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Abstract. The extraction and interpretation of networks of lines from images yields important organizational
information of the network under consideration. In this paper, a one-parameter algorithm for the extraction of line
networks from images is presented. The parameter indicates the extracted saliency level from a hierarchical graph.
Input for the algorithm is the domain specific knowledge of interconnection points. Graph morphological tools are
used to extract the minimum cost graph which best segments the network.

We give an extensive error analysis for the general case of line extraction. Our method is shown to be robust
against gaps in lines, and against spurious vertices at lines, which we consider as the most prominent source of error
in line detection. The method indicates detection confidence, thereby supporting error proof interpretation of the
network functionality. The method is demonstrated to be applicable on a broad variety of line networks, including
dashed lines. Hence, the proposed method yields a major step towards general line tracking algorithms.
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The detection of lines in images is an important low-
level task in computer vision. Successful techniques
are available for the detection of curvilinear structures
(Cohen and Kimmel, 1997; Illingworth and Kittler,
1988; Steger, 1998). They are applied in pharmaceu-
tical research, where interesting tissue parameters can
be obtained by the extraction of bloodvessels, neurites,
or tissue layers. Furthermore, the extraction of roads,
railroads, rivers and channels from satellite or aerial
images can be used to update geographic information
systems.

A higher level of information is obtained by connect-
ing the lines into networks. Applications here can be
found in the roads between crossings or highways con-
necting cities, the railway system in between stations,
the neurite system connecting the neurons, all yield-
ing organizational information of the network under

consideration. Extraction of line networks rests on
the detection of connections, the vertices in the net-
work, as well as their interconnecting curves (Buckley
and Talbot, 2000; Vincent, 1998). The linking of line
points over the interconnections is an ill-defined prob-
lem since the curves are likely to contain gaps and
branches. More attractive is to find the minimum cost
path between vertices, the path which contains most
line evidence (Barzohar and Cooper, 1993; Bellman,
1957; Sha’ashua and Ullman, 1988). The vertices can
be used to guide the line tracking. Network extraction
is then reduced to tracing lines between vertices.

In this paper, we consider the robust extraction of
networks of lines by the application of minimum cost
graphs. Design objective is robustness against gaps in
lines, which we consider as the most prominent source
of error in network extraction. We propose a robust
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measure for edge saliency, which indicates confidence
for each connection.

1. Network Extraction Algorithm

A network consists of vertices interconnected by lines.

Definition 1 (Network of Lines). A network of lines
is defined by a set of vertices indicating line end points,
and the corresponding set of lines representing inter-
connections, where none of the lines do cross.

The definition above implies vertices at crossings.
The network can be segmented by tracing the lines be-
tween vertices. Therefore, four steps are considered:
a. the detection of line points, b. the detection of ver-
tices, c. finding the optimal paths between neighboring
vertices yielding the lines, and d. the extraction of the
network graph from the set of vertices and lines. A
flow diagram is given in Fig. 1. Post-processing may
include pruning of the graph to remove false branches,
and the assignment of confidence levels to the found
graph. Graph confidence is given by the saliency of
the detected lines, and the basin coverage indicating
how much line evidence is covered by the graph. If
the network graph covers all line evidence, no lines are
missed. However, if not all line evidence is covered
by the graph, lines may be missed during extraction.
Hence, basin coverage together with edge saliency in-
dicate missed lines and spurious lines in the network
graph. Each of these steps are described in further detail
below.

1.1. Vertex Detection

For specific applications, the network vertices are
geometrical structures which are more obvious to

Figure 1. Flow diagram for network extraction. a. Action flow diagram, b. the corresponding data flow. Graph extraction results in the network
graph, line saliency indicating confidence for the extracted lines, and basin coverage indicating missed lines.

detect than the interconnecting lines. Often, these are
salient points in the image. We assume these structures
to be detected as landmarks to guide the line tracing
algorithm. For a general method one may rely on the
detection of saddlepoints, T-junctions, and crossings
to obtain vertices (Lindeberg, 1994; ter Haar Romeny,
1994).

