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Background: The analysis of three-dimensional (3D) mo-
tion is becoming increasingly important in life cell imag-
ing. A simple description of sometimes complex patterns
of movement in living cells gives insight in the underlying
mechanisms governing these movements.
Methods: We evaluate a velocity estimation method
based on intensity derivatives in spatial and temporal
domain from 3D confocal images of living cells. Cells of
the sample contain intense spots throughout the cell nu-
cleus. In simulations, we model these spots as Gaussian
intensity profiles which are constant in intensity and
shape. To quantify the quality of the estimated velocity,
we introduce a reliability measure.
Results: For constant linear velocity, the velocity estima-
tion is unbiased. For accelerated motion paths or when a
neighboring spot disturbs the intensity profile, the
method results are biased. The influence of the point-

spread function on the velocity estimation can be com-
pensated for by introducing anisotropic derivative ker-
nels. The insight gained in the simulations is confirmed by
the results of the method applied on an image sequence of
a living cell with fluorescently labeled chromatin.
Conclusions: With the velocity estimation method, a tool
for estimating 3D velocity fields is described which is
successfully applied to a living cell sequence. With the
estimated velocity fields, motion patterns can be ob-
served, which are a useful starting point for the analysis of
dynamic processes in living cells. Cytometry 43:261–272,
2001. © 2001 Wiley-Liss, Inc.
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During the last few years, new labeling techniques (e.g.,
GFP techniques and in vitro labeling of DNA with fluores-
cent nucleotide) and detection techniques (e.g., confocal
microscopy and two-photon excitation) have become
available that allow us to observe cellular structures in
three dimensions (3D) in living cells. The data generated
by 4D imaging (3D 1 time) contains the information
concerning the complex movements of these structures.
Therefore, determination of 3D motion patterns of spots is
of major importance. Velocity estimates of individual
spots can provide valuable information in analysis of mo-
tion patterns.

Velocity estimation methods can be roughly divided
into two groups: feature and model-based object tracking
methods (1,2) and image derivative-based methods like
optical flow (3–8). Spot tracking methods rely heavily on
the accuracy of the segmentation of spots or other
uniquely detectable characteristic objects. In general, seg-
mentation methods are sensitive to the high noise levels,
which are common in image sequences of living cells. No
segmentation is needed with optical flow methods. Con-
sequently, motion patterns can be obtained avoiding the
disadvantages related to segmentation.

Practical imaging with a confocal system results in
blurred images of spots (9). The blurring is caused by the
point-spread function of the system. When the objects are
small compared to the point-spread function, the blurring
can cause a biased velocity estimation. Usually, deconvo-
lution is used to reduce the influence of blurring by the
point-spread function. However, deconvolution is noise
sensitive (10) and complete reconstruction of the original
objects is never accomplished. Therefore, we have devel-
oped a procedure that allows the compensation for blur-
ring by the point-spread function. This procedure is incor-
porated in the velocity estimation method without any
loss of functionality and computational efficiency of the
velocity estimation method.

In this study, we evaluate the applicability of optical
flow on 3D image sequences containing moving spots. We
show that this method is theoretically unbiased for con-
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stant motion of a single spot along a straight trajectory. We
also investigate the velocity estimation for curved trajec-
tories of single spots and linear trajectories with overlap-
ping spots and introduce a reliability measure. A correc-
tion procedure was designed to compensate for the
influence of the point-spread function. The applicability of
the methods presented here is demonstrated in two dif-
ferent image sequences recorded by confocal microscopy:
fluorescent beads and fluorescently labeled chromatin in
living cells (11).

MATERIALS AND METHODS
Optical Flow

The formulation of optical flow is based on the assump-
tion that the total time derivative of the image is zero at all
positions through the image sequence. This leads to the
optical flow constraint as introduced by Horn and Schunk
(6):

ƒI~x,t! z v~x,t! 1 It~x,t! 5 0, (1)

with I(x,t) the image intensity function,

ƒI(x,t) 5 (]I(x,t)/]x,]I(x,t)/]y,]I(x,t)/]z))

the gradient vector of the image intensity, It(x,t) the time
derivative of the intensity, and position is the 3D
x5(x,y,z). Vector v(x,t) is the optical flow at position and
time of computation of derivatives. The optical flow vec-
tor corresponds to the 3D velocity vector at a certain
position in space.

