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Abstract. Extraction of image features is a crucial step in many image analysis tasks. In feature extraction methods
Gaussian derivative kernels are frequently utilized. Blurring of the image due to convolution with these kernels gives
rise to feature measures different from the intended value in the original image. We propose to solve this problem
by explicitly modeling the scale dependency of derivatives combined with measurement of derivatives at multiple
scales. This approach is illustrated in methods for feature measurement in curvilinear structures. Results in 3D
Confocal Images confirm that modelling of scale behavior of derivatives results in improved methods for center
line localization in curved line structures and enables curvature and diameter measurement.
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1. Introduction

The notion of scale at which an image is observed, pro-
cessed or analyzed has found a profound theoretical
basis in linear scale space theory (Koenderink and van
Doorn, 1994; Lindeberg, 1994; Sporring et al., 1997).
Within this framework it is possible to apply differential
geometrical techniques in images that are effectively
blurred at a chosen scale σ . To obtain derivatives in
the blurred image the original image is convolved with
Gaussian derivative kernels. Regularization of the im-
age derivatives by convolution with a Gaussian reduces
the noise sensitiveness in the calculation of derivatives
and ensures meaningful derivative values even when

steep edges in the image are present. Combinations of
image derivatives turn out to be powerful tools to ex-
tract object features like corners, edges or blobs in a
blurred versions of the image (Florack et al., 1992).

Whereas linear scale space theory has reached a
high level of mathematical sophistication its transla-
tion to quantitative image analysis still needs further
development. In current practice the scale of observa-
tion is usually either chosen empirically or based on
a procedure for automatic scale selection (Lindeberg,
1994; Staal et al., 1999). The final feature extraction is
based on measurement of image derivatives at only one
scale. However, Gaussian derivative values and there-
fore also feature estimates depend on the particular
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scale selected in the measurement procedure (Deriche
and Giraudon, 1993; Kuijper and Florack, 1999;
Lindeberg, 1992; van Vliet, 1993). An illustration of
this phenomenon is the existence of trajectories which
represent the location of critical points as a function of
scale (Kuijper and Florack, 1999).

Due to the scale dependency of image derivatives
its measurement at a single scale does not solve the
inherent conflict between noise suppression and accu-
rate measurement of local derivatives and features of
the object in the original image. We propose to solve
this dilemma by explicitly modeling the scale depen-
dency of image derivatives resulting from characteris-
tics of objects in the image. We incorporate the notion
that without the presence of noise the derivatives cal-
culated at zero scale would be unbiased. Since it is
impossible to calculate Gaussian image derivatives at
zero scale in a discrete image we utilize measurement of
image derivatives at multiple non-zero scales to obtain
the desired quantitative information about the object in
the original image at zero scale.

In this paper we illustrate the usefulness of scale de-
pendency of image derivatives for feature extraction
in images containing curvilinear structures. Features
of interest here are center line position, curvature and
diameter (Capowsky, 1989; Houtsmuller et al., 1993;
Noordmans, 1997; Cesar and Da Costa, 1997; Steger,
1998; Jonk, 1997). The scale dependency of center line
location in curved line structures is modeled to investi-
gate the shift in line center position due to curvature. A
method to compensate for this shift is developed to im-
prove the estimate of the center line position. The same
center line shift is used to estimate the local curvature
of the center line. A diameter measurement procedure
is presented which is based on the scale dependency
of the 0th and the second Gaussian derivatives in the
image.

The validity of the line tracing, the curvature
measurement and the diameter estimation method is
demonstrated by applying the methods to both syn-
thetic images and 3D images of biological structures
obtained with a confocal microscope (Brakenhoff,
1997).

2. Tracing Curvilinear Structures

In the modeling of a curvilinear structure a useful crite-
rion for a center line point is to consider it to be part of
a structure which length is much larger than its diame-
ter (Lorenz et al., 1997; Koller et al., 1995). Within

the framework of differential geometry in Gaussian
blurred images this criterion can be effectively utilized
for detection of curvilinear structures (Steger, 1998;
Lorenz et al., 1997; Koller et al., 1995; Koenderink
and van Doorn, 1994; Eberly, 1996; Maintz et al., 1996;
Haralick, 1983; Frangi et al., 1999; Sato et al., 1998).
The starting point of our tracing procedure is the cen-
ter line detection method introduced by Steger (Steger,
1998).

2.1. Tracing Procedure

Consider a discrete point Pd at position in the image
close to a center line position. At this position we cal-
culate the Gaussian derivatives up to order 2. For the
3D case the Gaussian derivatives are obtained by con-
volution of the original image I (x, y, z) with the ap-
propriate Gaussian derivative kernels i.e.