1.2. Line Point Detection

Theoretically, in two-dimensions, line points are de-
tected by considering the second order directional
derivative in the gradient direction (Steger, 1998). For
a line point, the first order directional derivative per-
pendicular to the line vanishes, where the second order
directional derivative exhibits an extremum. Hence, the
second order directional derivative perpendicular to the
line is a measure of line contrast. The second order di-
rectional derivatives are calculated by considering the
eigenvalues of the Hessian,

H =
(

fxx fxy

fxy fyy

)
(1)

given by

λ± = fxx + fyy ±
√

( fxx − fyy)2 + 4 f 2
xy (2)

where f (x, y) is the grey-value function and indices
denote differentiation. After ordering of the eigenval-
ues by magnitude, |λ+| > |λ−|, λ+ yields the second
order directional derivative perpendicular to the line.
Bright lines are observed when λ+ < 0 and dark lines
when λ+ > 0 (Lorenz et al., 1998). For both types of
lines, the magnitude |λ+| indicates line contrast. Note
that this formulation is free of parameters.
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Figure 2. Response of R(.) Eq. (3) at the centerline as function of relative line width q = w/σ .

In practice, one can only measure differential expres-
sions at a certain observation scale (Florack et al., 1992;
Koenderink, 1984). By considering Gaussian weighted
differential quotients, ( f σ

x = G(σ )x ∗ f , a measure of
line contrast is given by

R(x, y, σ ) = σ 2
∣∣λσ

+
∣∣ 1

bσ
(3)

where σ , the Gaussian standard deviation, denotes the
scale for observing the eigenvalues, and where line
brightness b is given by

bσ =
{

f σ if λσ
+ ≤ 0,

W − f σ otherwise
(4)

Line brightness is measured relative to black for bright
lines, and relative to white level W (255 for an 8-bit
camera) for dark lines. The original expression Eq. (2)
is of dimension [intensity/pixel2]. Multiplication byσ 2,
which is of dimension [pixel2], normalizes line contrast
Eq. (3) for the differential scale. Normalization by line
brightness b results in a dimensionless quantity. As a
consequence, the value of R(.) is within [0 . . . 1].

The response of the second order directional derivate
|λ+| does not only depend on the image data, but it is

also affected by the Gaussian smoothing scale σ . By
analysis of the response to a given line profile as func-
tion of scale, one can determine the optimal scale for
line detection. For a bar-shaped line profile of width
w, the response of R(.) Eq. (3) as function of the quo-
tient q = w/σ is plotted in Fig. 2. The response of
R(.) is biased towards thin lines, and gradually de-
grades for larger w. For a thin line w → 0 the response
equals line contrast, whereas for a large value of w

relative to σ the response vanishes. Hence, the value
of σ should be large enough to capture the line width.
For optimal detection of lines, the value of σ should
at least equal the width of the thickest line in the
image,

σ ≥ w. (5)

When line thickness varies, one can set the value of σ

to the size of the thickest line ŵ to expect,

σ = ŵ. (6)

In this case, response is slightly biased to thin lines.
The differential equation Eq. (3) is a point measure,

indicating if a given pixel belongs to a line structure
or not. The result is not the line structure itself, but a
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set of points accumulating evidence for a line. In the
sequel we will discuss how to integrate line evidence
to extract line structures.

1.3. Line Tracing

Consider a line and its two endpoints S1 and S2. For
all possible paths � between S1 and S2, the path
which integrates most line evidence is considered
the best connection between the vertices. Therefore,
we reformulate the line tracing to a minimum cost
optimization problem. First, let r(x, y, σ ) be a cost
function depending on R(.) Eq. (3),

r(x, y, σ ) = ε

ε + R(x, y, σ )
(7)

and let us define the path integral, taking σ for granted,
to be

c(S1, S2) = min
�

∫ S2

S1

r(x(p), y(p)) dp. (8)

Here, (x(p), y(p)) is the Cartesian coordinate of the
path parameterized by the arclength p. The path in-
tegral c(S1, S2) now yields the integrated cost Eq. (7)
over the best defined path in terms of line contrast R(.).
For high line contrast, the line is well-defined, the cost
r(.) should be determined by 1/R(.) ≈ 0. For a low
value of R(.), the cost should approximate 1, such that
the Euclidian shortest path is traced. Hence, the con-
stant term ε in Eq. (7) determines the trade-off between
either following the maximum line contrast or taking
the shortest route. The value of ε is typically very small,
e.g. ε = 0.001, compared to the line contrast, hence-
forth assures that plateaus are crossed. Note that line
extraction does not introduce additional parameters.