In case the space would be 1D, a single optical flow
constraint is theoretically sufficient to compute a single
velocity vector. The single linear equation (1) does not
yield sufficient information to resolve the velocity from a
sequence of 3D images regarding the 3D nature of flow
vector v(x,t); the system is underdetermined. Several so-
lutions for extra constraints are available: multiple mea-
surements in a single point (5,12), an extra global con-
straint (6), and a local motion constraint (7,8).

Multiple measurements in a single point require multi-
ple independent filters applied to the image. For example,
application of different orders of derivatives or different
orientations of derivative filters is used (12). The compu-
tational load increases with the amount of independent
filters and higher-order derivatives are more sensitive to
noise. Consequently, for the noisy images of living cells,
first-order derivatives are more appropriate.

The global motion constraint assumes small variation in
the motion over the total image domain. In a sequence
with multiple spots, spots have different individual veloc-
ities. Accordingly, estimations using a global motion con-
straint will be biased in living cell image sequences. There-
fore, the velocity is calculated using a local motion
constraint (4,7,8). The assumption in using local con-
straints is that neighboring voxels within a local region V
will have the same velocity and should give the same
optical flow vector. In computing the flow vector, a num-

ber of optical flow constraint equations within a small
region around the position of flow estimation are com-
bined. To emphasize information close to the point of
estimation, a weighting function is used which decays
with distance from the central position.

We compute the optical flow following (3,4,7,8). To
find the flow vector, we compute a linear least squares
estimation of v(x,t) with a Gaussian weight function
W(x). The weight function is incorporated in a squared
error function by a convolution of the squared optical
flow constraint with W(x)

E~v~x,t!! 5 W~x!p@ƒI~x,t! z v~x,t! 1 It~x,t!#2, (2)

with

W~ x! 5
1

Î2psw
2

e2~uxu2/ 2sw
2 !. (3)

Equation (2) gives the error function in every position in
the image sequence. Minimizing the error function (2) for

ƒvE~v! 5 W~x!p@ƒI~x,t!ƒI~x,t!T z v~x,t!

1 ƒI~x,t!It~x,t!] 5 0, (4)

and using the assumption of v(x,t) constant in W(x)
results in an expression for the flow vector v(x,t):

v~x,t! 5 2A~x,t!21b~x,t!. (5)

In equation (5) matrix A(x,t) and vector b(x,t) are defined
by:

A~x,t! 5 W~x!p@ƒI~x,t!ƒI~x,t!T#, (6)

b~x,t! 5 W~x!p@ƒI~x,t!It~x,t!#. (7)

The derivative images in Equations (6) and (7) are
based on spatiotemporal Gaussian derivatives as used in
(12,13):

Ii~ x,t! 5
]

]i
~ g~ x,t;ss,st!pI~ x,t!!

5 gi~ x,t;ss,st!pI~ x,t!, (8)

with i the index of differentiation (i5x,y,z,t) of arbitrary
order. The Gaussian kernel for derivative function (8) is
then:

g~ x,t;ss,st! 5
1

~Î2pss
2

!3
e2~uxu2/ 2ss

2!
1

Î2pst
2 e2~t2/ 2st

2!, (9)

with ss spatial width and st temporal width of the Gauss-
ian derivative function. Gaussian derivative functions are
utilized to suppress the influence of noise on the deriva-
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tive estimates. Moreover, Gaussian derivatives provide
meaningful derivatives in a discrete image (14).

Single-Spot Motion Estimation

Consider an image sequence containing spots moving
in a 3D environment. All spot intensity profiles contribute
to the image intensity. Here we consider spots to be
modeled by a Gaussian intensity profile. For a single mov-
ing spot, with width s, the image sequence intensity
function I(x,t) is:

I~ x,t! 5
1

~Î2ps2!3
e2ux2s~t!u2/ 2s2

, (10)

with the trajectory of the spot described by s(t).
For a single spot moving along a straight line with

constant velocity, the estimation will be unbiased. For
unbiased results, error function (2) is equal to zero
throughout the image, that is,

E~v! 5 0. (11)

Equation (11) is zero if the optical flow constraint (1) is
met. In a straightforward derivation, one can prove that
with a Gaussian intensity profile and Gaussian derivatives
the latter requirement is fulfilled (15).

