T are found through ex-
perimentation and are usually in a range of 1–3% of the
average block size of the page, [2]. There is an additional
constraint on the value of T with respect to the size of
the smallest document object: it should not exceed half
the size of the shortest side of the smallest bounding box.
Referring to Fig. 1, one sees how the TBRR relations are
more tolerant in the establishment of a relation between
two intervals. For example, interval a meets interval b not
only if xa

2 = xb
1, but also if xb

1 − T ≤ xa
2 ≤ xb

1 + T .
With the TBRR interpretation Allen’s relations main-

tain the jointly exhaustive and pairwise disjoint property;
meaning that, given two rectangles, one and only one
TBRR relation holds among the two rectangles.

To prove the jointly exhaustive (JE) property in the
above statement, one has to show that the union of the
thirteen TBRR relations is the whole IR line space. To
prove the pairwise disjoint (PD) property, one has to
show that the intersection of any two given sets of the
thirteen is empty.

In Fig. 2, the set of points (1, 2, 3, 4, 5) where the
endpoints of any given interval can be situated are shown.
The sets 2 and 4 are closed, the others are open. In Ta-
ble 1, all possible relations achievable when positioning
the endpoints of a in the allowed sets are reported.

Consider the left endpoint of a as situated in 1. The
possible positions for the right endpoint of a are in 1, 2,
3, 4, 5. If xa

2 is also located in 1 then ∞ < xa
1 < xb

1 − 3T
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1 2 3 4 5

T T T Tb

Fig. 2. The possible positions for the endpoints of the sliding
interval a relative to the fixed interval b

Table 1. The possible relative interval position for the end-
points of the a interval

xa
1 xa

2 Relation
1 1 p

2 m
3 o
4 fi
5 di

2 3 s
4 e
5 si

3 3 d
4 f
5 oi

4 5 mi
5 5 pi
IR IR JE (∪)
φ φ PD (∩)

and xa
1 + 2T < xa

2 < xb
1 − T hold. Writing down all these

intervals one can easily see that the union of all the inter-
vals where xa

2 can be situated, is the part of IR situated
to the right of xa

1 + 2T . Because xa
1 is sliding from left-

to-right all of IR is covered. Therefore, the TBRR are
jointly exhaustive. In a similar way, considering xa

1 in all
five possible sets, one shows that the intervals where xa

2
can be situated are disjoint.

The TBRR is a set of qualitative relations represent-
ing the spatial relations of the document objects on the
page. For every pair of document objects o1 and o2, one
X and one Y interval relation hold. If one considers the
pair in reversed order, the inverse interval relation holds.
Therefore the directed graph gi representing these rela-
tions is complete.

For global arrangement of document objects on the
page, we use a neighborhood relation. Two document ob-
jects o1 and o2 are considered neighbors if they share an
edge in the Voronoi diagram [6]. The Voronoi diagram
is computed for the centers of gravity of the bounding
boxes representing the document objects. This relation
is stored in a weighted graph where the nodes are the
document objects. An edge represents the existence of
the neighborhood relation between them. The weight of
the edge is the actual Euclidean distance between them.

This neighborhood relation is added as a Boolean
value to the feature vector describing textual document
objects presented in previous section. This feature indi-
cates whether the current text document objects is neigh-
bor to a figure or not.
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Fig. 3. Exemplification of the layout relations. The upper
part shows the TBRR relations for all pairs where document
object D is the first element of the pair. The bottom part
shows the Voronoi diagram, and the neighborhood relation for
all pairs with starting element D (solid) and other (dashed)

An example of interval and neighborhood relations is
shown in Fig. 3.

The proposed layout representation captures the es-
sential information for a given document, which is re-
quired by our system for further logical analysis.

3.4 Logical structure description

As for logical relations between document objects, we
consider a partial ordering relation BeforeInReading
which holds for two document objects if one is to be read
before the other one. Note that this does not mean that
it has to be read immediately before, but just that it is
before in the reading order. This partial ordering can be
extended to a total ordering among document objects
which is the reading order.

Recall that only Body, Title, Page Number and Cap-
tion are permissible logical labels. Page Numbers are rel-
evant for identifying pages of the document. They are
not important for the reading order on a page. Captions
and their associated pictures are considered as auxiliary
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to the reading of the document. After reading a caption,
the main linear reading order continues. Therefore, the
reading order is considered only among Body and Title
document objects.

In this paper, we make the assumption that for a doc-
ument page there is only one reading order. This is a
limitation of our current system, as there are examples
(e.g., newspapers) where on a single page there are many
independent articles, which can be read independently of
one another in any order.

4 Document understanding

Document analysis starts with the document image and
ends with its complete logical structure. For this pur-
pose two main steps are needed: one to extract the lay-
out structure, called layout detection; and another one
to determine the logical structure, called document un-
derstanding. As document authoring is a non-reversible
process, document knowledge is essential in the document
analysis process.

The document knowledge is mainly used in docu-
ment understanding. There are two main phases in docu-
ment understanding. In the first phase, the layout docu-
ment objects are grouped and classified as logical objects.
Then, among logical document objects, logical relations
are determined. In this paper, we consider the reading
order as a logical relation. The whole process is sketched
in Fig. 4.

