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Abstract. This paper presents a decomposition scheme for a large class of greyscale structur-
ing elements from mathematical morphology. In contrast with many existing decomposition
schemes, our method is valid in the continuous domain. Conditions are given under which
this continuous method can be properly discretized. The class of functions that can be
decomposed with our method contains the class of quadratic functions, that are of major
importance in, for instance, distance transforms and morphological scale space. In the con-
tinuous domain, the size of the structuring elements resulting from the decomposition, can
be chosen arbitrarily small. For functions from the mentioned class, that can be separated
along the standard image axes, a discrete decomposition in 3 × 3 elements can be guaranteed.
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1. Introduction

In this paper we study the decomposition of a large class of structuring func-
tions often used in morphological image processing. We study decomposition of
continuous functions and prove that a subset of the class of concave functions
can be decomposed into a dilation sequence of functions with finite effective do-
main. Only then we show what are the requirements for proper discretization
of the proposed decomposition scheme.

In mathematical morphology [18, 7], concave structuring functions play an
important role. Matheron [14] already showed that convexity of structuring
sets is needed to axiomatize the concept of size. This analysis lead to the
notion of granulometries. Concave functions are needed to extend the notion of
granulometries to grey level functions [11]. In [10], Xu presents a decomposition
scheme for convex polygon-shaped structuring elements in binary morphology.

Concave structuring functions play an important role in the calculation of
(Euclidean) distance transforms [2]. Sternberg [19] showed that the Euclid-
ean distance transform can be calculated by dilating the indicator function of
a set with a cone shaped structuring  function. The cone function

encodes the distance to its  center. The infinite support function c
can be decomposed into the sequence c = t ⊕ t ⊕ . . .  where t is the “top” of the
cone t(x, y) = c(x , y) for x ² + y ² ≤ 1 and t (x,y ) = –∞ elsewhere. Unfortu-
nately this decomposition cannot be properly discretized, i.e. discretizing the
tops and then dilating leads to a different result then first dilating and then
discretizing. Therefore a chamfer distance transform [1, 26] can only be an
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approximation of the Euclidean distance transform.
Dilating the indicator function of a set with the square of the cone function

leads to the square of the distance transform [22] of that set. Huang[8] showed
that the discretized squared cone can be decomposed into a sequence of finite
support discrete structuring functions. In this paper we will give a geometrical
continuous construction that is a generalization of this result in the sense that
our result can be used for a larger class of (continuous) concave functions (not
only the parabola).

The parabolic function is not only important because it can be used to
calculate the distance transform. It has been shown by van den Boomgaard [24]
and Jackway [9] that the parabola in a very specific sense is the morphological
analogue of the Gaussian function as used in linear convolutions [22, 24].

Decomposition of structuring elements ([28]) has a lot of literature devoted
to it. Some of the reported results deal with continuous structuring elements.
For example the decomposition of convex symmetric polygons into the dilation
of the edge line segments [18] is simple to prove for polygons in . Also the
logarithmic decomposition of a convex set into the dilation of the set with its
extreme elements (the vertices of a polygon) [15, 25] is proved for continuous
sets (and the conditions for proper discretization are given in [21]). Most of
the results on decomposition, however, are focused on the decomposition of
discrete sets [5, 20, 12, 16, 6]. Whereas the decomposition of continuous sets
tend to be of a geometrical nature, the proofs for the decomposition of discrete
sets tend to be of an algebraic nature [17].

Decomposition into small structuring elements is important from a practical
point of view. Even for the Euclidean distance transform, that can be imple-
mented quite efficiently using the dimensional decomposition (see [23]), the
decomposition into small 3 × 3 elements is profitable as it allows for inhomoge-
neous distance transforms [26]. These are for instance needed in the watershed
algorithm while keeping track of the distance traveled from the starting marker
points [27].