For accelerated motion, the velocity estimation is ex-
pected to be biased. To investigate the mechanism that
may introduce the bias due to acceleration, we look at the
temporal intensity profile at a constant position in the
image (Fig. 1). The position is located on the trajectory of
the spot center. When a Gaussian spot is moving along the
linear trajectory, the intensity in this constant position
changes over time. Plotting the observed intensity as a
function of time gives a temporal intensity profile (Fig.
1b). The temporal intensity profile is a symmetric function
for a constant velocity along a straight line. The width of

the profile is a relation between the width of the spot and
the velocity of the spot.

stemporal 5 s/uvu. (12)

If we let the Gaussian spot accelerate, the temporal inten-
sity function becomes asymmetric (Fig. 1c). Because we
use symmetric kernels for derivatives and weighting func-
tion, we expect the asymmetry to be of influence on the
bias of the estimation of the spot velocity.

Reliability Measure

The velocity estimation method assumes a constant
intensity profile in a local volume V. This is true for single
spots. When two spots are close to each other, the inten-
sity profiles overlap. When intensity profiles overlap, the
spot intensity profiles are not constant in time anymore.
When the intensity of a spot changes over time, bias in the
velocity estimation is expected. To detect errors in the
velocity field, the smoothness of the local velocity field
structure is useful to provide for a reliability measure for
the estimated velocity.

The velocity field is called smooth when all vectors in a
volume V have the same orientation and the same length.
This is the case for an unperturbed spot. A smoothness
measure of the velocity field can be calculated by princi-
pal components analysis (16) of the relative velocity field
in a local volume V. A velocity vr(x,t), relative to the
average velocity vector v#V in volume V, is calculated by

vr~x,t! 5 v~x,t! 2 v#V. (13)

From vr(x,t), we form a scatter matrix

S~x,t! 5 vr~x,t!vr~x,t!T, (14)

FIG. 1. Intensity profiles in the spatial and the temporal domain for a Gaussian object with s55. a: A spatial intensity profile (x 515). b: Temporal
intensity profiles of (a) for two different velocities v5{1,2}. c: Temporal intensity profiles for two accelerated spots, with acceleration a5{5,10}.
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where the averaging is over all points in V. The eigenval-
ues li(x,t) (i51,2,3) of scatter matrix S(x,t) represent the
smoothness of the velocity field in V, because the eigen-
values measure the spread of the vectors vr(x,t) in V (Fig.
2). Due to the nature of the relative velocity vector field
vr(x,t), a smooth velocity field gives rise to small eigen-
values (Fig. 2a) because all velocity vectors have the same
length and orientation. With such a field, the deviation of
the relative velocity from the average velocity in V will be
zero or at least very small.

Thus, a smooth velocity field will yield small eigenval-
ues li. Therefore, we define a reliability measure R(x,t),
which takes the spread of the velocity field in volume V
relative to the measured average velocity in volume V.

R~ x,t! 5
v# ~ x,t!

v# ~ x,t! 1 ÎO
i51

3

li

(15)

with li the eigenvalues of the scatter matrix S(x,t) and
v#(x,t) the average velocity in a local volume V with V at
location and at time point t. The reliability measure is a
normalized function, resulting in values between 0 and 1.
A value of 1 represents a maximal reliability of the velocity
estimation. Smaller values of R(x,t) represent lower reli-
ability.

Anisotropy of the Point-Spread Function

As discussed above, image sequences with isotropic
spots and kernels were assumed. However, the actual
point-spread function in a confocal microscope is an
anisotrope function, which can be approximated by a 3D
Gaussian function (17) (in the following denoted by
H(x)). The size of H(x) in the axial direction (sH

a ) is
approximately three times the size in the lateral direction
(sH

l ) for a 1.3 NA objective. This anisotropy is expected to
cause the estimation to be direction dependent if the size
of H(x) is in the order of magnitude of the spots to be
observed. Consequently, two spots touching in the axial
direction experience the same amount of overlap at larger
distances than spots touching in the lateral direction. This

influences the determination of the derivatives involved in
the velocity estimation. In this section, we describe how
to overcome this position and orientation dependency of
the velocity estimate.