Document Understanding

Document
Image

Features &

Relations

Extraction

Layout
Structure

Logical
Structure

Document Knowledge

Object

Classification

Relations

Detection

Layout

Arrangement

Rules

Mapping

Rules

Fig. 4. The main steps of document analysis, and the role of
document knowledge

4.1 Document knowledge

As we aim to process a broad collection of documents we
consider only generic knowledge. The document-generic
knowledge used can be grouped in two main categories:

1. Content mapping rules from logical to layout docu-
ment objects:
(a) titles are written in larger than average font size

and/or in a non-regular style;
(b) title objects usually consist of less than three lines;
(c) a paragraph is written with a uniform regular font

size and style;
(d) the page number is located on the top or the bot-

tom of the page;

(e) the caption is a neighbor of a picture document
object.

2. Layout arrangement rules reflecting the logical struc-
ture:
(a) in Western culture the reading order is from left-

to-right and from top-to-bottom;
(b) the reading order is consistently either column- or

row-oriented;
(c) paragraphs start with a capital letter, and end

with a termination mark such as a period.

Even though there might be some exotic documents
that do not obey the above rules, they form the basis for
our document understanding system.

4.1.1 Knowledge acquisition There is a question about
the acquisition of the general knowledge necessary for
the document analysis tasks. In this paper, the origin of
the knowledge comes from common-sense reasoning and
statistical methods.

In particular, for the task of logical labeling, the
generic knowledge synthesized in the content mapping
rules from logical to layout document objects is ob-
tained by common-sense reasoning and by verification us-
ing statistical measurements on documents coming from
datasets. First, we made common-sense hypotheses based
on experience and observations. Second, we studied the
histograms of feature vector values computed on doc-
uments of given datasets. Measurements confirmed the
initial observations.

In addition, in the case of the spatial reasoning mod-
ule common-sense reasoning is the origin of knowledge.
For instance, it is common knowledge in Western culture
that documents are read from top-to-bottom and from
left-to-right. However, there are other ways to acquire
document-related knowledge. In [2], the notion of a doc-
ument encoding rule is proposed. Such rules capture how
the layout of a document conveys information and the in-
tent of the author to the reader of a document. The rules,
that can be expressed in various formalisms such as in a
LATEX class file, can come from different sources. Rules
can be obtained by common-sense reasoning, they can
be obtained directly by the author of the document class
(e.g., the printer of a journal disclosing the LATEX class
file he/she uses), and they can be obtained via learning
techniques (e.g., the first-order learned rules described in
[5]).

Finally, the natural language processing module uses
n-grams to compute the transition probabilities between
two text blocks. To build a general model, 400,000 journal
abstracts were part-of-speech tagged and the distribution
of bi- and tri-grams was extracted. This sort of knowledge
is domain independent and falls under the category of
generic document knowledge.

4.2 Logical object classification

For every textual document object, the geometric fea-
tures described in Sect. 3.2 are combined into a feature
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vector. At this point each document object is represented
by a set of seven features as follows:

– the aspect ratio - defined as the ratio between width
and height of the bounding box;

– the area ratio - defined as the ratio between block area
and the page area;

– the font size ratio - defined as the block font size di-
vided by the font size most frequently used in the
document;

– the font style - defined as an enumerated type, with
possible values: regular, bold, italic, underline;

– the content size - defined as the number of characters;
– the number of lines;
– the neighbor to figure - expressed as a yes/no feature.

The feature vector consists of continuous and enumer-
ated values. We should, therefore, select a method able to
deal with both continuous and enumerated values, [29].

Based on these features we assign one of the logical la-
bels Caption, Body, Title or PageNumber to a document
object. The problem of assigning a label to each docu-
ment object is a standard statistical pattern recognition
problem [14]. Therefore, we use standard tools.

4.3 Reading order detection

As defined in Sect. 3, the reading order is determined
through the intermediate logical relation BeforeInRead-
ing. The possible reading orders are detected indepen-
dently for document object type Body and Title, respec-
tively. Then, these reading orders are combined using a
Title-Body connection rule. This rule connects one Title
with the left-most top-most Body object, situated below
the Title.

The reading order is determined by deploying both
geometrical and content information. For this purpose,
we build:

– a spatial reasoning (SpaRe) module based on the spa-
tial relations TBRR;

– a Natural Language Processing (NLP) module based
on lexical analysis.

Due to the generality of the document knowledge used,
it is likely that one gets more than one reading order,
especially for complex documents with many text blocks.

The two graphs of BeforeInReading relations are com-
bined to extract the final reading order relation.

As described in Sect. 3, the relations defined yield a
directed graph. Using the assumption that only one read-
ing order is present on a page, the reading order is a full
path in this graph. As the graph is cyclic, standard topo-
logical sort [16] for finding a full path in the graph cannot
be used. We use instead a modified version of it (cf., Ap-
pendix B in [2]). To be precise, the nodes in the graph
are sorted by the number of outgoing arrows of BeforeIn-
Reading relations. All nodes have to be reached once and
only once.