1.4. Graph Extraction

Now consider an image containing vertices S =
{S1, S2, . . . , Sn}. For our case, lines are connecting
neighboring vertices. The aim is to extract the network
graph G = (S, E) with vertices S, and edges E , the
interconnecting lines given by the minimum cost paths.
As there will be no crossing paths (see Section 1.1), the
graph G may be found by a local solution. Hence, we
concentrate on connecting neighboring vertices.

Neighbors are defined by assigning a zone of influ-
ence to each vertex, where each region Z(Si ) defines

the area for which all points p are closer to Si than to
any other vertex (Vincent, 1989),

Z(Si ) = {p ∈ IR2, ∀A ∈ S\{Si }, c(p, Si ) < c(p, A)}.
(9)

The partitioning is known as the weighted Voronoı̈
graph. Here, distance is measured with respect to cost
c(p, Si ) Eq. (8). The regions of influence correspond
to the catchment basins of the topographical watershed
algorithm (Meyer, 1994). Neighboring vertices to Si

are defined by the set of all vertices for which the zone
of influence touches that of Si . Hence, neighboring ver-
tices share an edge in the topographical watershed seg-
mentation. The minimum cost path �ij between Si and
Sj runs over the edge shared by Si and Sj.

Note that we consider two types of graphs here.
Viewing the image as a mountain landscape, the val-
leys being marker points, the borders of the weighted
Voronoı̈ graph run over the crest points of the moun-
tains. The second graph is given by the steepest descent
from saddle points in the mountain crest to the val-
leys, the graph being the solution G to the shortest path
problem. The graph is dual to the weighted Voronoı̈
partitioning.

The graph G is computed by applying the topograph-
ical watershed transform. First, the grey-weighted dis-
tance transform is applied on the cost image given
by r Eq. (7), with the vertices S as mask. The grey-
weighted distance transform propagates the costs from
the masks over their influence area, resulting in a wave-
front collision at places where two zones of influence
meet. The collision events result in the edges between
neighboring vertices, yielding the watershed by topo-
graphic distance. The minimum cost path between two
neighboring vertices runs over the minimum in their
common edge. Therefore, any edge between two neigh-
boring vertices is traced for its minimum. Steepest
descent on each side of the saddlepoint results in
the minimum cost path between the vertices. Tracing
the steepest descents for all different borders between
the zones of influence results in the network graph G.

The described algorithm requires one distance
transform to find the zones of influence. Hence, the or-
der of the algorithm is determined by the grey-weighted
distance transform. An efficient grey-distance trans-
form algorithm based on Fast Marching is given by
Sethian (1996). Note that the graph algorithm is free of
parameters.
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1.5. Edge Saliency and Basin Coverage

A natural measure of edge saliency is the integrated
line contrast Eq. (3) over the edge,

s(S1, S2) =
∫ S2

S1

R(x(p), y(p)) dp (10)

where S1, S2 are start and end node, and where
(x(p), y(p)) is the path parameterized by arclength p.
Note that s(.), as R, is a parameter free quantity. A
confidence measure indicating how well the edge is
supported by the image data is given by the average
saliency over the line,

s̄(S1, S2) = 1

l
s(S1, S2) (11)

where l is the path length. Again, s̄ is a dimensionless
quantity, with range [0 . . . 1], a high value indicating a
well-defined line.

Each basin in the minimum cost graph is surrounded
by a number of connected paths forming the basin
perimeter. An indication of segmentation confidence
for a basin B may be obtained by considering the aver-
age saliency over the surrounding lines, compared to
the average line contrast inside the graph basins. The
average saliency over the basin boundary is given
by

s̄B(B) = 1

l

∮
B

R(x(p), y(p)) dp (12)

l being the basin perimeter, and p representing the
arclength. A high value, in the range [0 . . . 1], indicates
a well-outlined basin.