I (x, y, z, σ ) = G(x, y, z, σ ) ∗ I (x, y, z),

Ip(x, y, z, σ ) = Gp(x, y, z, σ ) ∗ I (x, y, z), (1)

Ipq(x, y, z, σ ) = Gpq(x, y, z, σ ) ∗ I (x, y, z).

with

G(x, y, z, σ ) = 1

(
√

2πσ 2) 3
e− x2+y2+z2

2σ2 ,

Gp(x, y, z, σ ) = ∂G(x, y, z, σ )

∂p
, (p = x, y, z),

(2)

Gpq(x, y, z, σ ) = ∂2G(x, y, z, σ )

∂p∂q
,

(pq = xx, xy, xz, yy, yz, zz).

The second order Gaussian derivatives are used to build
the 3 × 3 Hessian matrix

H =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


· (3)

Arguments are left out here for brevity.
From H we calculate the eigenvalues λt , λn, λm and

the corresponding eigenvectors t, n and m which form
the orthonormal base for a local Cartesian coordinate
system. The vector t which is aligned to the line di-
rection (see Fig. 1) is the eigenvector with the small-
est absolute eigenvalue λt (Koller et al., 1995; Lorenz
et al., 1997).
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Figure 1. 3D line structure with local eigenvectors t, n and m of
the Hessian Matrix. The eigenvector t with the smallest eigenvalue
in magnitude is in the local direction of the line.

In the plane perpendicular to the line direction the
gray value distribution can be approximated by a
second order Taylor polynomial

I (ξ, η) = I + p · ∇I + 1

2
pT · H · p· (4)

In Eq. (4) p is a vector in the plane defined by n and m
i.e.

p = ξn + ηm. (5)

I and ∇I are the gray value and gradient vector at the
current position. The position of the center line Pc rel-
ative to the current position Pd is found by setting the
gradient of the local Taylor polynomial to zero (Steger,
1998)

∇I (ξ, η) = 0 (6)

and solving η and ξ from the resulting linear equation.
The actual subvoxel center line position Ps is calculated
by

Ps = Pd + Pc. (7)

In a discrete image Ps will in general not be within
the boundaries of the current voxel position Pd. If that
is the case the line point estimation procedure will be
carried out again at the discrete voxel position closest to
Ps. This procedure will be repeated until the subvoxel
centerline position Ps is within the boundaries of the
current voxel. The tracing proceeds by taking a step
from the estimated position Ps in the t-direction and
estimating a new position Ps as described above.

Note that occasionally the iterative procedure to find
the center line position may not converge. This problem
can be avoided by centering the differentiation kernel
at the estimated subvoxel position after each iteration
step.

The tracing procedure for the 3D curvilinear struc-
tures described here can also be used for curves in 2D
images. In that case all 3D vectors and matrices appear-
ing in this section are replaced by their 2D counterparts.

2.2. Curvature Induced Bias in Line Center Position

From scale space theory it is known that the position
of a critical point like an extremum or saddle point
in an image is dependent on the scale at which the im-
age is observed (Lindeberg, 1992; Kuijper and Florack,
1999). As a function of scale the critical point is mov-
ing along a trajectory in the N -dimensional space of the
image. Since a line point in a N -dimensional image is
an extremum in the N − 1 dimensional sub space per-
pendicular to the line direction (Staal et al., 1999) it is
expected that the positions of the center line points shift
as a function of scale. In straight symmetric lines we
observed no significant shift due to the isotropic prop-
erties of the differentiation kernels (Streekstra et al.,
1999). If the line is curved a bias from the true line
positions is observed (Streekstra et al., 2000).

Starting point in our analysis of the scale dependent
position of center line points in space is a first order
Taylor expansion of the gradient. As shown in (Kuijper
and Florack, 1999) the Taylor expansion of the gradient
in position and scale is given by

∇I (p0 + δp, s0 + δs)

= H(p0, s0) · δp + w(p0, s0) δs. (8)

In (8), p is an arbitrary position in space, s is the
scale parameter (s = 1

2σ 2) and p0 a critical point at
scale s0. The matrix H(p0, s0) is the Hessian ma-
trix, w(p0, s0) = �(∇ I (p0, s0)) and � denotes the
Laplacian operator. Setting the left part of (8) to zero
yields the first order approximation relating the shift
δp in position of the critical point to a variation δs in
scale. In our analysis we choose s0 = 0 and p0 at the
center line of the curvilinear structure. Using (8) we
can calculate the shift in line center position when the
scale increases.