The two modules built are applied in a strict order.
First, the spatial reasoning module identifies a number

of spatially admissible reading orders; second, the nat-
ural language processing module identifies the linguisti-
cally most probable among those. It is important to no-
tice that switching the order of the two components is
inefficient. In fact, in our system the spatial reasoning
module works independently of the results of the natural
processing module. The natural language component can
take advantage of the pruning operated by the spatial
reasoning module. Rather than considering all factorial
combinations of textual document objects, the natural
language module only looks at the reading orders pro-
vided by the spatial reasoning module. The advantage
resides in the fact that the algorithms behind the spatial
reasoner have a polynomial complexity in the number of
document objects.

4.3.1 SpaRe: spatial reasoning module In the spatial ar-
rangement approach, the document knowledge (2a) and
(2b) and the layout 2D interval relations are used as a
set of constraints to determine the BeforeInReading log-
ical relation [3]. These constraints are satisfied using the
Eclipse environment [13]. The knowledge (2a) is encoded
in the rule depicted in Fig. 5 top. This states that the doc-
ument object A is in BeforeInReading relation with the
document object B, if either of the following TBRR rela-
tions px(A,B), py(A,B), mx(A,B), my(A,B), ox(A,B)
or oy(A,B) holds. In other words, this encodes the fact
that documents are read from top-to-bottom and from
left-to-right (note that one can go first left-to-right or
first top-to-bottom) allowing for the overlapping of doc-
ument objects.

Furthermore, we exploit document knowledge (2b) by
considering two possible reading orders for every docu-
ment:

– row-wise: text-blocks are read in left-to-right rows,
which are then read from top-to-bottom;

– column-wise: text-blocks are read in top-to-bottom
columns, which are then read from left-to-right.

The rules for each reading direction are presented in Fig.
5. Basically, the two directional rules, are both adding
one specific constraint to the basic rule depicted in Fig. 5
top. In the row-wise reading order the diagonal direction
“left-bottom to top-right” cannot be present among the
BeforeInReading relations allowed. This is implemented
by specifying all the other BeforeInReading relations that
can occur, and leaving the non-allowed ones out. Simi-
larly, in the column-wise reading order the diagonal direc-
tion “right-top to bottom-left” cannot be present among
the BeforeInReading relations allowed.

In Fig. 6, the extracted logical relations BeforeIn-
Reading and the final reading order are shown for the
document of Fig. 3. The BeforeInReading relations pre-
sented in the graph are computed by the SpaRe module.
From this two possible reading orders are detected. The
correct one is shown on the right side.

We remark on the polynomial complexity of this com-
ponent with respect to the number of document objects.
This comes from the fact that the specific constraint
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if( precedes_x(A,B) OR
precedes_y(A,B) OR

meets_x(A,B) OR
meets_y(A,B) OR
overlaps_x(A,B) OR

overlaps_y(A,B)
)

then
beforeInReading(A,B)

% VERTICAL COLUMNS %

if( precedes_X(A, B) OR

meets_X(A, B) OR
(overlaps_X(A, B) AND ( precedes_Y(A,B) OR

meets_Y(A,B) OR

overlaps_Y(A,B) ))
OR

((precedes_Y(A, B) OR meets_Y(A,B) OR overlaps_Y(A,B)) AND
(precedes_X(A,B) OR
meets_X(A,B) OR

overlaps_X(A,B) OR
starts_X(A,B) OR

finishesi_X(A,B) OR
equals_X(A,B) OR
during_X(A,B) OR

duringi_X(A,B) OR
finishes_X(A,B) OR

startsi_X(A,B) OR
overlapsi_X(A,B)))

then

beforeInReading(A,B)

% HORIZONTAL COLUMNS %

if( precedes_Y(A, B) OR

meets_Y(A, B) OR
(overlaps_Y(A, B) AND

(precedes_X(A,B) OR

meets_X(A,B) OR
overlaps_X(A,B)) )

OR
((precedes_X(A, B) OR meets_X(A,B) OR overlaps_X(A,B)) AND

(precedes_Y(A,B) OR

meets_Y(A,B) OR
overlaps_Y(A,B) OR

starts_Y(A,B) OR
finishesi_Y(A,B) OR
equals_Y(A,B) OR

during_Y(A,B) OR
duringi_Y(A,B) OR

finishes_Y(A,B) OR
startsi_Y(A,B) OR
overlapsi_Y(A,B)) )

then
beforeInReading(A,B)

Fig. 5. The BeforeInReading rules encoding the spatial rea-
soning constraints. On top, the most generic BeforeInReading
rule is displayed. The rules constraining column-wise and row-
wise document understanding are displayed in the center and
bottom, respectively. The latter two are the rules actually
used in experimentation

satisfaction problem with bidimensional Allen relations
has polynomial complexity [8], this check is operated
quadratically many times (all pairs of document objects
are checked), and finally a graph of BeforeInReading re-
lations is sorted in quadratic time [2]. In short, the worst
case complexity of the component is polynomial in the
number of document objects present in the page under
analysis.

4.3.2 NLP: natural language processing module To ex-
tract the reading order from the textual content, natural
language processing is required. As we aim at generic
analysis, we use shallow NLP tools, like taggers, which
can contribute to the resolution of reading order ambigu-
ities.

