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AbstractÐThis paper presents the measurement of colored object reflectance, under different, general assumptions regarding the

imaging conditions. We exploit the Gaussian scale-space paradigm for color images to define a framework for the robust measurement

of object reflectance from color images. Object reflectance is derived from a physical reflectance model based on the Kubelka-Munk

theory for colorant layers. Illumination and geometrical invariant properties are derived from the reflectance model. Invariance and

discriminative power of the color invariants is experimentally investigated, showing the invariants to be successful in discounting

shadow, illumination, highlights, and noise. Extensive experiments show the different invariants to be highly discriminative, while

maintaining invariance properties. The presented framework for color measurement is well-founded in the physics of color as well as in

measurement science. Hence, the proposed invariants are considered more adequate for the measurement of invariant color features

than existing methods.

Index TermsÐPhotometric invariance, color constancy, measurement theory, scale-space, differential invariants, differential

geometry, multispectral imaging, Kubelka-Munk theory, photometric models, Gaussian color model.
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1 INTRODUCTION

IT is well-known that color is a powerful cue in the
distinction and recognition of objects. Segmentation

based on color, rather than just intensity, provides a
broader class of discrimination between material bound-
aries. Modeling the physical process of color image
formation provides a clue to the object-specific para-
meters [1], [2], [3], [4]. To reduce some of the complexity
intrinsic to color images, parameters with known invar-
iance are of prime importance. Current methods for the
measurement of color invariance require a fully sampled
spectrum as input data usually derived by a spectro-
meter. Angelopoulou et al. [5] use the spectral gradient to
estimate surface reflectance from multiple images of the
same scene, captured with different spectral narrow band
filters. The assumptions underlying their approach re-
quire a smoothly varying illumination. Their method is
able to accurately estimate surface reflectance indepen-
dent of the scene geometry. Stokman and Gevers [6]
propose a method for edge classification from spectral
images. Their method aims in detecting edges and
assigning one of the types; shadow or geometry, high-
light, or a material edge. Under the assumption of
spectral narrow band filters, and for a known illumina-
tion spectrum, they prove their method to be accurate in
edge classification. These approaches hampers broad use
as spectrometers are both slow and expensive. In

addition, they do not provide two-dimensional spatial
resolution easily. In this paper, we aim at a broad range
of color invariants measured from RGB-cameras.

To that end, differential geometry is adopted as the
framework for feature detection and segmentation of
images. Its impact in computer vision is overwhelming
but mostly limited to gray-value images [7], [8], [9].
Embedding the theory in the scale-space paradigm [10],
[11] resulted in well-posed differential operators robust
against noisy measurements, with the Gaussian aperture as
the fundamental operator. Only a few papers are available
on color differential geometry [12], [13], which are mainly
based on the color gradient proposed by Di Zenzo [14]. In
the paper, an expression for the color gradient is derived by
analysis of the eigensystem of the color structure tensor. In
[15], curvature and zero-crossing detection is investigated
for the directional derivative of the color gradient. For these
geometrical invariants no physical model is taken into
account, yielding measurements which are highly influ-
enced by the specific imaging circumstances as shadow,
illumination, and viewpoint. We consider the introduction
of wavelength in the scale-space paradigm, as suggested by
Koenderink and Kappers [16]. This leads to a spatio-
spectral family of Gaussian aperture functions, in [17] as the
Gaussian color model. Hence, the Gaussian color model
may be considered an extension of the differential geometry
framework into the spatio-spectral domain. In the paper we
apply the spatio-spectral scale-space to the measurement of
photometric and geometric invariants.

In [18], [19], the authors discuss the use of the Shafer model
[4], effectively based on the older Kubelka-Munk theory [20],
to measure object reflectance independent of illumination
color. The Kubelka-Munk theory models the reflected
spectrum of a colored body [21], [22], based on a material-
dependent scattering and absorption function, under the
assumption that light is isotropically scattered within the
material. The theory has proven to be successful for a wide
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variety of materials and applications [21]. Therefore, the
Kubelka-Munk theory is well-suited for determining materi-
al properties from color measurements. We use the Kubelka-
Munk theory for the definition of object reflectance proper-
ties, for a wide range of assumptions regarding imaging
conditions.

The measurement of invariance involves a balance
between constancy of the measurement regardless of the
disturbing influence of the unwanted transform on the one
hand, and retained discriminating power between truly
different states of the objects on the other. As a general rule,
features allowing ignorance of a larger set of disturbing
factors, less discriminative power can be expected. We refer
to such features as broad features. Hence, both invariance
and discriminating power of a method should be investi-
gated simultaneously. Only this allows to asses the practical
performance of the proposed method. In this paper, we
extensively investigate invariant properties and discrimi-
native power.

The paper is organized as follows: Section 2 describes a
physical model for image formation, based on the Kubelka-
Munk theory. The first contribution of this paper is a complete
set of invariant expressions derived for basically three
different imaging conditions (Section 3). A second important
contribution considers the robust measurement of invariant
expressions from RGB-images (Section 4). Further, Section 4
demonstrates the performance of the features as invariance
and discriminative power between different colored patches,
which may be considered as a third contribution.