To investigate the bias in center line position due to
line curvature and scale we model a curved line struc-
ture by a circle of a certain thickness in a 2D image.
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The center of mass of the circle is in the origin. The
radius of curvature is given by Rt and R is the radius
of the intensity profile across the line (Fig. 2).

Because of the circular symmetry of the line struc-
ture it is most convenient to use polar coordinates for
the calculation of the scale dependent line center shift.
The coordinate transformation relating polar coordi-
nates to Cartesian is given by

x = ρ cos θ
(9)

y = ρ sin θ

In a circular symmetrical object all derivatives with re-
spect to θ vanish and we have for the first order deriva-
tive operators

∂

∂x
= cos θ

∂

∂ρ
(10)

∂

∂y
= sin θ

∂

∂ρ
,

and for the Laplacian �

� = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
. (11)

Since we are interested in the shift within the 1D sub-
space perpendicular to the line direction, at constant θ ,
δp is given by

δp =
(

δρ cos θ

δρ sin θ

)
. (12)

Figure 2. Circle with radius of curvature Rt and radius R of the
intensity profile across the line. Centerline positions Ps1 and Ps2 are
obtained at scales σ1 and σ2 respectively. Ps is the unbiased centerline
position at σ = 0.

Using (10) and (11) for the calculation of the derivatives
appearing in (8) and using (12) for δp we arrive at the
equation relating δρ and δs

(
∂2 I

∂ρ2

)
δρ +

(
∂3 I

∂ρ3
+ 1

ρ

∂2 I

∂ρ2

)
δs = 0. (13)

Arguments are left out here for brevity.
To materialize the relationship between δp and δs

from (13) we need expressions for the partial deriva-
tives with respect to ρ at the center line of the original
object (s = 0). These expressions are governed by the
shape f (r) of the line profile at zero scale. We assume
that the intensity profile is bounded by the general con-
dition

I (r) =
{

I0 f (r), (r ≤ R)

0, (r > R).
(14)

In Eq. (14) I0 is the gray value at the center line, r =
ρ − Rt represents the radial position relative to the
center line and R is the radius of the line structure. We
demand that the first derivative of f (r) vanishes at the
centerline. Since we don’t want to be limited to only
one single line profile type we perform the analysis for
a general profile type f (r) given by:

f (r) =
(
1 − e−α( r

R +1)
)(

1 − eα( r
R −1)

)
(1 − e−α)2

(15)

Figure 3 shows that by changing α the shape of the
profile can be adjusted. The line profiles corresponding

Figure 3. Shape of the line profile for different values of α. The
shape of the profile changes from parabolic for α → 0 to pillbox
shaped for α → ∞.
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to the limiting cases α → 0 and α → ∞ are a parabolic
and a bar profile respectively.

For the general profile described by (15) the third
order partial derivative in (13) vanishes for points at the
center line (ρ = Rt ). Only ∂2 I

∂ρ2 turns out to be nonzero
yielding a simple relationship between δρ and s

δρ = − s

Rt
. (16)

Equation (16) reveals that the shift �Ps = −δρ is to-
wards the center of mass of the circular line structure
and independent of the radius R of the line profile.

In practice the parameter of interest will be the shift
normalized with respect to R. From (16) we can write
the normalized shift �Ps/R in terms of σ/Rt and σ/R:

�Ps

R
= 1

2

σ 2

RRt
. (17)

In 3D images it is appropriate to locally model an arbi-
trary 3D curvilinear structure by a helix. In the deriva-
tion of the shift-scale relationship in 3D we choose
the helix to be winding along the z-axis of a Cartesian
coordinate system. The center line positions can be pa-
rameterized by the polar angle θ i.e.

p(θ) = (Rt cos θ, Rt sin θ, Aθ)· (18)

In (18) Rt is the radius of the cylinder which comprises
the center line of the helix and A is the pitch of the helix.
For this helix both curvature and torsion are constant:

κ = Rt

R2
t + A2

,

(19)
τ = A

R2
t + A2

.

As in the 2D case the center line is considered to be
surrounded by a general intensity profile described in
Eq. (15).

In the Appendix the relationship between the line
center shift and scale is derived for a helical line struc-
ture. Apart from the scale parameter s the center line
shift turns out to be dependent on both local curvature
κ and torsion τ :

�Ps = κ

(
1 −

(
τ

κ

)2

− 2

(
τ

κ

)4)
s. (20)

Similar to the derivation in the appendix one can
prove that (20) also holds for a Gaussian intensity

profile across the line:

I (r) = I0e− 1
2

σ2

R2 (21)

It is easily verified that if τ = 0 (20) reduces to its 2D
counterpart (16). This means that if the 3D curvilinear
structure is a torus (τ = A = 0, κ = 1

Rt
) the relation-

ship between scale and center line shift is the same as
for a 2D circle.