A tagger assigns a part-of-speech tag, such as DT (de-
terminer: the, a), VBD (past tense verb: took, said), SENT
(sentence boundary: . ! ?), etc. to each word or punc-

A

B

C

D

E
F

H

G

I

The "BeforeInReading" relations

A

B

C

D

E

F

G

I

H

The correct reading order relationThe reading orders detected

(A,B,C,D,E,F,G,H,I)

(A,B,C,D,G,E,F,H,I)

Fig. 6. Exemplification of the logical relations. The BeforeIn-
Reading relations are computed by the SpaRe module. Here
the relation involving element D are drawn solid. From these
two reading orders were detected. The correct one is shown
on the right side

tuation sign. When this is done successfully, document
knowledge (2c) can be employed.

For the determination of the BeforeInReading rela-
tion, we use a probabilistic approach. Let o and o′ be
two document objects, we want to determine the proba-
bility P (o o′) i.e., the probability that o and o′ obey the
BeforeInReading relation.

First, both objects are tagged and the last two tagged
words ending and the first tagged word beginning objects
o and o′ are identified. We refer to the last two tags of an
object o by t−2

o and t−1
o and to the first tag by t1o. w

−2
o ,

w−1
o , and w1

o, refer to the words themselves.
The restriction to sequences of length 3 is mainly due

to the sparse data problem, where it can be expected
that most training corpora are too small to assign reliable
frequencies to infrequent sequences.

The likelihood of a tagged sequence is defined as:

P (t1o′ |t−2
o t−1

o ) = P (t−2
o t−1

o t1
o′ )

P (t−2
o t−1

o )

P (t−2
o t−1

o t1o′) is computed by dividing the number of oc-
currences of the tag sequence t−2

o t−1
o t1o′ in a pre-tagged

training corpus by the number of all trigrams occur-
rences. P (t−2

o t−1
o ) is computed analogously. The reader

is referred to [21] for a comprehensive introduction to
statistical natural language modeling.

To decide the whole reading order of a document page
with the textual objects o1 . . . on the probability is com-
puted as the product of the transition probabilities of all
consecutive text objects:

P (o1, . . . , on) =
∏n−1

i=1 P (oi, oi+1)

By computing probabilities it is also possible to rank the
different reading orders. The reading order with the high-
est probability is taken as the genuine one.

In general, n(n− 1) transitional probabilities have to
be computed, where n is the number of text blocks on
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a page. In order to identify the order with the highest
probability, all permutations of the n text blocks have
to be considered, resulting in factorial complexity O(n!).
This is the most general case, where no further (spatial)
constraints are used. In the current implementation the
number of permutations is dramatically reduced by the
spatial reasoning component. In our experiments, maxi-
mally four permutations had to be considered.

5 Experiments

Experiments have been performed using two collections
of documents: the University of Washington UW-II En-
glish journal database [28], and the MTDB [30] from the
University of Oulu, Finland. The first is a collection of
623 pages coming from conference proceedings and scien-
tific journals. The second data set consists of 171 pages
of scanned documents of various types: technical jour-
nals, newspapers, magazines, and commercial ads. Both
datasets come with ground truth (GT) at the block level
granularity. There is no explicit separation between the
layout and the logical structure. Every document object
has a layout label and a logical label. The reading order
is also present in the ground truth. In the case of the
MTDB there is no ground truth for the textual content
and font information, thus the TextBridge OCR package
[34] from ScanSoft was used.

The UW-II is a standard collection widely used in
the field of document understanding, while MTDB pro-
vides a more heterogeneous set of documents. The block
granularity is lower in UW-II, therefore more blocks are
present per page than in MTDB. In MTDB there are also
newspaper pages with multicolumn organization, while in
UW-II there are scientific papers only with at most two
columns.

For evaluation purposes, the documents in the data
set were split into three main groups, based on their com-
plexity:

– trivial documents consisting of at most three textual
document objects;

– regular documents with the number of document ob-
jects between four and eight;

– complex documents with more than eight document
objects.

Out of 624 document pages of UW-II 163 are of type
trivial, 276 of type regular, and 185 are of type complex.
As for MTDB, out of 171 document pages 98 are of type
trivial, 66 of type regular, and seven are of type complex.
The total number of textual document objects is 5,364
for UW-II and 894 for MTDB.

Each of the three modules of the system, i.e., the logi-
cal object classification (LoC) module, the spatial reason-
ing module (SpaRe) and the natural language processing
(NLP) module, was tested independently. The data flow
used for evaluation of the modules is shown in Fig. 7.

Reading order detection (RoD)
MTDB

data set

layout structure

-------------

Ground Truth

logical label

Logical

object

classification

(LoC)

Spatial

Reasoner

(SpaRe)

Lexical

analysis

(NLP)

Logical

Structure

Fig. 7. The data flow in the various experiments considered

5.1 Evaluation criteria

To evaluate the individual modules and the system as a
whole, we resort to standard information retrieval mea-
sures [7]: precision and recall.