2 COLOR IMAGE FORMATION MODEL

In [18], [19], [23], image formation is modeled by means of
the Kubelka-Munk theory [21], [22], [24] for colorant layers.
Under the assumption that light within the material is
isotropically scattered, the material layer may be character-
ized by a wavelength dependent scatter coefficient and
absorption coefficient. The model unites both reflectance of
light and transparent materials. The class of materials for
which the theory is useful ranges from dyed paper and
textiles, opaque plastics, paint films, up to enamel, and
dental silicate cements [21]. In the sequel, we will derive
color invariant expressions under various imaging condi-
tions. Therefore, an image formation model adequate for
reflectance of light in real-world scenes is considered. We
consider the Kubelka-Munk theory as a general model for
color image formation. The photometric reflectance model
resulting from the Kubelka-Munk theory is given by [19]

E��;~x� � e��;~x� 1ÿ �f�~x�� �2R1��;~x� � e��;~x��f�~x�; �1�
where x denotes the position at the imaging plane and � the
wavelength. Further, e��;~x� denotes the illumination
spectrum and �f�~x� the Fresnel reflectance at ~x. The material
reflectivity is denoted by R1��;~x�. The reflected spectrum
in the viewing direction is given by E��;~x�. The model is
valid when the material is thick, i.e., not transparent nor
translucent, and when the optical resolution is high enough
to consider patches (the image pixels) to be locally planar.
When redefining symbols

cb��;~x� � e��;~x�R1��;~x�; ci��;~x� � e��;~x�;
mb�~x� � 1ÿ �f�~x�� �2, and mi�~x� � �f�~x�, (1) reduces to

E��;~x� � mb�~x�cb��;~x� �mi�~x�ci��;~x�; �2�
which is the dichromatic reflection model by Shafer [4].

Concerning the Fresnel reflectance, the photometric model

assumes a neutral interface at the surface patch. As discussed

in [4], [22], deviations of �f over the visible spectrum are small

for commonly used materials, therefore, the Fresnel reflec-

tance coefficient may be considered constant.
The following special case can be derived. For matte, dull

surfaces, the Fresnel coefficient can be considered neglect-

able, �f�~x� � 0, for which E��;~x� (1) reduces to the

Lambertian model for diffuse body reflection

E��;~x� � e��;~x�R1��;~x�; �3�
as expected.

3 DETERMINATION OF COLOR INVARIANTS

Any method for finding invariant color properties relies on

a photometric model and on assumptions about the

physical variables involved. For example, hue is known to

be insensitive to surface orientation, illumination direction,

intensity and highlights, under an equal energy illumina-

tion [2]. Normalized rgb is an object property but only for

matte, dull surfaces and only when illuminated by an equal

energy spectrum. When the illumination color is not

ªwhite,º other object properties should be measured.
In this section, expressions for determining invariant

properties in color images will be derived for three different

imaging conditions, taking into account the photometric

model derived in Section 2. The imaging conditions are

assumed to be the five relevant out of eight combinations of:

1. equal energy or arbitrary illumination,
2. matte, dull object or general object, or
3. uniformly stained object or generally colored object.

Further specialization as spatially uniform, hence, even

illumination or a single illumination spectrum may be

considered. Note that each essentially different condition of

the scene, object or recording circumstances results in

suited different invariant expressions. For notational con-

venience, we first concentrate on the one dimensional case;

two-dimensional expressions will be derived later when

introducing geometrical invariants.

3.1 Invariants for Equal Energy but Uneven
Illumination

Consider the photometric reflection model (1). For an equal

energy illumination, the spectral components of the source

are constant over the wavelengths. Hence, a spatial

component i�x� denotes intensity variations, resulting in

E��; x� � i�x� �f�x� � 1ÿ �f�x�� �2R1��; x�
n o

: �4�

The assumption allows the extraction of expressions

describing object reflectance independent of the Fresnel

reflectance. Let indices of � and x indicate differentiation,
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and from now on dropping ��; x� from E��; x� when such
will cause no confusion.

Lemma 1. Within the Kubelka-Munk model, assuming dichro-
matic reflection and equal energy illumination, H � E�

E��
is an

object reflectance property independent of viewpoint, surface
orientation, illumination direction, illumination intensity and
Fresnel reflectance coefficient.

Proof. Differentiating (4) with respect to � twice results in

E� � i�x��1ÿ �f�x��2 @R1��; x�
@�

and

E�� � i�x��1ÿ �f�x��2 @
2R1��; x�
@�2

:

Hence, their ratio depends on derivatives of the object
reflectance functions R1��; x� only, which proves the
lemma. tu
To interpret H, consider the local Taylor expansion at �0

truncated at second order,

E��0 ���� � E��0� ���E���0� � 1

2
��2E����0�: �5�

The function extremum of E���0 ���� is at �� for which
the first order derivative is zero,

d

d�
E��0 ����f g � E���0� ���E����0� � 0: �6�

Hence, for �� near the origin �0,

��max � ÿ E���0�
E����0� : �7�

In conclusion, the property H is related to the hue (i.e.,

arctan �max� �) of the material. For E����0� < 0 the result is at

a maximum and describes a band-pass (prism) color,

whereas for E����0� > 0 the result is at a minimum and

indicates a band-stop (slit) color.
Of significant importance is the derivation of a complete

set 	 of functionally independent (irreducible) differential
invariants 	i. Completeness states that all possible inde-

pendent invariants for the unwanted distortion are present

in the set 	. From Olver et al. [25], the basic method for

constructing a complete set of differential invariants is to

use invariant differential operators. A differential operator

is said to be invariant under a given distortion if it maps

differential invariants to higher order differential invar-

iants. Hence, by iteration, such an operator produces a

hierarchy of differential invariants of arbitrarily large order

n, given a lowest order invariant. The lowest order

invariant is referred to as the fundamental invariant.