The average line contrast within basin B is measured
by

c̄B(B) = 1

A(B�)

∫ ∫
B�

R(x(p), y(p)) dx dy. (13)

B� is the basin eroded by a band of thickness given by
σ . Erosion is applied to prevent the detected line points,
smoothed by the Gaussian at scale σ , to influence the
basin contrast. In Eq. (13), A(.) is the area of the eroded
basin. The value of c̄B increases when line structures
are present inside the basin, maybe due to a missed line
in the graph. Coverage of the graph G is defined by the
ratio of the line contrast remaining inside the basins

relative to the line contrast covered by the graph edges,

c̄(B) = 1 − c̄B(B)

s̄B(B)
. (14)

When all line points are covering the basin boundary,
c̄ will be close to one. For a basin containing a missed
line, the average line contrast over the basin will be
high. When a spurious edge outlines the basin, summed
contrast over the edges will be low, yielding a lower
coverage value.

1.6. Thresholding the Saliency Hierarchy

The graph G is constructed such that neighboring
vertices are connected, regardless the absence of inter-
connecting lines. For a spurious connection saliency
will be low, since evidence of a connecting line is
lacking. Pruning of the graph for spurious lines may
be achieved by thresholding on saliency. Pruning by
saliency of G imposes a hierarchy on the graph, ranging
from graph G with all edges included, up to the graph
consisting of the one best defined edge in terms of con-
trast. The threshold parameter indicates the saliency
level of the hierarchy. Note the introduction of a pa-
rameter, indicating the application dependent hierarchy
level of the graph. We propose two methods to prune
edges by saliency.

First, global pruning may proceed by removing all
ill-defined lines for which

s̄(S1, S2) < α. (15)

The resulting graph consists of the most contrast-
ing lines, removing lines for which contrast is be-
low the threshold. The method is applicable when
a clear distinction between lines and background is
present.

For the case of textured background, a local pruning
method based on local comparison of edge saliency
may be applied. Pruning of low confidence edges is
installed by removing all edges for which an alternative
path can be found in graph G, via other vertices, with
higher confidence. Path confidence between S1 and Sn

via vertices Si is defined by the average saliency over
the n edges,

s̄(S1, S2, . . . , Sn) = 1

l

(
n−1∑
i=1

s(Si , Si+1)

)
. (16)
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Here, l is the total path length. The direct path between
S1 and Sn is pruned when

min s̄(S1, . . . , Sn) < αs̄(S1, Sn) (17)

where the minimum is taken over all alternative paths
in graph G between S1 and Sn . Locally ill-defined lines
are removed from the graph, the degree of removal
given by α. For α = 0, no lines are removed, whereas
for α = 1 all lines are removed for which a detour
via another vertex yields higher saliency. Hence, short
ill-defined paths are pruned when longer well-defined
paths exist between the vertices. The method is appli-
cable for a textured background, and when enough con-
nections are present to determine alternative routes be-
tween neighboring vertices. The minimum of Eq. (17)
may be computed by using a weighted graph distance
transform (Vincent, 1989), thereby disregarding the di-
rect connection between S1 and Sn .

1.7. Overview

The algorithm is illustrated in Fig. 3. The figure
shows the extraction of cell borders from heart tis-
sue (Fig. 3(a), extracted vertices are indicated). Line
contrast is calculated according to Eq. (3), shown
in Fig. 3(b). The tracing of minimum cost paths
is shown in Fig. 3(c). Most of the lines are cor-
rectly detected, together with some spurious lines.
Local pruning the graph results in Fig. 3(d). Here,
all edges which are not supported by the image data
are removed. Figure 3(f) shows the area coverage,
where black indicates c̄ = 1, and white indicates
c̄ = 0.

In summary, we have proposed a one-parameter
algorithm for the extraction of line networks. The pa-
rameter indicates the saliency level in a hierarchical
graph. The graph tessellates the image into regions,
where each edge travels over the minimum cost path
between vertices. The resulting graph is labeled by
edge saliency and area coverage, both derived from
line contrast.