A single spot as imaged by a confocal microscope is the
result of a convolution of the original object f(x,t) with
the point-spread function H(x),

I~x,t! 5 H~x,t!pf~x,t!. (16)

The Gaussian derivative image of the spot image is a
convolution of the spot image I(x,t) with the Gaussian
derivative kernel gi(x,t),

Ii~ x,t! 5
]

]i
~ g~ x,t;sg

l ,sg
a!pH~ x,t;sH

l ,sH
a!!pf~ x,t!. (17)

The convolution of two Gaussian functions, g(x,t;sg
l ,sg

a)
and H(x,t;sH

l ,sH
a ) results in a Gaussian function G(x,t;

sG
l ,sG

a) (Fig. 3), with lateral and axial scales:

sG
l 5 Îsg

l 2
1 sH

l 2
, (18)

sG
a 5 Îsg

a2
1 sH

a2
. (19)

Thus, the resulting derivative of the spot is an isotrope
function if the Gaussian function G(x,t;sG

l ,sG
a) is an iso-

trope function. G(x,t;sG
l ,sG

a) can be made isotrope if sg
l

and sg
a are chosen as follows:

sG
l 5 sG

a 5 sG (20)

sg
l 5 ÎsG

2 2 sH
l 2

(21)

sg
a 5 ÎsG

2 2 sH
a2

(22)

FIG. 2. Two different examples of a 3D velocity field in a local volume
V. To the left of each figure, the velocity field is depicted. To the right of
each figure, the resulting volume spanned by the eigenvectors l1(x,t) of
the scatter matrix S(x,t) is schematically given. a: A small deviation from
the average velocity vector causes a small volume spanned by the eigen-
vectors. b: For large deviations of the velocity vectors from the average,
a large volume is spanned by the eigenvectors. FIG. 3. The convolution of an imaged object (left) with the anisotrope

cigar-shaped point-spread function of the confocal imaging system and an
anisotrope oblate ellipsoid kernel of the derivatives leads to an isotrope
object image (right). The lateral scale is the scale in x and y direction
(s15sx5sy), the axial scale sa is the scale in the z direction. The scale of
the isotrope object image is a function of the original object size and the
scales of the point-spread function and the kernels sg

l and sg
a.
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Error Measures

To have an indication of the possible bias of the esti-
mated velocity field, error measures are needed. In the
simulations, the original motion of the spot is known.
Therefore, it is possible to calculate the difference be-
tween the original correct velocity vc and the estimated
velocity vest. The definitions of the two error measures
employed are:

εv 5
uvc~x,t!u 2 uvest~x,t!u

uvc~x,t!u , (23)

εq 5
1

2p
arccos

vc~x,t! z vest~x,t!

uvc~x,t!ivest~x,t!u (24)

In the experiments εv is expressed in percentages and εu

is expressed in degrees.

Sample Preparation

Cell culture and preparation. Indian Muntjac cells
were cultured in glass-bottom Petri dishes coated with
poly-d-lysine (MatTek, Ashland, MA). Cells were bead
loaded with fluorescein-dUTP (Molecular Probes, Eugene,
OR) as described previously (11) and cultured for 5 h to
allow incorporation of fluorescein-12-dUTP into nascent
DNA. During imaging, the cells were kept at 37°C on a
heated stage by using an objective heater (Bioptechs,
Butler, PA). 3D images were obtained using a Zeiss
LSM510 (Carl Zeiss, Jena, Germany) equipped with a Plan-
Neofluar 100x/1.3-oil and Ar-ion laser. To prevent cell
death, the laser was tuned at 488 nm and less than 500 nW
laser power at the position of the cells (11). Thirty 3D
images, each containing 18 optical sections (512 3 512
pixels), were scanned at a sample frequency of 12 images
per hour and a voxel size of 60 nm lateral and 300 nm
axial. Cells were scanned directly after telophase entering
G1 phase (Manders et al., unpublished data).