The LoC module assigns a label to an object and is
evaluated by considering the number of misclassifications.
The precision and recall are defined for every logical type
i = {Body,Caption, T itle, Page number} by:

preci = |Ci∩GTi|
|Ci| reci = |Ci∩GTi|

|GTi|

where Ci represents the set of document objects classified
by the LoC module as logical objects of type i and GTi

represents the set of document objects of logical type
i conform the ground truth. Both precision and recall
have values in the range [0, 1]. The precision preci gets
value 1 if all document objects classified as type i by the
LoC module are actually of type i in the ground truth.
Consequently, preci gets value 0 if none of the document
objects classified as type i are actually of type i in the
ground truth. The recall reci gets value 1 if all docu-
ment objects of type i in the ground-truth, are classified
correctly. Consequently reci gets value 0 if none of the
document objects of type i is classified as type i.

The average precision and recall computed from the
four individual measures are the overall performance
measures for the LoC module.

The goal of the SpaRe and NLP modules is to find
among all possible orders of the blocks the single one that
corresponds to the reading order.

The set of reading orders detected (D) is compared to
the ground truth. The UW-II provides one unique read-
ing order in the ground truth for all pages. On the con-
trary, for the MTDB dataset the ground truth defines
independent reading orders on non-intersecting subsets
of the textual objects within the same document; e.g., a
page containing two different articles or independent text
blocks with information about the authors of an article,
as exemplified in Fig. 8.d. For the MTDB data collec-
tion, we consider a reading order correct if it is identical
to at least one permutation of the independent reading
orders as defined in the ground truth. We refer to the set
of permutations of the ground truth as the set of correct
reading orders (CRO). Then, the precision and recall are
defined as follows:

prec = |D∩CRO|
|D| rec = |D∩CRO|

|CRO|

The precision value lies between 0 and 1 inclusive, where
0 indicates that the correct reading is not among the
reading orders detected, 1 indicates that there is exactly
one reading order and it is correct, and any other value
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a b c d e

Fig. 8. Sample images from the UW-II a, b, c and MTDB d, e data sets

a b c d e

Fig. 9a–e. Examples of reading orders detected. a The original document image. b and c the reading orders detected by the
SpaRe module. The NLP module indicate that the correct reading order is the one presented in b. For the document in d the
correct reading order e was already detected by the SpaRe component with no use of the NLP component

indicates the degree of uncertainty of the RoD module.
Because there is only one reading order, the recall can
only be 1 if the correct reading is among the ones de-
tected, and 0 if it is not.

5.2 Logical object classification

For classification of logical objects, the statistical pat-
tern recognition package MLC++ [17] developed at the
Stanford University and SGI is used. This contains im-
plementation of various decision tree classifiers. We used
the C4.5 decision tree, which can handle heterogeneous
feature vectors of enumerated and continuous values.

During experimentation, the Laplace correction as
pruning technique was used. In [9] it is shown that
the Laplace correction gives the best performance. The
Laplace correction method biases the probability towards
a uniform distribution. Specifically, in a k-class problem,
if a node has m instances, c of which are from a given
class, the probability assigned to the class is c+1

m+k .
We used the default threshold values of MLC++ as

pruning parameters. These are 0.6925 for the lowest prun-
ing probability, and 2 for the minimum number of in-
stances in a leaf. One can make the system more generic

by increasing the value of these pruning parameters. If we
require, for instance, at least ten instances in a leaf, then
many branches from the decision tree, treating specific
cases, will be removed.

On the University of Washington UW-II, there are
5,364 relevant text blocks. Of those, 4,151 document ob-
jects are Body Text, 530 Caption, 619 Page Number, and
64 Title. We have randomly split the the UW-II dataset
into two parts: one half as training set and the other half
as test set.

In MTDB, 894 different document objects are present.
Of those, 520 document objects are Body Text, 135 Cap-
tion, 166 Page Number, and 73 Title. For selecting the
training and test sets we used the leave-one-out with ro-
tation method proposed in [14]. This is the most appro-
priate method given the small size of this data set.

The classification results for the UW-II and MTDB
datasets are shown in Table 2. In Table 3, the confusion
matrix of the classification process for UW-II dataset is
shown. Each row represents the number of blocks in the
ground truth of a given type; while each column repre-
sents the type as detected by LoC. The elements outside
the diagonal, 173 out of 5,364, represent classification er-
rors.
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ContentSize
Estimated error: 5.48% (3578)

PAGE-NUMBER
Estimated error: 2.13% (422)

<= 5

FontStyle
Estimated error: 5.93% (3156)

> 5

Neighbor2Fig
Estimated error: 2.94% (102)

B

CAPTION
Estimated error: 15.79% (19)

I

ContentSize
Estimated error: 5.96% (3035)

R

CAPTION
Estimated error: 4.00% (75)

y

TITLE
Estimated error: 0.00% (27)
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Fig. 10. The decision tree automatically generated by the
MLC++. Note that this tree is heavily pruned for figure size
reason. In each node, the feature name or the logical label
for leaves are displayed. In parenthesis the actual number of
document objects, from the test data set, that enters the tree
node is displayed. The second line shows the estimated errors
for the test set