Summarizing, for a lowest order color invariant, a differ-

ential operator may be defined to construct complete,
irreducible sets of color invariants under the same imaging

conditions by iteration.

Proposition 2. A complete and irreducible set of color invariants,

up to a given differential order, is given by all derivatives of the

fundamental color invariant.

In the sequel, we will define the generating differential

operator given the lowest order fundamental invariant.
The expression given by Lemma 1 is a fundamental

lowest order invariant. As a result of Proposition 2,
differentiation of the expression for H with respect to x or
� results in object reflectance properties under an equal
energy illumination. Note that H is ill-defined when the
second order spectral derivative vanishes. We prefer to
compute differentials of the arctan H� � a monotonic function
of H, for which the spatial derivatives yield better
numerical stability.

Corollary 3. Within the Kubelka-Munk model, a complete and
irreducible set of invariants for dichromatic reflection and an
equal energy illumination is given by

H�mxn � @m�n

@�m@xn
arctan

E�
E��

� �� �
; �8�

for m;n � 0.
Application of the chain rule for differentiation yields the

higher order expressions in terms of the spatio-spectral
energy distribution. For illustration, we give all expressions
for first spatial derivative and second spectral order. The
hue spatial derivative is given by

Hx � E��E�x ÿ E�E��x

E2
� �E2

��

�9�

admissible for E2
� �E2

�� > 0.
In the sequel, we also need an expression for color

saturation S,

S � 1

E��; x�
�����������������������
E�

2 � E��2

q
: �10�

3.2 Invariants for Equal Energy but Uneven
Illumination and Matte, Dull Surfaces

A class of tighter invariants may be derived when the object
is matte and dull. Consider the photometric reflection
model (4), for matte, dull surfaces with low Fresnel
reflectance, �f�~x� � 0,

E � i�x�R1��; x�: �11�
These assumptions allow the derivation of expressions
describing object reflectance independent of the intensity
distribution.

Lemma 4. Within the Kubelka-Munk model, assuming matte,
dull surfaces, and an equal energy illumination, C� � E�

E is an
object reflectance property independent of the viewpoint,
surface orientation, illumination direction and illumination
intensity.

Proof. Differentiation of (11) with respect to � and normal-

ization by (11) results in an equation depending on object

property only, E�
E � 1

R1��;x�
@R1��;x�

@� which proves the

lemma. tu
The property C� may be interpreted as describing object

color regardless intensity.
As a result of Proposition 2, all normalized higher order

spectral derivatives of C�, and their spatial derivatives,
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result in object reflectance properties under an equal energy

illumination. The normalization by E is to be evaluated at

the spectral wavelength of interest and, therefore, is

considered locally constant with respect to �.

Corollary 5. Within the Kubelka-Munk model, a complete and

irreducible set of invariants for matte, dull surfaces, under an

equal energy illumination is given by

C�mxn � @n

@xn
E�m

E

� �
; �12�

for m � 1, n � 0.

Specific first spatial and second spectral order expressions

are given by

C�� � E��

E
;C�x � E�xE ÿE�Ex

E2
; C��x � E��xE ÿ E��Ex

E2
:

�13�
Note that these expressions are valid everywhere E > 0.

These invariants may be interpreted as the spatial deriva-

tive of the intensity normalized spectral slope C� and

curvature C��.

3.3 Invariants for Equal Energy and Uniform
Illumination and Matte, Dull Surfaces, and
Planar Objects

For uniform illumination, consider again the photometric

reflection model (11) for matte, dull surfaces, and an equal

energy and uniform illumination with intensity i,

E��; x� � iR1��; x�: �14�
The assumptions yield a Mondrian world, which may be

achieved under well-defined circumstances, such as photo-

graphy of art. These assumptions allow the derivation of

expressions describing object reflectance independent of the

intensity level.

Lemma 6. Within the Kubelka-Munk model, assuming matte,

dull surfaces, planar objects, and an equal energy and uniform

illumination, Wx � Ex
E determines changes in object reflec-

tance independent of the illumination intensity.

Proof. Differentiation of (14) with respect to x and normal-

ization by (14) results in Ex
E � 1

R1��;x�
@R1��;x�

@x . This is an

object reflectance property. tu

The property Wx may be interpreted as an edge detector

specific for changes in spectral distribution. Under common

circumstances, a geometry dependent intensity term is

present, hence Wx does not represent pure object properties

but will include shadow edges where present.
As a result from Proposition 2, all normalized higher

order derivatives of Wx yield object reflectance properties

under an equal energy and uniform illumination. The

normalization by E is to be evaluated at the spatial and

spectral point of interest. Hence, it is considered locally

constant.

Corollary 7. Within the Kubelka-Munk model, a complete and

irreducible set of invariants for matte, dull surfaces, planar

objects, under an equal energy and uniform illumination is
given by

W�mxn � E�mxn

E
�15�

for m � 0, n � 1.

Specific expressions for E > 0 up to first spatial and second
spectral order are given by

W�x � E�x

E
;W��x � E��x

E
: �16�

These invariants may be interpreted as the intensity
normalized spatial derivatives of the spectral intensity E,
spectral slope E� and spectral curvature E��.