Bead preparation. A fluorescent bead with a diameter
of 1 m is imaged with a Zeiss LSM510 equipped with a
Plan-Neofluar 100x/1.3-oil and Ar-ion laser tuned at 488
nm. Fifteen 3D images, each containing 64 optical sec-
tions (512 3 512 pixels), were scanned with a voxel size
of 20 nm lateral and 100 nm axial. Afterwards, a linear
motion path is constructed by computing images which
are translated relative to the original images. For each
individual time frame, a different image is used. In this
way, successive frames have uncorrelated noise and im-
aging imperfections. The bead has a radius Rb in the lateral
plane of approximately 25 voxels.

RESULTS
We show examples that demonstrate the applicability

of motion estimation on moving spots in 3D. We present
a series of simulations that show estimation bias in linear
motion, constant and accelerated motion, and curved mo-
tion of a single spot. The estimation bias of close spots
with overlapping intensity profiles is examined. A final

simulation demonstrates the robustness of the motion
estimation method in relation to the constant shape of the
intensity profile of the spots.

We also demonstrate the application of motion estima-
tion on two image sequences recorded with a confocal
microscope. The first image sequence is based on a num-
ber of 3D images of a fluorescent bead. The second se-
quence is a time series of 3D images of a living cell
recorded during cell division.

Simulations on Motion

In the simulations, the average error and the standard
deviation of the errors εv (23) and εu (24) are calculated
over a local volume. The local averaging volume is an
isotropic volume of the size of the spots. Besides the
errors εv and εu, the reliability measure R (2.3) is also
calculated over the same local averaging volume. In this
way, the reliability measure can be compared with the real
estimation bias.

The simulations evaluate the estimation bias of the
method in three ways: the influence of the type of motion
pattern of the spots, the influence of the point-spread
function, and the robustness for the shape of the spots.
The different motion patterns under evaluation are linear
and curved motion. With linear motion, a further classifi-
cation is made in constant linear motion and accelerated
linear motion. In the motion pattern simulations, image
sequences are created with the specific motion patterns of
a single isotropic Gaussian spot with scale s55.

Experiments reveal that spatial sampling is not critical
as long as the spatial scale of the derivative kernels (see
equation 9) ss $ 2 approximately. We choose for ss a
value of ss50.4s and for spatial scale of local volume
W(x) (see equation 2) a value of sw5s. Because the time
sampling is the most critical parameter in the application
of the motion estimation, the temporal kernel size is
varied from st52/3 to st52 in unit time step throughout
all simulations.

Linear motion. The estimation bias for the spot mov-
ing with constant relative velocity is in the order of 1 z 10-3

for the temporal filter widths used. The value for the
relative velocity unu/s lies between unu/s50 and unu/s51.
The deviation of the values of R from the perfect situation
(R 5 100%) is negligible.

Figure 4 shows the estimation bias for accelerated mo-
tion. As expected, bias is a function of the acceleration of
the spot and of the scale st of the temporal part of the
derivative kernels. The acceleration a[[0,0.35] is a real-
istic choice of parameters considering practical motion
situations. The motion is chosen in such a way that the
velocity at the time point of motion estimation is the same
for all the situations unu/s 5 0.5. Figure 4 shows a rela-
tionship between the temporal size of the kernel and the
estimation bias. For small kernels, the bias is small and the
bias increases with increasing kernel size. The bias in-
creases with increasing acceleration of the moving spot.
The reliability measure decreases with increasing acceler-
ation and increasing kernel size.
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Curved motion. Figure 5 shows the estimation bias as
a function of the radius of a motion curve (r/s between
r/s50 and r/s 5 20). The tangential velocity of the spot
is kept constant during the simulation (unu/s50.5). With
decreasing radius of the motion curve, the reliability mea-
sure decreases significantly compared with the linear mo-
tion results. Again, a larger temporal kernel size gives a
larger bias and smaller reliability measure in the motion
estimation. For increasing radius, r3`, the motion asymp-
totically reaches a linear motion path. The corresponding
bias also asymptotically reaches low values for r3`.