1.8. Error Analysis

The robustness of the proposed algorithm can best be
evaluated when considering the different types of er-
rors that may occur in forming the network graph.
Table 1 gives an overview of possible errors and their

Figure 3. Example of line detection on heart tissue (a), observed
by transmission light microscopy. The dark contours show the seg-
mented blood vessels, superimposed on the original image. Line con-
trast R(.) is shown in (b), the minimum cost graph in (c). The final
segmentation (d) after local pruning of spurious edges for α = 0.9
Eq. (17). The estimated saliency (e) Eq. (11) and area coverage
(f ) Eq. (14), dark representing high confidence in the result.

consequences on the network graph G. The columns
give a complete representation of the consequences an
error may have on the network graph G. The rows
overview the errors which may result from the ver-
tex and line detection. In the sequel we discuss the
sensitivity of the proposed algorithm to these types of
errors.

When the image contains textured regions, the
texture may cause a high response for the line point
detection. Hence, the algorithm will falsely respond
to the texture as being an underbroken line and find
an optimal path, illustrated in Fig. 4(a). Further, when
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Table 1. Types of errors, in general for extraction of networks of lines and their consequences.
Columns denote events in graph construction, whereas rows represent detection errors. Wanted
sensitivity of the proposed algorithm is indicated by “+”, whereas unwanted sensitivity to errors
is indicated by “−”. Robustness of the proposed method to errors is indicated by �.

Vertex Vertex Edge Edge Edge Saliency Coverage
Error type insert delete insert delete deviation Eq. (10) Eq. (14)

Spurious line � � � � − � −
Gap in line � � � � � + �
Line off vertex � � � � � + �
Missed line � � � − � � +
Spurious vertex

off line − � − � � + �
at line − � � � � � �

Missed vertex

at line � − � � � � �
at fork � − � − � � +
at line end � − � − − � +

spurious line structures are present in the image data,
without being part of the network, distortions may oc-
cur when the line is near other interconnections. In
that case, the best path between vertices may be via
the spurious line. An example is shown in Fig. 4(b),
where text interferes with dashed line structures. For
missed lines, basin coverage degrades. As the line
structure is not part of the network, such sensitivity is
unwanted.

Gaps in lines, or lines slightly off the vertex, illus-
trated by Fig. 4(c), will have no consequences except
that saliency degrades.

When a line structure is of too low contrast to con-
tribute enough to form a line, the line maybe pruned
after confidence thresholding. An example of a missed
line is shown in Fig. 4(d). As a consequence, coverage
degrades, thereby indicating the event of a missed line.

For the case of a falsely detected vertex off a line
(no example available), the vertex will be connected
to the network. Saliency of the spurious lines will be
low as line evidence is missing from the image. Hence,
pruning of the network by saliency is likely to solve
such errors.

Spurious or missed vertices at lines has, except for
the insertion or deletion of a vertex, respectively, no
consequence for the extracted network. An examples
of spurious vertices is given in Fig. 4(e). The measure
of saliency is invariant for insertion and deletion of
vertices. This is proven by considering the path inte-
gral Eq. (10). Insertion of a vertex Sx at the path S1, S2

results in

s(S1, Sx ) + s(Sx , S2) =
∫ Sx

S1

R(x(p), y(p)) dp

+
∫ S2

Sx

R(x(p), y(p)) dp

=
∫ S2

S1

R(x(p), y(p)) dp

= s(S1, S2)

which is of course similar to the original saliency. In-
variance for vertex deletion follows from the reverse
argumentation. For the average line contrast within the
graph basins is not affected by insertion or deletion
of vertices at edges, coverage Eq. (14) is invariant for
vertex insertion or deletion at lines.

More critical is overlooking a vertex at a fork or
line-end. An example of a missing vertex is shown
in Fig. 4(f). In both cases, an edge is missed in the
resulting graph, and coverage degrades as not all line
points are covered by the graph edges. For the missing
of a vertex at a line end, the line is maybe connected to a
different vertex, causing the crossing of the background
by the minimum cost path. Pruning of the network by
saliency is likely to solve the error.