3.4 Invariants for Colored but Uneven Illumination

For colored illumination, when the spectral energy
distribution of the illumination does not vary over the
scene, the illumination may be decomposed into a
spectral component e��� representing the illumination
color, and a spatial component i�x� denoting variations in
intensity due to the scene geometry. Hence, for matte,
dull surfaces �f ! 0,

E � e���i�x�R1��; x�: �17�
The assumption allows us to derive expressions describing
object reflectance independent of the illumination.

Lemma 8 Within the Kubelka-Munk model, assuming matte,

dull surfaces and a single illumination spectrum, N�x �
E�xEÿE�Ex

E2 determines changes in object reflectance indepen-

dent of the viewpoint, surface orientation, illumination

direction, illumination intensity, and illumination color.

Proof. Differentiation of (17) with respect to � results in

E� � i�x�R1��; x� @e���
@�
� e���i�x� @R1��; x�

@�
:

Dividing by (17) gives the relative differential,

E�
E
� 1

e���
@e���
@�
� 1

R1��; x�
@R1��; x�

@�
:

The result consists of two terms, the former depending
on the illumination color only and the latter depending
on body and Fresnel reflectance only. Differentiation to x
yields

@

@x

E�

E

� �
� @

@x

1

R1��; x�
@R1��; x�

@�

� �
:

The right-hand side is depending only on object
property. This proves the lemma. tu
The invariant N�x may be interpreted as the spatial

derivative of the spectral change of the reflectance function

R1��; x� and, therefore, indicates transitions in object

reflectance. Hence, N�x determines material transitions

regardless illumination color and intensity distribution.
As a result of Proposition 2, further differentiation of N�x

results in object reflectance properties under a colored
illumination.
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Corollary 9. Within the Kubelka-Munk model, a complete and
irreducible set of invariants for matte, dull surfaces, and a
single illumination spectrum, is given by

N�mxn � @m�nÿ2

@�mÿ1@xnÿ1

E�xE ÿ E�Ex

E2

� �
; �18�

for m � 1, n � 1.

The third order example is the spectral derivative of N�x for
E��; x� > 0,

N��x � E��xE
2 ÿE��ExE ÿ 2E�xE�E � 2E2

�Ex

E3
: �19�

3.5 Invariants for a Uniform Object

For uniformly colored planar surface, the reflectance
properties are spatially constant. Hence, the reflectance
function R1 and Fresnel coefficient �f are independent of x,

E � e��; x� �f � 1ÿ �f� �2R1���
n o

: �20�

For a single illumination source, expressions describing
interreflections may be extracted, i.e., the reflected spectrum
of surrounding materials.

Lemma 10. Within the Kubelka-Munk model, assuming dichro-
matic reflection, a single illumination source, and a uniformly
colored planar surface, U�x � E�xEÿE�Ex

E2 determines interre-
flections of colored objects, independent of the object spectral
reflectance function.

Proof. Differentiating (20) to � results in

E� �
�
�f � �1ÿ �f�2R1���

�
@e��; x�
@�

� e��; x��1ÿ �f�2 @R1���
@�

:

Normalization by (20),

E�
E
� 1

e��; x�
@e��; x�
@�

� �1ÿ �f�2
�f � �1ÿ �f�2R1���

@R1���
@�

:

Differentiation with respect to x results in

@

@x

E�

E

� �
� @

@x

1

e��; x�
@e��; x�
@�

� �
;

which depends on the illumination only. Differentiation
yields the lemma. tu

The property U�x may be interpreted as describing edges
due to interreflections and specularities. When ambient
illumination is present casting a different spectral distribu-
tion, the invariant describes shadow edges due to the
combined ambient illumination and incident illumination.

Note that the expression for Lemma 10 is identical to the
expression in Lemma 8. Consequently, changes in object
reflectance cannot be distinguished from interreflections in
single images. Further differentiation of U�x yield interre-
flections when assuming a uniform colored planar surface.
The result is identical to (19).

3.6 Summary of Color Invariants

In conclusion, within the Kubelka-Munk model, various

sets of invariants are derived as summarized in Table 1. The
class of materials for which the invariants are useful ranges

from dyed paper and textiles, opaque plastics, paint films,
up to enamel, and dental silicate cements [21]. The invariant

sets may be ordered by broadness of invariance, where
broader sets allow ignorance of a larger set of disturbing
factors than tighter sets.

The table offers the solution of using the narrowest set of

invariants for known imaging conditions, since

H � N � U � C �W � E:
In the case that recording circumstances are unknown the
table offers a broad to narrow hierarchy. Hence, an
incremental strategy of invariant feature extraction may
be applied. Combination of invariants open up the way to
edge type classification as suggested in [26]. The vanishing
of edges for certain invariants indicate if their cause is
shading, specular reflectance, or material boundaries.