Anisotropy correction. The influence of the point-
spread function of a microscope is simulated in sequences
with anisotropic Gaussian spots. The size in the axial
direction differs from the size in the lateral direction
(sa/sl53) to simulate the difference in blurring by the
microscope in the axial and lateral direction. Due to the
blurring of the microscope, the intensity profiles of differ-
ent spots can overlap. The derivative kernel widths are
chosen as

sg
a/sg

l 5 1/Î57

for a

sG/s l 5 8/Î7

to correct for the anisotropy of the spot. The spot de-
scribes a linear motion with constant velocity unu 5 5.0sl.
A second spot is situated at a distance from the center of
the moving spot at the time frame of estimation. Three
situations are demonstrated: the second spot is located in
the lateral plan (f50°), the second spot is located in the
axial plane (f590°), and the second spot is located at
f530° from the lateral plane (Fig. 6). This simulation is
repeated with the same anisotropic spots but with isotro-
pic derivative kernels.

Figure 7 shows the estimation bias for two overlapping
Gaussian intensity profiles. The bias is calculated at the
time frame where the distance d between the spots is
minimal. The estimation bias is a function of d for both
situations. The original anisotropic spot with isotropic
derivative kernels also shows an orientation dependency
(Figure 7, top). When the anisotropic spot is compensated
with anisotropic kernels (Fig. 7, bottom), the orientation
dependency vanishes. The reliability measure R drops
below 90%, which is small compared with the other
simulations described.

Robustness for intensity profile shape. Because
the estimation method depends on the estimation of in-
tensity derivatives, the shape of a spot is of interest. If the
shape of a spot hampers accurate derivative estimation,
the result of the estimation method may be biased. Spot

FIG. 4. Accelerated linear motion. For a linear moving Gaussian spot, the velocity estimation errors εv and εu and the reliability measure R are given as
function of the acceleration of the spot.

FIG. 5. Curved motion with constant velocity. For a moving Gaussian spot along a curved path with radius r, the velocity estimation errors εv and εu and
the reliability measure R are given as function of the radius r.
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shapes encountered in living cells will usually resemble a
Gaussian spot shape. However, profile shapes that are
more accurately described by a parabolic or even a rect-
angular intensity profile are sometimes present in the
images. To examine the bias caused by spot shapes devi-
ating from a Gaussian shape, three spot shapes are used: a

Gaussian-shaped spot as in the previous simulations, a
spot with a parabolic intensity profile, and a spot with a
rectangular intensity profile. Figure 8 shows the three
intensity profiles that are used. The intensity is given as a
function of the distance from the center of the object.
Figure 9 shows the estimation bias for the three shapes.
The bias for the three different shapes is negligible. The
reliability measure is approximately 100%.

FIG. 8. Intensity profiles. A Gaussian-shaped intensity profile, a para-
bolic intensity profile, and a rectangular intensity profile. The profiles give
the intensity of the objects as function of the radius from the center of the
object.

FIG. 6. The positioning of two spots for the simulation with two
overlapping spots. One spot is fixed in space at the origin. The second
spot moves along a straight line with a constant velocity v. The motion
path has at a minimum distance d from the origin an angle F from the
lateral plane.

FIG. 7. Point-spread function influence: an anisotropic spot constantly moving along a straight line with another stationary spot overlapping. The location
of the stationary spot at distance d/sG is taken for three angles f with the lateral plane. Top: No correction for anisotropy is applied. Bottom: Correction
for point-spread function influence.
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Application to 3D Confocal Image Sequences

Fluorescent bead. A series of linear motion paths is
constructed from the series of bead images (Fig. 10), with
velocities unnu [ @5,25# in the lateral plane. Figure 11 shows
the resulting motion estimation bias along with the reli-
ability measure R. The reliability measure R is never lower
than 95%.

Living cell. The second sequence contains a living cell
nucleus labeled with fluorescein-dUTP (Fig. 12). Spots
formed from labeled DNA move through the nucleus. In
the sequence, we observe that the cell shows a global
motion containing translational and rotational compo-
nents. Superimposed on this global motion, spots show a
relative motion. Because we are only interested in the
relative motion of the single spots, we corrected for nu-
clear movement.