Except for errors general for the extraction of net-
works of lines, the proposed algorithm generates er-
rors specific for minimum cost path based methods.
In general, only one path between two vertices is of
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Figure 4. Example of failures in the line detection. a. The detection of a spurious line due to a textured region. b. The deviation of a line due to
spurious line structures, the text, in the image. c. A gap in a line; the line is without errors correctly detected by the algorithm (result not shown).
d. A missing connections due to lack of line evidence. e. Extra vertices on the line does not influence the algorithm performance. f. Missing of
a vertex at a fork, resulting in a missed line in the network graph.

Figure 5. Example of failures specific for algorithms based on mini-
mum cost paths. a. The missing of a line due to the double linking
of vertices, for which the best connection is preserved. b. A shortcut
along a better defined lines to optimally connect two vertices.

minimum cost. Any other path connecting the same
vertices will be removed, as illustrated in Fig. 5(a). As
a consequence, an edge is missed in the graph, and basin
coverage degrades indicating the event of a missed line.

Further, when a better defined path exists in the
neighborhood of the traced path, the algorithm tends
to take a shortcut via the better defined path, as shown
in Fig. 5(b). In that case, coverage degrades to indicate
the missed line, whereas saliency increases due to the
better defined route.

In conclusion, the proposed method is robust against:
a. gaps in lines, b. lines slightly off their vertex,

c. spurious lines, and d. spurious vertices at lines. The
algorithm is sensitive to: a. missed lines, b. spurious
vertices off lines, and c. missed vertices at forks. For
missed vertices, the resulting graph is degraded. For
missed lines, the graph may be degraded, and confi-
dence of the area in which the missed line is situated
may be too high. Specific for the algorithm is the sensi-
tivity to shortcuts, and the inability to trace more than
one line between connections.

2. Illustrations

2.1. Heart Tissue Segmentation

Figure 3 illustrates the application of the proposed al-
gorithm on the extraction of cells from heart tissue.
The tissue consists of cardiac muscle cells, the dark
textured areas, and bloodvessels, the white discs. Cell
borders are transparent lines surrounding all cardiac
muscle cells. Due to the dense packing of cells, blood-
vessels are squeezed between the cells. The cell borders
appear as bright lines connecting the bloodvessels. Fur-
ther, the dense packing causes gaps in the lines at places
were light microscopic resolving power is too low to
examine the cell border.

In the cardiac muscle cell application, the blood-
vessels are considered as initial vertices. The vessels
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are detected by dome extraction (Beucher and Meyer,
1993) (Fig. 3(a)). The extracted network graph, to-
gether with basin saliency and coverage, is shown in
Fig. 3(d), (e) and (f). The heart tissue segmentation
is a successful application in that a large number of
cells is correctly segmented by the proposed algorithm.
Individual cell parameters may be estimated after se-
lecting those cells with high saliency and coverage.
The amount of cells extracted from the tissue is in the
same range as for qualitative studies based on interac-
tively outlining the cells by experts (Ausma et al., 1997;
Beltrami et al., 1994; Vliegen et al., 1987). Hence,
the algorithm enables the quantitative assessment of
morphological changes in heart tissue at a cellular
level.

2.2. Neurite Tracing

A second example Fig. 6 shows interactive segmenta-
tion of neurites. The neurite starting points at the cell
bodies are interactively indicated, and used as initial
markers for the network segmentation algorithm. The
resulting network is shown in Fig. 6(b). In this case,
pruning of lines is not possible since no alternative
routes between the markers are present. Paths between
cells which are not connected are removed by thresh-
olding the saliency Eq. (15). Note that no errors are
caused from lack of line structure, indicated in Fig. 6(a).
The overall saliency of the result is s̄ = 0.44, indicat-
ing that the line contrast spans almost half the dynamic
range of the camera. Coverage c̄ = 0.95, indicating
that 95% of the line structures present in the image

Figure 6. Extraction of a neurite network (a); note the gaps present in the neurites. The traced network is shown in (b). The dots represent the
interactively indicated neurite start points at the cell bodies.

is covered by the network graph. Hence, the result is
considered highly accurate.

2.3. Crack Detection

An example of general line detection is shown in Fig. 7,
where cracks in ink at high magnification are traced.
The image shows an ink line, at such a magnification
that the ink is completely covering the image. Cracks
in the ink form white lines, due to the transmission of
light, against a background of black ink. Note that no
natural markers are present.