3.7 Geometrical Color Invariants in Two
Dimensions

So far, we have established color invariant descriptors,
based on differentials in the spectral and the spatial
domain in one spatial dimension. When applied in two
dimensions, the result is depending on the orientation of
the image content. In order to obtain meaningful image
descriptions, it is crucial to derive descriptors which are
invariant with respect to translation, rotation, and scaling.
For the gray-value luminance L geometrical invariants are
well established [7]. Translation and scale invariance is
obtained by examining the (Gaussian) scale-space, which
is a natural representation for investigating the scaling
behavior of image features [10]. Florack et al. [7] extent
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Summary of the Various Color Invariant Sets and Their Invariance to Specific Imaging Conditions

Invariance is denoted by +, whereas sensitivity to the imaging condition is indicated by ±. Note that the reflected spectral energy distribution
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the Gaussian scale-space with rotation invariance, by
considering in a systematic manner local gauge coordi-
nates. The coordinate axis w and v are aligned to the
gradient and isophote tangents directions, respectively.
Hence, the first order gradient gauge invariant is the
magnitude of the luminance gradient,

Lw �
�����������������
L2
x � L2

y

q
: �21�

Note that the first order isophote gauge invariant is zero by
definition. The second order invariants are given by

Lvv �
L2
xLyy ÿ 2LxLyLxy � L2

yLxx

L2
w

; �22�

related to isophote curvature,

Lvw �
LxLy Lyy ÿ Lxx

ÿ �ÿ L2
x ÿ L2

y

� �
Lxy

L2
w

�23�

related to flow-line curvature, and

Lww �
L2
xLxx � 2LxLyLxy � L2

yLyy

L2
w

�24�

related to isophote density. These spatial results may be

combined with the color invariants for the 1D-case

established before. The resulting first order expressions

are given in Table 2.
Two or three measures for edge strength are derived, one

for each spectral differential order. The only exception is H.

Total edge strength due to differences in the energy

distribution may be defined by the root squared sum of

the edge strengths under a given imaging condition. A

summary of total edge strength measures, ordered by

degree of invariance, is given in Table 3.

For completeness, spatial second order derivatives in

two dimensions are given in Tables 4 and 5. The derivation

of higher order invariants is straightforward. Usually many

derivatives are involved here, raising some doubt on the

sustainable computational accuracy of the result.

4 MEASUREMENT OF COLOR INVARIANTS

4.1 The Gaussian Color Model

Up to this point we have considered invariant expressions

describing material properties under some general assump-

tions. They are derived from expressions exploring the

infinitely dimensional Hilbert space of spectra at an

infinitesimally small spatial neighborhood. In practice, the

spatio-spectral energy distribution is measurable only at a

certain spatial extend and a certain spectral bandwidth.
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Summary of the First Order Geometrical Invariants for the Various Color Invariant Sets

See Table 1 for invariant class.

TABLE 3
Summary of the Total Edge Strength Measures for the Various

Color Invariant Sets, Ordered by Degree of Invariance

The edge strength Ew is not invariant to any change in imaging
conditions. See Table 1 for invariant class.



Hence, physical measurements imply integration over

spectral and spatial dimensions. The integration reduces

the infinitely dimensional Hilbert space of spectra at

infinitesimally small spatial neighborhood to a limited

amount of measurements. As suggested by Koenderink and

Kappers [16], general aperture functions are to be used to

probe the spatio-spectral energy distribution. In this section,

we consider the Gaussian color model as a general model

for the measurement of spatio-spectral differential quoti-

ents. In this section, no essentially new color model is

proposed, but rather a theory of color measurement.

4.1.1 The Spectral Structure of Color

From scale space theory we know how to probe a function

at a certain scale; the probe should have a Gaussian shape in

order to prevent the creation of extra details into the

function when observed at a higher scale (lower resolution)

[10]. We consider the Gaussian as a general probe for the

measurement of spatio-spectral differential quotients. We

follow [17] for the Gaussian color model. Let E��� be the

energy distribution of the incident light, where � denotes

wavelength, and let G��0;��� be the Gaussian at spectral

scale �� positioned at �0. The spectral energy distribution

may be approximated by a Taylor expansion at �0,
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TABLE 5
Summary of the Second Order Geometrical Invariants for the Various Color Invariant Sets



E��� � E�0 � �E�0

� �
1

2
�2E�0

�� � . . . : �25�

Measurement of the spectral energy distribution with a

Gaussian aperture yields a weighted integration over the

spectrum. The observed energy in the Gaussian color model

Ê���, at infinitely small spatial resolution and spectral scale

��, is in second order equal to [16]

Ê�� � Ê�0;
�� � �Ê�0;��

� � 1

2
�2Ê�0;��

��
�O��3�; �26�

where Ê�0;�� � R E���G��;�0; ���d� measures the spectral

intensity. Then, differentiation

Ê0
�; �� �

Z
E���G���;�0; ���d�;

gives the first order spectral derivative and

Ê�0;��
�� �

Z
E���G����;�0; ���d�;

measures the second order spectral derivative. The aperture

functions G, G�, and G�� denote derivatives of the Gaussian

with respect to �, the sensitivities shown in Fig. 1. The

model states that spectral measurement yields probing the

differential structure of the spectrum. The measurements

are obtained by integrating over the incoming spectrum,

weighted by derived Gaussian sensitivity functions.

Definition 1 (Gaussian Color Model). The Gaussian color

model measures the coefficients Ê�0;�� , Ê�0;��
� , Ê�0;��

�� . . . , of the

Taylor expansion of the Gaussian weighted spectral energy

distribution at �0 and scale ��.

4.1.2 The Spatial Structure of Color

Introduction of spatial extent in the Gaussian color model

yields a local Taylor expansion at wavelength �0 and

position ~x0. Each measurement of a spatio-spectral energy

distribution has a spatial as well as a spectral resolution.

The measurement is obtained by probing an energy density

volume in a three-dimensional spatio-spectral space. The

size of the probe is determined by the observation scale ��
and �~x,

Ê��;~x� �

Ê � ~x

�

� �T
Ê~x

Ê�

" #
� 1

2

~x

�

� �T
Ê~x~x Ê~x�

Ê�~x Ê��

" #
~x

�

� �
� . . .