From (20) can be concluded that for a helix with
τ > 0 the slope of the linear relationship between
�R/R and 1

2
κ
R σ 2 is not 1 as for the torus and the circle.

The slope y(τ/κ) is a function of τ/κ i.e.:

�Ps

R
= y(τ/κ)

1

2

κ

R
σ 2. (22)

with

y(ε) = (1 − ε2 − 2ε4). (23)

Figure 4 shows that the slope y(τ/κ) is close to 1 for
small τ/κ fractions where the helix closely resembles
the shape of a torus. For lager τ/κ fractions y(τ/κ)

decreases. The shift is directed towards the center of
the helical axis as long as τ/κ < 1

2

√
2. For τ/κ > 1

2

√
2

the slope y(τ/κ) < 0 implying a shift which is directed
from the central axis of the helix. At τ/κ = 1

2

√
2 the

centerline shift vanishes.

2.3. Bias Removal and Curvature Measurement

In curved line structures the bias in the centerline po-
sition �Ps can become in the order of several pixels or

Figure 4. The slope y(τ/κ) of the linear relationship between
�R/R and 1

2
κ
R σ 2 for a helical structure.
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voxels. For these cases the availability of a method to
reduce this bias is desirable.

The correction procedure which we propose starts by
calculating Ps at two scales σ1 and σ2 with correspond-
ing centerline positions Ps1 and Ps2(σ2 > σ1). From Ps1

and Ps2 it is possible to calculate the normal vector n
which points towards the center of mass of the circle
(Fig. 2).

n = Ps2 − Ps1

|Ps2 − Ps1| . (24)

For a circle in 2D and a torus in 3D equation (16)
implies that n is pointing towards the center of mass
of the object. Applying Eq. (16) to these objects it is
straightforward to show that the distance between two
position vectors Ps1 and Ps2 is given by

|Ps2 − Ps1| = σ 2
2 − σ 2

1

2Rt
. (25)

The value of Rt is found by solving (25) for Rt

Rt =
(
σ 2

2 − σ 2
1

)
2|Ps2 − Ps1| . (26)

The corrected Ps is found by subtracting the shift along
n at scale σi from the estimated Psi, i.e.

Ps = Psi − σ 2
i

2Rt
n (i = 1, 2). (27)

The generalization of the bias removal method to a
helical line structure is straightforward since in the 3D
case the line center shift is also proportional to σ 2 (cf.
Eq. (22)). The only difference is that the 1

2Rt
fraction in

(17) is replaced by κ
2 (1−( τ

κ
)2−2( τ

κ
)4) and the direction

of the shift is in the osculating plane comprising the
tangent and the normal vectors of the helix. In a helical
line structure it is not possible to obtain τ or κ with the
procedure described in this section.

2.4. Tracing and Curvature Measurement in Images

To validate (17) we performed localization experiments
in 2D synthetic images of circles by measuring �Ps as
a function of scale. In each localization experiment all
line center positions within a circular object were ob-
tained by the tracing method described in Section 2.1.
In all cases the variation in the measured �Ps is neg-
ligible compared to the average bias introduced by the

curvature. Values of Rt/R of 3, 5 and 10 were chosen to
represent a highly, a moderately and a slightly curved
line structure respectively. In all experiments the line
profile was chosen to be parabolic and R was set to 5
pixels.

Figure 5 shows the result of the localization experi-
ments. Independent of the value of Rt/R the experi-
mentally obtained center line shift corresponds to the
theoretical value approximately up to 1

2
σ 2

R Rt
= 0.2.

To verify the conclusion that the relationship be-
tween scale and center line shift for a torus is the same
as for a 2D circle experiments on center line shifts in a
toroidal object were performed. Values of Rt/R of 3, 5
and 10 were chosen to represent a highly, a moderately
and a slightly curved line structure respectively. For R
we chose the values 3, 5 and 10. The profile shape pa-
rameter α was varied between 0 and 10 in order to cover
a large range of profile types between a parabolic pro-
file and a pillbox profile. The results of the localization
experiments show the same shift-scale relationship for
all α both in shape and magnitude. Figure 6 shows the
results on profiles with α = 0 (parabolic profile) and
α = 5.