Figure 13 (top right panel) shows five time steps of the
sequence. The time steps are color coded. Each time step
is obtained from the sequence by taking a threshold on
the maximum intensity projection along the z-axis. This
figure gives an impression of the motion paths. The mo-
tion paths of spots A and B show an approximately linear
path for time steps 2, 3, and 4, whereas the motion path
of spot C shows a meandering curve.

The velocity of the spots is estimated using kernel sizes
ss55 and sw55 for the spatial scale and st52/3 for the

temporal scale. To represent the estimated velocities, the
three spots A, B, and C in Figure 13 are shown in Figure
14. For each spot, two optical sections are presented: one
optical section at a specific z position (x-y plane, left
image) and one optical section at a specific x position (z-y
plane, right image). In the optical sections, two time steps
are shown as two colors. The first time step is colored red
and the second time step is colored green. To give an idea
of the estimated velocities, a smooth contour at a constant
intensity (isophote) is plotted. The plotted velocity vec-
tors for spots A and B start from the first contour and end
near the second contour. The vectors show the direction
and the length of the displacement of the spots. The
velocity vectors are a projection of the 3D velocity vec-
tors.

Spots A and B (Fig. 14, top and middle panels) show a
good velocity estimation and spot C (Fig. 14, bottom
panels) shows an inferior velocity estimation. Both direc-
tion and length of the velocity vectors of spot C do not
correspond with the displacement of the spot due to the
meandering of spot C. The values for the reliability mea-
sure for the three spots are measured. Spots A and B have
a reliability of 99.6% and 94.0%, respectively. The reliabil-
ity measure for spot C is 90.4%.

DISCUSSION
We demonstrated the usefulness of derivative-based ve-

locity estimation in 3D confocal image sequences. Within
the optical flow framework, we investigated the determi-
nants for accuracy in velocity of spots in living cells. The
characteristics of the motion patterns were of major im-
portance for the correctness of the velocity estimation.
We have extensively investigated the influence of the
motion patterns on the bias of the velocity estimation
method in a number of simulations.

The simulations confirm the theoretically derived unbi-
asness of the velocity estimation for constant linear mo-
tion. Therefore, constant linear motion is a good starting
point for the analysis of other more complex motion
patterns. Accelerated motion of spots introduces a bias in
the estimated velocities, which increases with increasing
acceleration and temporal support. Acceleration in the

FIG. 10. The intensity profile along a line in the xy plane through the
center of the recorded bead.

FIG. 9. Robustness for shape: the velocity errors εv and εu and the reliability measure R are given for three different shapes, with radius Rs: an object with
a Gaussian intensity profile, an object with a parabolic intensity profile, and an object with a rectangular intensity profile.
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direction of motion introduces a bias due to the shape of
the temporal intensity profile. The temporal intensity pro-
file of an accelerated Gaussian spot is asymmetric whereas
the temporal derivatives are symmetric functions. This
asymmetry of the temporal intensity profile causes a bias
in the velocity estimation. For motion with a constant
tangential acceleration, the motion pattern describes a
curve with a specific radius. A curved motion path also
deviates from a linear motion path, introducing a bias on
the velocity estimation. For small values of the radius of
the curve and a large width of the temporal support, the
bias increases significantly compared with linear motion.

The velocity estimation method assumes a constant
shape of a single spot within the temporal kernel support.
When the intensity profile of the spot is severely disturbed
by a neighboring spot, large bias occurs in the velocity
estimation. Consequently, situations should be avoided
where spot intensity profiles change rapidly compared
with the temporal sampling rate.

Apart from the motion pattern of spots, the point-
spread function introduces a position and orientation de-
pendency of the velocity estimation. For two overlapping
spots, the influence of the point-spread function was com-
pensated for by introducing anisotrope derivative kernels.
In this way, the effective spot profiles become isotrope.
By compensation, the spots assume a larger diameter,
resulting in a larger bias. However, the resulting bias is
predictable because the bias is independent of the relative
position of two spots. Specifically combined with a pos-
sible correction method for the bias, this bias becomes
independent of the relative orientation.

To investigate the dependency of the velocity estima-
tion method on the shape of the intensity profile, we
applied a rectangular, a parabolic, and a Gaussian intensity
profile. Even in these cases, the bias for constant linear
spot motion is negligible. Therefore, we conclude that the
velocity estimation is not significantly dependent on the
shape of the intensity profile of the spots as long as the
shape is constant in time.