Table 2. Experimental results of the LoC module

Document UW-II MTDB
group prec rec prec rec

Body 0.98 0.98 0.97 0.93
Caption 0.97 0.87 0.85 0.82
PagNr 0.98 1.00 0.96 0.97
Title 0.97 0.91 0.70 0.94
total 0.98 0.94 0.87 0.92

Table 3. The confusion matrix of the classification process

Body Caption PageNo Title
Body 4054 85 10 2
Caption 70 460 0 0
PageNo 0 0 619 0
Title 2 4 0 58

The total wall-clock execution time1 for the entire
UW-II dataset was 93 s. For file parsing and feature
vector computation 92 s were needed. The decision tree
training and classification took an additional 3 s. For
the MTDB dataset, file parsing and feature computation
took 35 s, without OCR processing. Training and classi-
fication using decision tree is done in about 1 s.

A pruned version of the decision tree can be seen in
Fig. 10. We set the minimum number of objects in a
leaf at 6, compared with default value 2, and the pruning
factor to 2.8 compared with default value 0.6925. Using
default pruning values, we obtained results depicted in
table 2. With this pruning values we not only obtain a
smaller tree to fit on a page, but we also make the clas-
sification more generic. The overall error increases from
4.5% to 4.9%.

1 The experiments were run on a PC with an Intel Pentium
IV 1.7GHz processor.

Table 4. Experimental results of the SpaRe module

Document UW-II MTDB
group prec rec prec rec

trivial 0.96 1.00 0.97 0.99
regular 0.88 0.98 0.79 0.97
complex 0.93 0.98 0.88 1.00
total 0.91 0.99 0.89 0.98

5.3 Evaluation of SpaRe

In the presented experimentation, the thickness T of the
boundary of the TBRR relations within the SpaRe mod-
ule is set to the value of 15. The value of 15 has been
shown to be best for the MTDB data set [2]. The results
of experimentation with the two datasets are summarized
in Table 4. On the UW-II dataset, the SpaRe module de-
tected 672 reading orders for the 624 document pages. For
48 documents two reading orders were detected, for all
other documents only one. For four complex documents
the reading order detected was wrong, for five regular
ones it was wrong, and for all simple documents the cor-
rect reading order was among those detected.

As for the MTDB dataset, the SpaRe module detected
192 reading orders for the 171 document pages in the data
set. For 18 documents 2 reading orders were detected, in-
stead of one. In one case, none of the two reading orders
detected was correct. For one document 4 possible read-
ing orders were detected and none of them was correct.
For the remaining 152 documents, the SpaRe module de-
tected correctly the one reading order.

The average wall-clock execution time2 per document
is of 0.11 s for the UW-II collection, while it is of 0.18 s
for the MTDB collection. The overall execution time is
of 66,s and 27 s for the UW-II and MTDB collections.
In Fig. 11, we report the execution time in seconds of
SpaRe on the two datasets with respect to the document
complexity, i.e., the number of textual document objects
on the page. The shape of a non-linearly growing curve
is identifiable in the graphics. The small variations, such
as the peak of 0.6 s at 7 for UW-II, are due to the mea-
surement of wall-clock time. Unfortunately, the Eclipse
environment does not provide primitives to measure the
cpu time, but only to access the system clock. Rerunning
the experiments at different moments changes these small
variations preserving the overall shape of the curve.

5.4 Evaluation of the NLP module

The NLP component is only applied to pages for which
SpaRe detected more than one reading order. In the cur-
rent experimental setting this was the case for 50 pages
from the UW-II dataset and 16 pages from the MTDB

2 The experiments were conducted on a Sun Sparc Ultra 5
workstation with a 300Mhz processor and other users con-
nected.
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Fig. 11. The execution time per document of SpaRe on the UW-II dataset (left) and on the MTDB dataset (right) with respect
to the number of textual document objects. Execution times are expressed in seconds

Table 5. Experimental results of the NLP module

UW-II MTDB
prec prec

total 0.82 (0.84) 0.69 (0.73)

dataset. The experimental results for the NLP component
are summarized in Table 5. Since the NLP component
always returns exactly one reading order, precision and
recall are always equal and therefore only the precision
values are reported here.

With respect to UW-II, the NLP component yields a
precision of 0.82 for all 50 pages returned by SpaRe. The
precision of the NLP component when evaluated only
with respect to those pages, for which SpaRe returned at
least one correct reading order is 0.84. Focusing on this
subset of pages more clearly indicates the actual perfor-
mance of the component as it neglects cases for which it
simply could not select a correct reading order.

When evaluated on MTDB, precision is 0.69 and 0.72
on the subset of pages having been assigned at least one
correct potential reading order by SpaRe, as explained
above.

The average execution time3 is 2.96 s per page for
UW-II, and 2.68 s per page for MTDB. This slight dif-
ference in execution time is mainly due to the higher
number of text blocks per page (on average) for UW-II
documents.