As in the experiments with the 2D circle (Fig. 5) the
first order approximation holds for values of 1

2
σ 2

R Rt
up to

0.2. At values of 1
2

σ 2

R Rt
> 0.2 higher order terms in scale

parameter s will play a role in the actual shift-scale
relationship.

Figure 5. �Ps/R as function of 1
2

σ 2

R Rt
for a parabolic profile. The

solid straight line shows the theoretical first order relationship be-
tween scale and center line shift.
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Figure 6. �Ps/R as function of 1
2

σ 2

R Rt
in a toroidal object for a parabolic profile (left panel) and for a profile with shape parameter α = 5 (right

panel). The solid straight line shows the theoretical first order relationship between scale and center line shift.

To investigate the range of validity of (22) for 3D
curvilinear structures we performed localization exper-
iments in synthetically created 3D images of helical
objects. In all investigated helices κ was kept constant
at a value of 0.01. For τ/κ values of 0.25, 0.56, 1

2

√
2

and 0.88 were chosen corresponding to slopes y(τ/κ)

of 0.93, 0.5, 0 and −1 respectively. The intensity profile
across the line was chosen to be Gaussian with R = 20.

The results of the localization experiments (Fig. 7)
show the validity of Eq. (22) within the range of scales
investigated. For τ/κ = 0.25 the simulation results are
in agreement with the theory. For larger τ/κ the mea-
sured shift-scale relationship deviates from the the-
ory. However, the simulation show that the general
mechanisms predicted by our first order approxima-
tion hold: at τ/κ = 1

2

√
2 the shift almost vanishes and

for τ/κ > 1
2

√
2 the inversion in the shift direction is

clearly observed.
The bias correction method was evaluated using syn-

thetical images of toroidal objects. Figure 8 shows an
example of the performance of the method (σ/R = 1).
After correction the relative bias �Ps/ R is negligible
for relative curvature Rt/R > 3 which is in correspon-
dence with the theory (cf. Fig. 6). We found similar
results for different choices of the scale parameters
provided that they are within the range usually applied
in scale space methods.

The applicability of the tracing method and curvature
measurement in real images is illustrated in two differ-
ent examples of 3D biological curvilinear structures
(Fig. 9). The images were obtained using a confocal

microscope. The experiments reveal that the center line
estimation method converges to the optimal center line
position as long as the scale of the differentiation ker-
nels was chosen larger than the radius R of the intensity
profile across the line. Taking this constraint imposed
on the scale into account the method is capable of mea-
suring center line positions even in the noisy image of
the neuron cell (Fig. 9, right image). In the image of
the Spathiphyllum pollen grain (Fig. 9, left image) the
method allows for tracing highly curved line segments.

Figure 10 (left panel) shows an enlarged part of the
Spathiphyllum pollen grain where the center line shift
due to curvature is clearly visible (σ/R ≈ 2). The center
line shift can actually be compensated for by applying
the method as described in the previous section (Fig. 10,
central panel). The radius of curvature Rt which is esti-
mated during the compensation method is visualized by
drawing the osculating circle at the center line position
with the highest curvature (Fig. 10, right panel). Since
σ 2/2Rt ≈ 0.33 the relative center line shift �Ps/R is
approximately 0.3 which is slightly outside the linear
regime (cf. Fig. 5). Still the method performs reason-
ably well under these sub optimal circumstances.

3. Diameter Estimation

3.1. Single Scale Diameter Measurement

For diameter estimation it is necessary to take the shape
of the 2D gray value profile perpendicular to the line
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Figure 7. Relationship between 1
2

κ
R σ 2 and �Ps

R for helices of dif-
ferent τ

κ
ratios. In all experiments κ was kept constant (κ = 0.01).

The solid lines represent the theoretical first order Taylor approxima-
tions of the shift-scale relationships for the corresponding τ

κ
ratios.

Results on simulated images (markers) illustrate the range of valid-
ity of the approximation. �Ps > 0 as long as the shift is directed
inwards towards the axis of the helical structure.

Figure 8. Correction for bias introduced by curvature. Both the bias
as a result of the tracing procedure (dots, σ1/R = 1) and the bias after
correction (squares) are shown. For σ2 a value of 1.5σ1 was chosen.

into account (Lorenz et al., 1997). The profile is as-
sumed to obey the general condition as mentioned in
(14).