For the general case of line detection, saddle-
point detection may be used to extract markers. The
saddlepoints on bright lines are detected by

f σ
x = 0, f σ

y = 0, λσ
+ < 0,

f σ
xx f σ

yy − f σ 2

xy < −α. (18)

Here, α indicates salient saddlepoints, and is typically
small to suppress spurious saddlepoints due to noise.
The saddlepoints are used as markers for the network
extraction algorithm.

The detected saddlepoint are highlighted in Fig. 7(b).
The result of the proposed algorithm, the saddlepoints
as vertices, is shown in Fig. 7(c). Average saliency is
thresholded Eq. (15) to remove paths which cross the
background. Overall saliency of the graph is 0.313, and
coverage 0.962. The cracks are successfully extracted
by the proposed algorithm, except that the crack ends
are missing when end markers are absent. In that case,
the detected cracks are too short.
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Figure 7. Extraction of a general line network. a. shows a high magnification image of ink, completely covering the image, distorted by white
cracks through which light is transmitted. No natural markers are present. b. The saddlepoints at the bright lines Eq. (18). c. The detected lines,
overall saliency s̄ = 0.313, coverage c̄ = 0.962. d. The result for half the number of markers, overall saliency s̄ = 0.316, coverage c̄ = 0.960.
Note the shortcut and the removal of line ends.

Since no natural markers are present, the algorithm
should be robust against marker insertion or deletion
at lines. Figure 7(d) shows the result after random re-
moval of half the markers in Fig. 7(c). Errors in the
result include a shortcut via a more contrasting line.
Further, line ends are pruned due to the absence of
markers. Note that saliency is only marginally affected
by the new situation, 0.316 instead of 0.313, whereas
coverage likewise is reduced marginally, from 0.962
to 0.960. Hence, the algorithm is robust for variations
in the threshold value α for saddle point detection
Eq. (18).

2.4. Directional Line Detection

Characteristic for the proposed algorithm is that line ev-
idence is accumulated over the line. When line evidence
is absent, the algorithm optimizes the shortest path to
the neighboring line parts to continue integration. As a
result, when large gaps are present, the algorithm may
find an alternative route by crossing the background to
a neighboring line, tracking that line, and jumping back

to the original line after the gaps. The problem may be
solved by including line orientation information into
the algorithm.

To proceed, we consider directional filtering for de-
tection of line contrast. Consider Eq. (3), which was
measured by isotropic Gaussian filters of scale σ . For
the directional filtering, we consider anisotropic Gaus-
sian filters of scale σl and σs, for longest and short-
est axis, respectively, and of orientation θ . Hence, line
contrast is given by

R′(x, y, σl , σs, θ) = σ 2
s

∣∣ f σl ,σs ,θ
ss

∣∣ 1

bσl ,σs
, (19)

where f σl ,σs ,θ
ss is the Gaussian weighted derivative in the

shortest axis direction, and bσl ,σs is given by Eq. (4).
The scale σs depends on line width as given by Eq. (6),
whereas σl is tuned to adequately capture line direction.
Hence, σl should be large enough to bridge small gaps,
but should be not too large to prevent errors when line
curvature is high. In practice, an aspect ratio of σs = ŵ

and σl = 3σs is often sufficient.
Now we have established how to filter in a par-

ticular direction, the filter need to be tuned to the
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Figure 8. Extraction of a dashed line network (a), taken from (Kong et al., 1996); markers are interactively selected at line crossings and line
end points, indicated by grey dots. The extracted network is shown in (b) Errors made include some shortcuts, and the missing of the bend line
part due to the presence of a second, shorter connection between the markers. Note the difference for the isotropic result for scale σl (c) The
scale σl was taken to integrate line evidence over the gaps in the dashed lines. Deviation from centerline in the isotropic case is the result of the
large integration scale compared to line width.

line direction. Therefore, two options are considered.
First, eigenvector analysis of the Hessian results in
the principal line direction. One could apply a first
undirectional pass to obtain line direction, as de-
scribed by Steger (1998). A second pass yields the
tuning of the filter at each pixel in the line direction
to obtain line contrast. Note that the filter orienta-
tion may be different for each position in the image
plane. Instead of tuning the filter, sampling the image
at different orientations may be applied. One applies
Eq. (19) for different orientations. When the filter is
correctly aligned with the line, filter response is maxi-
mal, whereas the filter being perpendicular to the line
results in low response. Hence, the per pixel maximum
line contrast over the orientations yields directional
filtering.