�27�

The mth differentiation with respect to � and the nth
differentiation with respect to ~x may be transported using
Gaussian derivative filters in the well-known N-jet [27]:

Ê�m~xn��;~x� � E��;~x� �G�m~xn��;~x;��; �~x�: �24�
Here, G�m~xn��;~x;��; �~x� are the Gaussian-shaped spatio-
spectral probes or color receptive fields. The coefficients of
the Taylor expansion of Ê��;~x� together form a complete
representation of the local image structure. Truncation of
the Taylor expansion results in an approximate representa-
tion, optimal in least-squares sense.

It appears that the above Gaussian color model approx-
imates the Hering basis [28] for human color vision when
truncated at second order and taking the parameters �0 '
520 nm and �� ' 55 nm [17]. We follow this case and denote
spectral differential quotients by Ê, Ê�, and Ê��, and spatial
differential quotients by Êx, Ê�x, and Ê��x.

4.2 The Gaussian Color Model by a RGB-Camera

Spectral differential quotients are obtained by a linear

combination of given (RGB) sensitivities, whereas spatial

differential quotients are obtained by convolution with

Gaussian derivative filters. When establishing the Gaussian

color model for a RGB-camera, we note following [17] that

the first three components Ê, Ê�, and Ê�� of the Gaussian

color model very well approximate the CIE 1964 XYZ basis

when taking �0 � 520 nm and �� � 55 nm. A camera is

developed to capture the same color space as humans,

hence we assume the RGB-sensitivities to span a similar

spectral bandwidth and to have a similar central wave-

length. When camera response is linearized, a RGB-camera

approximates the CIE 1964 XYZ basis for colorimetry by the

linear transform [29]

X̂
Ŷ
Ẑ

24 35 � 0:62 0:11 0:19
0:3 0:56 0:05
ÿ0:01 0:03 1:11

0@ 1A R
G
B

24 35: �29�

The best linear transform from XYZ values to the Gaussian
color model is given by [17]

Ê
Ê�

Ê��

24 35 � ÿ0:48 1:2 0:28
0:48 0 ÿ0:4
1:18 ÿ1:3 0

0@ 1A X̂
Ŷ
Ẑ

24 35: �30�

The product of (29) and (30) gives the desired implementa-
tion of the Gaussian color model in RGB terms,

Ê
Ê�

Ê��

24 35 � 0:06 0:63 0:27
0:3 0:04 ÿ0:35
0:34 ÿ0:6 0:17

0@ 1A R
G
B

24 35: �31�

Note that we try to achieve derivative filters in the
spectral domain by transforming the spectral responses as
given by the RGB-filters. The transformed filters may be
imperfect, but are likely to offer accurate estimates of
differential measurements. When the spectral responses of
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Fig. 1. The Gaussian sensitivity functions over the wavelengths. The
incoming spectrum E��� is weighted and integrated over the three
sensitivity curves fG��;�0; ���; G���;�0; ���; G����;�0; ���g, yielding the
three spectral measurements Ê, Ê�, and Ê��. The Gaussian central
wavelength �0 � 520 nm and scale �� � 55 nm are chosen such that
compatibility with human vision is achieved.



the RGB-filters are known, a better transform can be

obtained.

4.3 Measurement of Geometrical Color Invariants

Measurement of the geometrical color invariants is obtained

by substitution of (31) in the invariant expressions derived

in Section 3. Measured values for the geometrical color

invariants given in Tables 2 and 4 are obtained by

substitution of E, E�, and E�� for the measured values Ê,

Ê�, and Ê�� at given scale �~x. In this section, we

demonstrate the color invariant properties for each of the

assumed imaging conditions by applying the invariants for

an example image. The invariants regarding a uniform

object are not demonstrated separately, since the expres-

sions are included in the invariants for colored illumination.
From here on, we make two assumptions regarding an

equal energy spectrum. We assume that the equal energy

spectrum is approximated by a common light source (TL,

incandescent, or daylight), and that the camera is correctly

white-balanced to the light source. Most light sources yield

broad-band emission spectra. Hence, the spectral compo-

nents of the white-balanced light source are approximately

constant over the wavelengths with respect to the integra-

tion scale of the camera. Equal energy illumination is now

referred to as white light.

4.3.1 Measurement of Invariants for White Illumination

The invariant Ĥ is representative for hue or dominant color
of the material, disregarding intensity and highlights. The
pseudoinvariant Ŝ (10) denotes the purity of the color and,
therefore, is sensitive to highlights since at these points
color is desaturated. An example is shown in Fig. 2. The
invariant Ĥw represents the hue gradient magnitude,
detecting color edges independent of intensity and high-
lights, as demonstrated in Fig. 2.

Common expressions for hue are known to be noise
sensitive. In the scale frame, Gaussian regularization offers
a trade-off between noise and detail sensitivity. The
influence of noise on hue gradient magnitude Ĥw for
various �~x is shown in Fig. 3. The influence of noise on the
hue edge detection is drastically reduced for larger
observational scale �~x.