We use the scale dependencies of I (r) convolved
with a Gaussian and the second Gaussian derivatives of
I (r) at r = 0 to estimate the line diameter. For this pur-
pose expressions are derived for the Gaussian blurred
intensity I (R, σ ) and the Laplacian �⊥ I (R, σ ) re-
stricted to the span of n and m:

I (R, σ ) = I0

∫ 2π

0

∫ R

0
f (r)g(r, σ )r dr dθ (28)

�⊥ I (R, σ ) = I0

∫ 2π

0

∫ R

0
f (r)grr (r, σ )r dr dθ.

(29)

In (28) and (29) g(r, σ ) and grr (r, σ ) are the 2D
Gaussian and its second derivative in r -direction. The
expressions for I (R, σ ) and the Laplacian �⊥ I (R, σ )

are used to construct a non-linear filter which is ro-
tation invariant with respect to the line direction and
independent of I0:

h(R, σ ) = − I (R, σ )

σ 2 1
2�⊥ I (R, σ )

· (30)

The denominator in (30) represents the 2D Laplacian
based on normalized second derivatives (Lindeberg,
1994).

The theoretical filter output h(R, σ ) is dependent
on the choice of f (r). For a parabolic and a pillbox
profile the integrals appearing in (28) and (29) can be
evaluated analytically. For a pillbox profile we find

h(q) = (1 − e−q)

(qe−q)
(31)

and for a parabolic profile

h(q) = (1 − e−q) − q

(qe−q) − (1 − e−q)
(32)

with

q = 1

2

(
R

σ

)2

. (33)

Equations (31)–(33) show that for the pillbox and the
parabolic profile h(R, σ ) is only dependent on the di-
mensionless parameter q. Figure 11 shows that h(q)
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Figure 9. Tracing results in 3D images of biological specimen (left: a Spathiphyllum pollen grain, right: a pyramidal neuron cell). The images
were obtained using a confocal microscope. The black dots in the right panel represent the estimated center line positions.

Figure 10. Center line shift and curvature measurement in an enlarged part of the Spathiphyllum pollen grain. The center line shift (left panel)
is compensated for (central panel) using the theoretical relationship between scale and center line position. The same relationship is utilized to
the measure local radius of curvature Rt of the line (right panel). The osculating circle with radius Rt is plotted in the image.

is monotonous increasing functions of q . This prop-
erty makes it easy to estimate q from a measured fil-
ter output hmeas. If hmeas and the shape of the profile
are known q can be estimated by solving one of the
equations

h(q) − hmeas = 0. (34)

By a simple bi-sectioning method the root q0 of (34) is
found. The corresponding R is found using by solving
(33) i.e.

R = σ
√

2q0. (35)

3.2. Experiments on Diameter Measurement

To evaluate the performance of the line diameter es-
timation method synthetic images containing straight
line segments with circular cross section were used.
The diameter of the line segment was varied between
2 and 15. Both a pillbox shaped and a parabolic in-
tensity profiles were evaluated. The diameter estimate
turned out to be independent of the setting of σ in the
range where 0.2 < R/σ < 2. In the synthetic images
the bias in the estimated diameter is always below 5%
(see Fig. 12).
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Figure 11. Theoretical line diameter filter output h(q) for a pillbox
profile (solid line) and a parabolic profile (dashed line). Parameter q
is dimensionless and only dependent on R and σ(q = 1

2 (R/σ)2).

Figure 12. Relative bias in estimation of radius R of the line struc-
ture as a function of R.

The diameter measurement procedure was also
tested on a biological 3D image from a confocal micro-
scope containing a Spathiphyllum pollen grain (Fig. 9,
left panel). The diameter was measured at scales vary-
ing between 2.0 and 5.0. Within this range of scales
the diameter measurement deviates only 6% for the
parabolic profile as a model used (Fig. 13). In case the
pillbox profile is used the diameter measurement fails.

4. Discussion

We demonstrated that the information contained in the
scale dependency of features based on Gaussian image
derivatives can be successfully employed in quantita-
tive measurements. Within this approach it turned out
to be beneficial to combine feature measurements at
multiple scales and link them to their theoretical scale
relationships. In the example of curvilinear structures

Figure 13. Results of diameter measurement in the Spathiphyllum
pollen grain as compared to the intensity profile across the line. The
scale was varied between 2.0 and 5.0. The vertical arrows along the
x-axis indicate the outer limits of the range of the diameter measure-
ments using a pillbox profile (left) and a parabolic profile (right).

we illustrated the applicability of our approach in mea-
surement of features like center line position, curvature
and diameter.

In our considerations so far we did not take the frac-
tal nature of natural images into account. In a fractal
object a correct scale at infinite resolution is not defined
since details and repetitive structures might become ar-
bitrary small. In practise, however, all imaging systems
have a finite resolution. Consequently, the image never
contains an exact reproduction of the object at hand but
represents a blurred representation of the object. The
results presented in this paper are limited to the rep-
resentation of the object as it appears in the acquired
image.