The proposed method is applied to an example of
a dashed line pattern as given in Fig. 8(a), taken
from (Kong et al., 1996). The example is taken from
the hardest class, the “complex” patterns. The grey
dots represent interactively selected markers, indicat-
ing crossings and line end points. Orientation filtering
is applied at 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦, for which
the maximum line contrast per pixel is taken over the

sampled orientations. The result after graph extraction
and saliency thresholding is shown in Fig. 8(b). The
crude sampling of orientation space causes some of
the lines to be noisy. A better sampling enhances the
result. Further, one line part is missed, due to a shorter
line connecting the same markers. The text present in
the example causes the algorithm to follow parts of
the text instead of the original line. Not that isotropic
line detection does not adequately extract the graph
(Fig. 8(c)).

3. Conclusion

The extraction and interpretation of networks of lines
from images yields important organizational informa-
tion of the network under consideration. We present
a one-parameter algorithm for the extraction of line
networks from images. The parameter indicates the
extracted saliency level from a hierarchical graph. In-
put for the algorithm is the domain specific knowledge
of interconnection points. The algorithm results in the
network graph, together with edge saliency, and catch-
ment basin coverage.
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The proposed method assigns a robust measure of
saliency to each minimum cost path, based on the aver-
age path cost. Edges with a low saliency compared to
alternative routes are removed from the graph, leading
to an improved segmentation result. The correctness of
the network extraction is indicated by the edge saliency
and area coverage. Hence, confidence in the final result
can be based on the overall network saliency.

Design issues are robustness against general errors
summarized in Table 1. The proposed method is robust
against: a. gaps in lines, b. lines slightly off their ver-
tex, c. spurious lines, and d. spurious vertices at lines.
The algorithm is sensitive to: a. missed lines, b. spuri-
ous vertices off lines, and c. missed vertices at forks.
Thresholding on saliency reduces the errors caused by
spurious vertices. Missed lines are signaled by a mea-
sure of coverage Eq. (14), indicating how much of the
line evidence is covered by the network graph. Specific
for the algorithm is the sensitivity to shortcuts, and the
inability to trace more than one line between connec-
tions. Any algorithm based on minimum cost paths is
sensitive to these types of errors.

We restricted ourselves to locally defined line net-
works, where lines are connecting neighboring ver-
tices. For globally defined networks, like electronic
circuits, the algorithm can be adapted to yield a re-
gional or global solution. Therefore, several distance
transforms have to be applied, at the cost of a higher
computational complexity. The pruning of the network,
and the measure of saliency is again applicable for the
global case.

Incorporation of line directional information into
the algorithm results in better estimation of line con-
trast, hence improves graph extraction. The eigenvector
analysis of the directional derivatives yields an esti-
mate of the local direction of the line. The directional
information may be included by considering an
anisotropic metric for the line contrast filtering. Ex-
periments showed a better detection of the network
graph for dashed line detection. The example given
is considered as a complex configuration, according to
(Kong et al., 1996). Disadvantage is a longer compu-
tation time, due to the anisotropic filtering pass.

The proposed method results in the extraction of
networks from connection to connection point. The
routing from a starting connection to its final destina-
tion depends on the functionality of the network, and
is not considered in this paper. Correct interpretation
of the network in the presence of distortion obviously
requires information on the function of the network.

For the extraction of line networks the proposed
method has proven to be a useful tool. The method
is robust against gaps in lines, and against spuri-
ous vertices at lines, which we consider as the most
prominent source of error in line detection. Hence, the
proposed method enables reliable extraction of line
networks. Furthermore, the method indicates detec-
tion confidence, thereby supporting error proof inter-
pretation of the network functionality. The proposed
method is applicable on a broad variety of line net-
works, including dashed lines, as demonstrated by the
illustrations. Hence, the proposed method yields a ma-
jor step towards general line tracking algorithms.
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