3 The experiments were run on PC with Intel Pentium
800MHz processor.

Table 6. Experimental results of the entire system

UW-II MTDB
prec rec prec rec

LoC 0.98 0.94 0.87 0.92
SpaRe 0.90 0.98 0.84 0.94
NLP 0.97 0.97 0.91 0.91
Total 0.97 0.91

5.5 Evaluation of the entire system

The components have been evaluated in cascade for the
goal of reading order detection by providing the results of
the LoC module to SpaRe, and the results of the latter to
the natural language module, see Fig. 7. The same evalu-
ation measures as for assessing the individual components
are used. The evaluation of the entire system is presented
in Table 6. The first row shows the performance of the
LoC module. Errors in this module propagate to the two
reading order detection modules. The second row of the
table represents the performance of the SpaRe module on
the LoC input. The third row of the table represents the
performance of the NLP module on the output of SpaRe.
Note that since there is only one output per document of
the NLP module the precision and recall measure have
the same value. The final row of the module repeats the
total performance of the system having as goal the read-
ing order detection.

Comparing the second row of Table 6 with the results
of SpaRe on the ground truth, cf. Table 4, one notices
that the performance of the SpaRe module slightly de-
grades, as some document objects are misclassified. This
degradation of 0.01 and 0.04 for UW-II and MTDB, re-
spectively, is due to the fact that SpaRe attempts to de-
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tect an order with elements which are then not considered
to be part of a reading order. Of course, this degradation
propagates to the NLP module which takes the output
of the SpaRe component as its input. All of the degra-
dation is therefore due to the fact that the reading order
detected and the one found in the ground truth are not
formed by the same set of document objects, not by the
order of these.

The third row of Table 6 shows the results of the NLP
module considering both the instances for which SpaRe
returned one unique reading order and those for which
the NLP selected one among those provided by SpaRe.
By comparing this row with the second one, one notices
that precision increases while recall decreases. The in-
crease in precision is due to disambiguating the output
of the SpaRe component for some pages, thus eliminating
wrong reading orders. Dually, the overall recall slightly d
ecreases, as a few correct reading orders are also elimi-
nated by the NLP module.

5.6 Discussion

Given the goal of the presented system to process hetero-
geneous documents, the results presented are remarkably
positive. Errors made are due to the presence of docu-
ment classes not obeying the generic knowledge assump-
tion. One could tune the system to get less errors for the
given data sets, but then the generalization power is lost,
and the system becomes too specific.

For logical labeling, (see Table 2), the results are bet-
ter for UW-II than for MTDB. The main reason lies in
the fact that in UW-II the decision tree adopted for logi-
cal labeling was trained on a larger number of document
blocks. To compensate for that, we used different selec-
tion techniques for the training set. On the other hand,
in MTDB the variety of documents in larger than in UW-
II. These documents have different styles, and our generic
decision tree can classify only the common part of them,
not very specific variations.

Most of the errors are confusions among Body, Cap-
tion and Title objects. There are three main reasons for
these errors.

First, the generic knowledge assumptions are not met
for some documents. For instance, there are documents
where the Caption is not a neighbor to a Picture. Between
Caption and Picture rulers or lines were placed. See Fig.
12(a).

Second, the variety of document classes, makes the
feature description of document objects less discrimina-
tive. For instance, the Body document objects with two
or three text lines only, are confused with Title or Cap-
tion document objects. This happens mostly on UW-
II dataset, where granularity of the blocks defined in
ground-truth is very low.

Third, we have few errors because of wrongly detected
feature vectors. In MTDB dataset some misclassifications
are due to inaccuracies of the OCR, specifically, to the
font characteristic detection. The font features Font-Size-
Ratio and Font-Style are affected most. The errors made

in character confusion by the OCR do not affect the LoC
module.

In Fig. 12 some representative pages are presented,
where the logical objects classification fails, for the above-
mentioned reasons.

The errors made by the spatial reasoning module on
the ground truth are due to the rule connecting the ti-
tle to the body-reading orders. This rule is appropriate
for Main Title but not for (Sub)Section Title. For in-
stance, for a two column scientific article composed of
six textual document objects, SpaRe detected four read-
ing orders. These were all wrong because a short subtitle
(“Acknowledgments”) was too close to a white space in
the neighboring column and was considered the title of
the neighboring row in a row-wise reading. This row-wise
connection was possible in four different ways, all incor-
rect. In case of a first page of an article in a magazine
composed of three textual document objects, the title was
on the left of the main text and centered vertically. In a
reading order, the title was considered by SpaRe to be
a subtitle of one of the two main bodies of text. It was
placed incorrectly in the center of the reading order in-
stead of on top of it. For one document composed of four
textual document objects organized in one column with
two subtitles and poorly typeset, SpaRe wrongly detected
the reading order. The reason is that the subtitles were
almost embedded in the main text and in overlap relation
in the x axes instead of meet. The problem disappears if
the threshold value is greater than 25 points.

The above suggests that better performance can be
achieved by fixing the threshold for each page individ-
ually, rather than for a whole collection of documents
based on some feature of the page (e.g., the white inter-
column space). This should be combined with the intro-
duction of distinct rules for main titles and section titles
(cf., the case of the “Acknowledgments” subtitle).

As for the additional errors of the SpaRe module when
applied to the data from the LoC module, rather than the
ground truth, little can be modified. SpaRe is going to
attempt to put in a spatially admissible reading order the
document objects provided by the LoC module and this
is never going to correspond to an actual reading order
of the page.