In the derivation of the bias removal method a pro-
cedure to measure local curvature of the center line
naturally appears. After measuring the sub pixel center
line position Ps at two different scales equation (26)
can be used to compute Rt . The osculating circle plot-
ted in Fig. 10. (right panel) indicates the correctness of
the curvature measurement. It is of great importance to
have a procedure for measurement of curvature at cen-
ter line positions since it is not possible to use the usual
isophote curvature (van Vliet, 1993). Although a center
line is an isophote it is not possible to use the gradient
based isophote curvature because the gradient is zero
and has no direction at the center line. Additionally,
isophote curvature measurement is carried out at a sin-
gle scale which yields derivatives which are a weighted
average of the actual derivatives in the neighborhood of
the point of observation. This is a prominent example
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of how measurement at a single scale fails and the ap-
proach as presented in this paper solves the conflict
between noise suppression and measurement accuracy.

In 2D images the bias removal and Rt measurement
procedures are applicable to a large class of symmetri-
cal line profiles. Equation (13) implicates that the only
restriction to the line profile of the original object is
that ∂3 I

∂ρ3 = 0 at the center line position. In the sub-class
of profiles described by Eq. (15) ∂3 I

∂ρ3 will vanish at the
center line. This sub-class is expected to be sufficiently
general to cover the majority of profiles encountered in
practice.

In a torus where τ/κ = 0 the simple shift-scale rela-
tionship expressed in (16) is valid for the family of line
profiles given by (15). The validity of (16) can even be
extended by examining Eq. (52) of the appendix more
closely. From this equation we conclude that Eq. (16)
holds in all tori with a line profiles for which the third
order derivatives and the mixed second derivatives van-
ish at the center line.

In the experiments shown in this paper the bias cor-
rection method turns out to be applicable in practice.
Due to the extend of the Gaussian derivative kernels
the method is obviously limited to curvilinear struc-
tures that are more or less isolated from surroundings
structures. In case neighboring structures are within the
reach of the derivative kernels the correction method is
expected to perform less accurately.

In the diameter measurement procedure a priori
knowledge of the shape of the intensity profile across
the line is required for correct diameter measurement.
An incorrect line profile model might induce a bias
in the measured diameter. Measurements in Confocal
Microscope Images reveal that in the extreme case in
which a pillbox profile would be used in the diameter
measurement of a profile which is actually parabolic,
the bias is about 25 percent (cf. Fig. 13). This can be
considered the maximum possible bias in this method
when no a priory information on the profile shape is
available.

We presented methods for feature measurement in
images containing curvilinear structures. The scale de-
pendency of the derivatives at the center line position
proved to be crucial for accurate center line localization
and for measurement of curvature and diameter.

Appendix

Here we derive the relationship between line center
shift and scale for a helical line structure. We choose

the helix to be winding along the z-axis of a Cartesian
coordinate system. In that case the center line positions
can be parameterized by the polar angle θ i.e.

p(θ) = (Rt cos θ, Rt sin θ, Aθ). (36)

In (36) Rt is the radius of the cylinder which comprises
the center line of the helix and A is the pitch of the
helix. To describe a helical line structure in which the
center line is surrounded by an circular symmetrical
line profile we need an expression for the distance r
to the center line at an arbitrary position in space. Be-
cause of the parameterization of the helix with the polar
angle θ it is most convenient to change to cylindrical
coordinates:

x = ρ cos θ

y = ρ sin θ (37)

z = z.

Within this coordinate system the distance to the center
line is given by:

r(ρ, θ, z) =
√

(ρ − Rt )2 + (z − Aθ)2. (38)

The complete 3D description of the helical line struc-
ture is given by:

I (r(ρ, θ, z))

=
{

I0 f (r(ρ, θ, z)), (r(ρ, θ, z) ≤ R)

0, (r(ρ, θ, z) > R).
(39)

In Eq. (39) I0 is the gray value at the center line, R the
radius of the line structure and f (r(ρ, θ, z)) describes
the shape of the intensity profile across the line.