4.3.2 Measurement of Invariants for White Illumination

and Matte, Dull Surfaces

The invariants Ĉ� and Ĉ�� represent normalized color,
consequently their spatial derivatives measure the normal-
ized color gradients. Ĉ�w may be interpreted as the color
gradient magnitude for transitions in first order spectral
derivative, whereas Ĉ��w detects edges related to the second
order spectral derivative. An example of the normalized
colors and its gradients are shown in Fig. 4.
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Fig. 2. Example of the invariants associated with Ĥ. The example image is shown left, then Ĥ, the derived expression Ŝ, and gradient magnitude Ĥw.

Intensity changes and highlights are suppressed in the Ĥ and Ĥw image. The Ŝ image shows a low purity at color borders, due to mixing of colors on

two sides of the border. For all pictures, �~x � 1 pixel and the image size is 256� 256.

Fig. 3. The influence of white additive noise on gradient magnitude Ĥw. Independent Gaussian zero-mean noise is added to each of the

RGB channels, SNR = 5, and Ĥw is determined for �~x � 1, �~x � 2 and �~x � 4 pixels, respectively. Note the noise robustness of the hue gradient Ĥw

for larger �~x.

Fig. 4. Examples of the normalized colors Ĉ� denoting the first spectral derivative, Ĉ�� denoting the second spectral derivative, and their gradient

magnitudes Ĉ�w and Ĉ��w, respectively. Note that intensity edges are being suppressed, whereas highlights are still present.



4.3.3 Measurement of Invariants for White and

Uniform Illumination, and Matte, Dull Surfaces,

and Planar Objects

The invariant Îw denotes intensity or shadow edges,
whereas the invariants Ŵ�w and Ŵ��w represent color
edges. Ŵ�w may be interpreted as the gradient magnitude
for the first spectral derivative. A similar interpretation
holds for Ŵ��w, but here edges caused by the second
spectral derivative are detected. An example of the
gradients is shown in Fig. 5.

4.3.4 Measurement of Invariants for Colored Illumination

The invariant N̂�w and N̂�ww may be interpreted as the
reflectance function gradient magnitudes for spectral first
and second order derivatives, respectively. Hence, material
edges are detected independent of illumination intensity
and illumination color. An example of the gradients N̂�w

and N̂��w is shown in Fig. 6. In [19], the authors investigate
the illumination color invariance of the proposed edge
strength, resulting in a significant reduction of chromatic
variation due to illumination color. For a more elaborate
discussion on the subject, which is beyond the scope of this
paper, we refer to [19].

4.3.5 Total Color Gradients

The expressions for total gradient magnitude are given by
Êw, Ŵw, Ĉw, N̂w, and Ĥw. The proposed edge strength
measures may be ordered by degree of invariance, yielding
Êw as measure of spectral edge strength, Ŵw as measure of
color edge strength, disregarding intensity level, Ĉw as
measure of chromatic edge strength, disregarding intensity
distribution, N̂w as measure of chromatic edge strength,
disregarding illumination, and Ĥw as measure of dominant
wavelength, disregarding intensity and highlights. An
example of the proposed measures is shown in Fig. 7.

4.4 Discriminative Power for RGB Recording

In order to investigate the discriminative power of the
proposed invariants, edge detection between 1,013 differ-
ent colors of the PANTONE1 color system is examined.
The PANTONE colors span a convex, nontriangular set in
chromaticity space, hence may be considered as the
mixture of various inks. The set is representative for
natural surface reflection spectra since most reflection
functions may be modeled by a linear five to seven
parameter model [30]. The colors are uniformly distrib-
uted in color space. The 1,013 PANTONE colors2 are

recorded by a RGB-camera (Sony DXC-930P), under a
5200K daylight simulator (Little Light, Grigull, Jungingen,
Germany). Purely achromatic patches are removed from
the data set, leaving 1,000 colored patches. In this way,
numerically unstable results for set Ĥ are avoided.

Color edges are formed by combining each of the patches
with all others, yielding 499,500 different edges. Edges are
defined virtually by computing the left-hand part on one
patch and the right-hand side of the filter on one of the
other patches. The total edge strength measures for
invariants Ê, Ŵ , Ĉ, N̂ , and Ĥ (Table 3) are measured for
each color combination at a scale of �x � f0:75; 1; 2; 3g
pixels, hence evaluating the total performance of each set of
invariants. Discrimination between colors is determined by
evaluating the ratio of discriminatory contrast between
patches to within patch noise,

DNRc�i; j� � ĉij

k
max

���������������������������������
1
N2

P
x;y ĉk�x; y�2

q ; �32�

where ĉ denotes one of the edge strength measures for Ê, Ŵ ,
Ĉ, N̂ , or Ĥ, respectively. Further, ĉij denotes the edge strength
between patch i and j, and ĉk denotes the responses of the
edge detector to noise within patch k. Hence, for detector ĉ,
the denominator in expression (32) expresses the maximum
response over the 1,000 patches due to noise, whereas the
numerator expresses the response due to the color edge. Two
colors are defined to be discriminable when DNR � 3,
effectuating a conservative threshold.

The results of the experiment are shown in Table 6. For a
spatial scale �x � 3, an accurate estimate of color value is
obtained. Hence, the trichromatic invariants Ê and Ŵ are
able to distinguish between all of the PANTONE colors.
This is not surprising, since the colors are made to look
different. However, for the dichromatic invariants Ĉ and N̂
intensity is removed. For these invariants, no distinction can
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Fig. 6. Examples of the gradient magnitudes N̂�w (left) and N̂��w. Note
that intensity edges are suppressed. Further, note that the assumptions
underlying this invariant does not account for highlights and interreflec-
tions, as is seen in the figure.