The NLP module is invoked to resolve ambiguous sit-
uations where two or more reading orders were detected
by the SpaRe module. Excluding the pages where none
of the possible reading orders detected by SpaRe were
correct, the average precision of the NLP module is 0.84.
First, considering the UW-II dataset, six out of the eight
cases, where the NLP component failed are due to ‘full
stop’ errors. This situation arises if a text block ends with
a full stop and two or more potential successors start
with a letter in upper-case. In these situations n-gram
models fail as they do not make any predictions about
sequences of words crossing sentence boundaries. The re-
maining two errors are basically of the same nature, but
instead of being caused by a full stop they were caused
by a colon.
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a b c d

Fig. 12a–d. Examples of pages for which the classification of logical objects fails. a The Caption is not neighbor to the image.
b The Caption looks very much like a Body-Text. c The Body-Text on the top-left corner looks like a Title. d For the top-right
Title the Font-Size-Ratio is 1, and all the other features, are similar to a Body Text

With respect to the MTDB dataset, three of the five
errors caused by the NLP module are ‘full stop’ errors.
For the remaining two errors, a faulty block order had
been assigned a higher probability than the actual read-
ing order. In both cases, there was no clear indication
what caused these errors. It should be noted that using n-
grams to compute the transitional probabilities between
text blocks is a very shallow approach, having the ad-
vantage of being very efficient, but also being somewhat
error prone.

On one of the pages the pages that was assigned a
wrong reading order, a text block stared with an OCR
error: ‘atios’ instead of ‘ratios’. Since the n-gram prob-
abilities are not computed on the actual words, but on
their part-of-speech tags and ‘atios’ had been assigned
the NNS tag (plural noun), just as it would have been the
case for ‘ratios’, the OCR error did not affect the com-
putation of the transitional probabilities.

The average execution time on a document image for
the cascade of the three components of the system is in
terms of less than 1 s using standard computers. This is
a guarantee of the usability of a system based on the
computer vision, artificial intelligence, and natural lan-
guage processing techniques described here. However, we
remark on the non-linear growth of execution time with
the increase in document complexity. This may be a cause
of concern when applying the system to complex docu-
ments such as big-format newspaper pages. Time-efficient
solutions for very complex documents may come from the
consideration of hierarchical approach (considering dif-
ferent granularities for document objects) and from ex-
ploiting locality (analyzing connected subsets of the doc-
ument image). In addition, faster inference mechanisms
can be devised for spatial reasoning. On the one hand,
constraint propagation algorithms specialized for the case
of bidimensional Allen relations could be devised exploit-
ing the results in [8]. On the other hand, model checking
may provide a faster alternative to constraint satisfaction
techniques [1].

6 Conclusion

We have proposed a document understanding system
that uses generic document knowledge for detecting the
logical structure of a broad class of documents. Given
the layout structure of a document, geometric informa-
tion, textual features, and content are used to classify the
logical objects and to detect the reading order.

The main contribution of this approach is its general-
ity. Virtually nothing is assumed about the input docu-
ment. The knowledge used is generic and applies to broad
classes of documents. The current implementation is able
to process English documents only, but it can be easily
adapted to other languages. To process documents writ-
ten in other languages, one has only to use proper part-
of-speech taggers and statistical data.

The generic knowledge used in the spatial reason-
ing (SpaRe) component refers to Western culture, where
reading order is from left-to-right and top-to-bottom. To
adapt our system to styles, one has to rewrite the Befor-
eInReading rules, not to redesign the entire system.

The methods presented are a major step towards a full
document understanding system in which all information
sources are employed and little is assumed regarding the
specificities of the documents.
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Haag and Océ Technologies BV, Venlo (IOP project IBV
96008).



M. Aiello et. al.: Document understanding for a broad class of documents 15

References

1. M. Aiello: Document image analysis via model check-
ing. Special issue on AI techniques in pattern recognition.
AI*IA Notizie XV(1):45–48, 2002

2. M. Aiello: Spatial reasoning: theory and practice. PhD
thesis, ILLC, University of Amsterdam, 2002

3. M. Aiello, C. Monz, L. Todoran: Combining linguistic and
spatial information for document analysis. In: J. Mariani,
D. Harman, (eds.), Proc. RIAO’2000 Content-Based Mul-
timedia Information Access, CID, 2000, pp 266–275

4. J. Allen: Maintaining knowledge about temporal inter-
vals. Comm ACM 26:832–843, 1983

5. O. Altamura, F. Esposito, D. Malerba: Transforming pa-
per documents into XML format with WISDOM++. Int
J Doc Anal Recognition 4(1):2–17, 2001

6. F. Aurenhammer: Voronoi diagrams – a survey of a fun-
damental geometric data structure. ACM Comput Surv
23(3):345–405, 1991

7. R. Baeza-Yates, B. Ribeiro-Neto: Modern information
retrieval. Addison-Wesley, Reading, Mass., USA, 1999

8. P. Balbiani, J. Condotta, L. Fariñas del Cerro: A model
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