2. Decomposition

Consider the dilation of a function ƒ with respect to the structuring function
g:

The effective domain of the structuring function g is the set of points y where
Note that only points in the effective domain of g need to be

considered in calculating the dilation result.
The structuring functions considered in this paper are all concave. Concave

structuring functions generalize the notion of convex sets to the domain of
grey value images. A function  is concave if 

f o r and 0 ≤ t ≤ 1. A concave function is proper
concave if for at least one x a n d for all x.
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Fig. 1. Example of a separation of a parabola g into  and 

We restrict ourselves to structuring functions g that can be separated in
one-dimensional proper concave functions and . The separation process
makes use of the embedding operator to embed one-dimensional functions
into two dimensional space (see [23]):

Definition 1 Let l be a one dimensional real function. The operator (with
a direction vector,  = 1 ) embeds the function l into 2-dimensional space,

resulting in the function 

(1)

The structuring function g is called separable if it can be separated in functions
g  and g  such that:

(2)

(see figure 1 for an example)
Notice that when we take two arbitrary proper concave functions g and g

the resulting function is always a proper concave function.
The vectors and in the separation must be linearly independent. Func-

tions   which can be written as  with
a n d  are a subclass of the functions that can be

separated cf. equation 2.

2 .1 .  THE DECOMPOSITION SCHEME

In theorem 1 we will prove that a one dimensional proper concave function
g can be decomposed in two concave functions u and r, such that ƒ = u ⊕ r
(under certain conditions). This function u always has a finite effective domain.
Following this theorem allows for the decomposition of g  and g  :

Now dilation of image I with function g is I ⊕ g = I ⊕ , with
 The embedding operator can be

distributed over the dilation, so g =  and since
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Fig. 2. Example of a decomposition of a parabola g into u 1 and r 1

dilation is commutative and associative If we
define and then
(See for an example figure 2.) Since and are proper concave functions,
the same process can be repeated and the dilation with g can be carried out as
follows For n decomposition steps this results in

(3)

Only in case the function g has a finite effective domain, it can be de-
composed in a finite number of functions u1 . . . u n , such that r n is the pulse
function. For functions with an infinite effective domain, the rest function rn
always has an infinite effective domain.

2 .2 . DECOMPOSITION OF ONE DIMENSIONAL CONCAVE STRUCTURING FUNC-
TIONS

The main theorem of this section gives a decomposition of one dimensional
proper concave functions ƒ into two proper concave functions u and r, such that
ƒ = u ⊕ r. In this decomposition u always has a finite effective domain, while r
only has a finite effective domain if ƒ has a finite effective domain. To simplify
the decomposition, we assume that ƒ(x) < 0, except for x = 0, where ƒ(0) = 0.
For proper concave functions this comes down to translating the function such
that the maximum is obtained in the origin. Since the decomposed function is
used for dilation, this only results in a simple translation of the result.

The function u is constructed from ƒ as follows

(4)

where and are chosen such that and for some real
numbers t1 ≤ 0, t 2 ≤ 0 and see figure 3. The function r is
constructed from ƒ as follows

(5)
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Fig. 3. Visualization of the symbols used in the decomposition.

The terms –t1 and –t2  translate the maximum of r to the origin so that the
dilation u ⊕ r will not be a translated version of ƒ. r is again a proper concave
function, so the same decomposition scheme can be used to decompose r (with
possible other values of and

Fig. 4. Decomposition of ƒ into u and r.

A non-trivial decomposition exists in case the effective domain of the con-
cave function is of the form (a, b) where a < 0 and b > 0. Then t 1 and t2 can
always be found such that there exist and with a n d

Theorem 1 ensures that the decomposition given by equations 4 and 5 indeed
results in a decomposition of ƒ such that ƒ = u ⊕ r. The proof of this theorem,
and all other proofs omitted in this paper, can be found in [4].

Theorem 1 Let ƒ(x ) :  be a one dimensional proper concave function
with ƒ(x) < 0 except for x = 0, where ƒ(0) = 0. Assume that there exist
and such that and for some real numbers t1 ≤ 0 ,
t 2 ≤ 0. Now define
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and
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Then u ⊕ r (x) = ƒ(x).