The starting point for derivation of the relationship
between line center shift and scale is Eq. (8)

∇ I (p0 + δp, s0 + δs) = H(p0, s0) · δp

+ w(p0, s0) δs. (40)

Since we changed to cylindrical coordinates we have
to express the derivatives appearing in (40) in ρ, θ

and z. For this purpose we need the relationship be-
tween derivatives in a Cartesian coordinate system and
a cylindrical coordinate system:

∂

∂x
= cos θ

∂

∂ρ
− sin θ

ρ

∂

∂θ
(41)
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∂

∂y
= sin θ

∂

∂ρ
+ cos θ

ρ

∂

∂θ
(42)

Based on this relationship, the Laplacian operator �

which is used for the calculation of w(p0, s0) is given
by:

� = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂θ2
+ ∂2

∂z2
. (43)

With (41)–(43) the derivation of the expressions for the
derivatives appearing in (40) in cylindrical coordinates
is tedious but straightforward.

Without loss of generality we restrict ourselves
to the shift at the position on the centerline of the
helix where ρ = Rt , θ = 0 and z = 0. Leaving out
the arguments of the intensity function I (ρ, θ, z) for
brevity we find for the Hessian matrix H and for
vector w:

H =




∂2 I
∂ρ2

1
ρ

∂2 I
∂ρ∂θ

− 1
ρ2

∂ I
∂θ

∂2 I
∂ρ∂z

1
ρ

∂2 I
∂ρ∂θ

− 1
ρ2

∂ I
∂θ

1
ρ

∂ I
∂ρ

+ 1
ρ2

∂2 I
∂θ2

1
ρ

∂2 I
∂θ∂z

∂2 I
∂ρ∂z

1
ρ

∂2 I
∂θ∂z

∂2 I
∂z2



(44)

w =




∂3 I
∂ρ3 + 1

ρ

∂2 I
∂ρ2 − 1

ρ2
∂ I
∂ρ

+ 1
ρ2

∂3 I
∂ρ∂θ2 − 2

ρ3
∂2 I
∂θ2 + ∂3 I

∂z2∂ρ

1
ρ

∂3 I
∂ρ2∂θ

+ 1
ρ3

∂3 I
∂θ3

∂3 I
∂ρ2∂z

+ 1
ρ

∂2 I
∂ρ∂z + 1

ρ2
∂3 I

∂θ2∂z
+ ∂3 I

∂z3


·

(45)

To be able to materialize relationship between δp and
δs from (40), (44) and (45) we need expressions for
the partial derivatives with respect to ρ, θ and z at
the center line of the original helical line structure
with s0 = 0. These expressions are governed by the
shape f (r(ρ, θ, z)) of the line profile at zero scale.
We perform the analysis for a general profile type
f (r(ρ, θ, z))) which is given by:

f (r(ρ, θ, z))

=
(
1 − e − α((

r(ρ,θ,z)
R ) + 1)

)(
1 − eα((

r(ρ,θ,z)
R ) − 1)

)
(1 − e − α)2

(46)

Figure 3 shows that by changing α the shape of the
profile can be adjusted. By combining Eqs. (38)–(40),

(44)–(46) we arrive at two independent equations re-
lating the components of δp to the scale parameter s:

δx = − 1

Rt

(
1 − 2A2

R2
t

)
s (47)

δz = A

Rt
δy. (48)

The latter equation shows that in this approximation
only δx is dependent on s and that δz and δy are not
independent. Since we are interested in the shift within
the 2D sub space perpendicular to the line direction
we choose δp to be directed along the x-direction (i.e.
δz = δy = 0). We then finally find for �Ps = |δp|

�Ps = 1

Rt

(
1 − 2A2

R2
t

)
s. (49)

To adapt to the notions of curvature κ and torsion τ well
established in differential geometry we can replace Rt

and A for κ and τ in (49)

�Ps = κ

(
1 −

(
τ

κ

)2

− 2

(
τ

κ

)4)
s . (50)

with

κ = Rt

R2
t + A2

τ = A

R2
t + A2

. (51)

For the case that the object is a torus (τ = 0) Eq. (50)
reduces correctly to its 2D counterpart (16). In that
case all derivatives with respect to θ vanish and we
find based on (44) and (45) two independent equations
relating δρ, δz and δs

(
∂2 I

∂ρ2

)
δρ +

(
∂2 I

∂ρ∂z

)
δz

+
(

∂3 I

∂ρ3
+ 1

ρ

∂2 I

∂ρ2
− 1

ρ2

∂ I

∂ρ
+ ∂3 I

∂z2∂ρ

)
δs = 0

(52)(
∂2 I

∂ρ∂z

)
δρ +

(
∂2 I

∂z2

)
δz

+
(

∂3 I

∂ρ2∂z
+ 1

ρ

∂2 I

∂ρ∂z
+ ∂3 I

∂z3

)
δs = 0.
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