Fig. 5. Examples of the gradient magnitudes Îw, Ŵ�w, and Ŵ��w, respectively. Note all images show edges due to intensity differences and

highlights. Îw shows purely intensity edges or shadow edges, while Ŵ�w and Ŵ��w show color edges.

1. PANTONE is a trademark of Pantone, Inc.
2. We use the PANTONE edition 1992-1993, Groupe BASF, Paris, France.



be made between colors similar in chromaticity. Evaluation
of the PANTONE colors show that for each color, there are
on average 10 colors which only differ in intensity, thus 990
left to be distinguished. For these invariants, the resulting
discrimination of 970 different colors is close to optimal. For
the unichromatic invariant Ĥ, only the dominant wavelenth
of the measured spectrum is considered. To investigate
invariance, we may subdivide all colors in the categories
{red, yellow, green, blue, purple}. Following a similar
argumentation as for the intensity invariants, we may state
that e.g. all green colors can not be distinguished from each
other. Then, given the rough categorization, 200 out of
1,000 colors are similar, leaving 800 to be distinguished. The
result obtained, discriminating between 460 colors, is not
optimal due to instability of (9) for desaturated colors.

When the spatial scale �x decreases, discrimination
degrades. A larger spatial scale yields better reduction of
noise, hence a more accurate estimate of the true color is
obtained. The results shown for �x � 2 are saturated for
Ê and Ŵ . Hence, a larger set of colors can be
discriminated than shown here. Note also that the power
of discrimination expressed as the amount of discrimin-
able colors is inversely proportional to the degree of
invariance. These are very encouraging results given a
standard RGB-camera and not a spectrophotometer. To
discriminate 450 to 950 colors while calculating invariance
on just two patches in the image is helpful for many
practical image retrieval problems.

5 CONCLUSION

In this paper, we have derived geometrical color invariant

expressions describing material properties under three

independent assumptions regarding the imaging condi-

tions, 1) white or colored illumination, 2) matte, dull object

or general object, or 3) uniformly stained object or generally

colored object. The reflectance model under which the

invariants remain valid is useful for a wide range of

materials [21]. Furthermore, we have established the robust

measurement of object reflectance from RGB-images, based

on the Gaussian scale-space paradigm. Experiments on an

example image showed the invariant set Ĉ and N̂ to be

successful in disregarding shadow edges, whereas the set Ĥ

is shown to be successful in discounting both shadow edges

and highlights. In [19], the authors have investigated the

degree of illumination color invariance for set N̂ .

We showed the discriminative power of the invariants to

be orderable by broadness of invariance. Highest discrimi-

native power is obtained by set Ŵ which has the tightest set

of disturbing conditions, namely overall illumination

intensity or camera gain. Discrimination degraded for set

Ĉ and N̂ , invariant for shading effects and illumination

color. Set Ĥ, invariant for shadows and highlights, has

lowest discriminative power. Illumination and viewing

direction invariance is evaluated in [31] by experiments

on a collection of real-world surfaces. Discriminating power

is increased when considering a larger spatial scale �x.

Hence, a larger spatial scale results in a more accurate

estimate of color at the point of interest, increasing the

accuracy of the result. The aim of the paper is reached in

that high color discrimination resolution is achieved while

maintaining constancy against disturbing imaging condi-

tions, both theoretically as well as experimentally.
We have restricted ourselves in several ways. We have

derived expressions up to the second spatial order, and
investigated their performance only for the spatial gradient.
The derivation of higher order derivatives is straightfor-
ward, and may aim in corner detection [9]. Usually many
derivatives are involved here, raising some doubt on the
sustainable accuracy of the result. Consequently, a larger
spatial scale may be necessary to increase the accuracy of
measurements involving higher order derivatives. Further,
we have only considered spectral derivatives up to second
order, yielding compatibility with human color vision. For a
spectrophotometer, measurements can be obtained at
different positions �0, for different scales ��, and for higher
spectral differential order, thereby exploiting the generality
of the Gaussian color model.
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Fig. 7. Examples for the total color edge strength measures. Shown is Êw which is not invariant, then Ŵw invariant for a constant gain or intensity

factor. Note that these images show intensity, color, and highlight boundaries. Further, Ĉw and N̂w invariant for shading are shown. Finally, Ĥw

invariant for shading and highlights. The effect of intensity and highlights on the different invariants are in accordance with Table 1.

TABLE 6
Discriminative Power

For each Invariant, the mumber of colors is given which can be
discriminated from one another in the PANTONE color system
(1,000 colors). The number refers to the amount of colors still to be
distinguished with the conservative criterion DNR > 3 given the
hardware and spatial scale �x. For �x � 2, Ê and Ŵ discriminate
between all patches, hence, the results are saturated.



We provided different classes of color invariants, under
general assumptions regarding the imaging conditions. We
have shown how to reliably measure color invariants from
RGB images by using the Gaussian color model. The
Gaussian color model extents the differential geometry
approaches from gray-value images to multispectral differ-
ential geometry. Further, we experimentally proved the
color invariants to be successful in discounting shadows
and highlights, resulting in accurate measurements of
surface reflectance properties. The presented framework
for color measurement is well-defined on a physical basis,
hence it is theoretically better founded as well as experi-
mentally better evaluated than existing methods for the
measurement of color features in RGB-images.
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