3. Discretization of the Decomposition Scheme

In this section we discuss the conditions under which the decomposition process
can be properly discretized, i.e. the conditions under which dilating with the
original discretized function is the same as dilation with the discretized results
of the decomposition. First the definition of the discretization operator
The vectors and generate the sampling points in the discretization grid.

Definition 2 The discretization operator constructs a function :
from a function as follows:

Likewise, the discretization ∆ k ƒ of a function is constructed by

Now the term “properly discretizable” of the decomposition ƒ = u ⊕ r can
be formalized as:

In general the decomposition process can not be guaranteed to be properly
discretizable.

The following lemma gives the conditions under which one dimensional de-
composable functions can be properly discretized.

Lemma 1 Let the decomposition for a function ƒ be given by the parameters
and and let the discretization be given by parameter d. Then

For two-dimensional decomposable functions ƒ that can be separated into ƒ
and ƒ , the question whether it can be discretized properly with parameters
and boils down to the question whether ƒ can be discretized with parameter

and ƒ can be discretized with parameter
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If the discretization vectors and do not correspond with the separation
parameters and , it is still possible for the discretization of the decomposi-
tion scheme to be proper.

In the following theorem we use to denote the 2 × 2 matrix whose
column are the vectors and

Theorem 2 Let ƒ be a two-dimensional decomposable function that can be
separated into ƒ and ƒ , for which and

Then if and are two points from the lattice formed by
and and there exists an integral matrix U such that det(U) = ±1 a n d

U, then

The well-known example decomposing a (discrete) parabola
that also follows directly from the theory presented in this paper is:

Here we use the notation that within the curly brackets the values of a struc-
turing function in the discrete sampling points are given. The origin is marked
with an underscore. All the values that are not shown are implicitly assumed
to be equal to – ∞ .

The second example illustrates that non axes aligned quadratic structuring
functions (QSF’s) are also decomposable using our approach. Consider the
QSF This QSF is decomposed as:

4 . Computational Complexity

In general, the dilation with a structuring function with effective domain n Q
where Q is convex is of complexity where |Q| is the number of
points in Q, and the dimension of the image is M × M. If the structuring
function nQ can be decomposed such that for the effective domain of nQ holds
tha t

the complexity is reduced to
Due to the nature of our separation process, the decomposition scheme

always returns structuring functions with a parallelogram shaped effective do-
main. Since the size of the effective domains of the resulting functions of our
decomposition scheme can be chosen at will, the domains can be chosen equal
to Q, where the effective domain of the original structuring function is nQ. The
decomposition scheme then reduces the complexity by a factor n.
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5. Conclusions

In this paper we have presented a decomposition scheme for a large class of
concave structuring functions. The results are valid in the continuous domain,
but we have proved the requirements for proper discretization as well. The
important class of quadratic structuring functions prove to be decomposable
into a sequence of dilations with structuring functions restricted to a finite
(small) effective domain. For the axis aligned parabola (an element of the
class of quadratic functions) our proof is a generalization of the decomposition
presented by Huang [8]. The main difference with existing approaches is that
we have chosen a continuous geometrical view on decomposition instead of a
discrete algebraic approach.

We have restricted our proofs to the functions that are separable by di-
mension. This is somewhat of a limitation that may well be eliminated using
more elaborate proofs using the slope transform description of morphological
operators [3] or equivalently (for concave functions) using the Fenchel conju-
gate functions (or the upper and lower slope transform) from convex analysis
[13, 3]. Such an extension of the theory is left to future work.

We believe that the presented approach for decomposition of concave struc-
turing functions provides an intuitive feeling for the decomposition (being a
“cut-and-paste” procedure as illustrated in figure 4) that is fruitful for a deeper
understanding of morphological operators modifying and probing the geometry
of visual observations.
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