On a real image sequence, the motion estimation shows
good velocity estimation for spots with a linear motion
path as can be expected from theory and simulations. The
experiment shows a close correspondence with simula-
tions on linear motion. The bias observed for the fluores-
cent bead can be attributed to positional and intensity
noise. For example, spots A and B in the image sequence
(Fig. 13) of the living cell show an almost linear motion
path within the kernel support of the temporal derivative,
whereas spot C shows a meandering motion path. Conse-
quently, the velocity estimation for spot C shows large
errors compared with the velocity estimations for spots A
and B. The motion of spot C is highly curved compared
with the size of spot C. The order of magnitude in the bias

FIG. 11. Motion estimation on a single moving fluorescent bead. A bead with radius Rb of approximately 25 [voxel] is artificially moved with a constant
velocity |v|/Rb along a linear trajectory. The velocity estimation errors εv and εu and the reliability measure R are given as function of the bead velocity
|v|/Rb.

FIG. 12. A single frame from the live cell sequence. At the top left, top
right, and bottom left, maximum intensity projections are shown of the
recorded volume. The top left image is the xy plane, with the projection
along the z-axis. The top right image shows the maximum intensity
projection along the x axis. The bottom left image shows the projection
along the y axis. The bottom right image shows a 3D impression by means
of a simulated fluorescence process (SFP; 20).
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in both direction and length of the estimated velocity
vectors is similar to the bias as found in the simulations
(compare Figs. 5 and 14, bottom panels). The poor veloc-
ity estimation is also reflected in the value of R. In the
application, R is low for spot C compared with the values
of R for spots A and B.

The combination of the temporal kernel size and the
temporal sampling is crucial for velocity estimation. For
example, the combination in the application is clearly
insufficient for spot C, whereas the combination is suffi-
cient for spots A and B. Theoretically, for nonlinear mo-
tion such as for spot C, a small temporal kernel is favor-

able because the influence of changes in the velocity is
small for a smaller temporal kernel size. However, a prac-
tical lower limit of the temporal kernel size exists due to
the discrete nature of time sampling. This limit can be
reduced by taking a high as possible temporal sampling
rate. The change in velocity is then small for successive
frames, resulting in a more linear motion path compared
with the temporal kernel size.

With the velocity estimation method, a tool for estimat-
ing 3D velocity fields is presented which is successfully
applied to a living cell spot sequence. With the estimated
velocity fields, motion patterns can be observed.

FIG. 13. Left: Two time steps coded red and green, respectively, in a 3D representation of the living cell. Red, first time step; green, second time step.
Right: A maximum intensity projection of the 3D region. The projection shows a region of the cell at five time steps. Each time step is obtained as a
maximum intensity image along the z axis. From this region, the velocity vectors are estimated. Bottom: A 3D representation of a part of the estimated
velocity field around spots A, B, and C.
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The bias is dependent on the size of the used kernels. In
the simulations of nonlinear motion, the bias increases with
increasing temporal kernel size. An extension of the work
presented could be modeling the existing relation between
temporal kernel size and bias for several types of motion

(18,19). Whereas the bias in the work of Deriche and Girau-
don (18) and Streekstra et al. (19) is on the position of
corners and line structures, the modeling of the bias is
analogous in the temporal direction. Modeling the bias as a
function of the temporal kernel size enables one to correct

FIG. 14. Spots A, B, and C at two time steps from top to bottom, respectively. Estimated velocity vectors for the spots are projected in the x-y and z-y
planes. Left: Images show an x-y optical section through the spot with the horizontal axis the x axis and the vertical axis the y axis. Right: Images show
a z-y optical section through the spot with the horizontal axis the z axis and the vertical axis the y axis. The two time steps are color coded. The first time
step is colored red and the second time step is colored green. For guidance, smooth isophote contours are plotted. The velocity vectors originating from
isophotes are projected on the optical sections.
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for the bias, because the amount of bias that is introduced by
the temporal kernel size used can be estimated.

The dependency of the bias on the kernel size is dis-
turbed when spots overlap because the bias also becomes
direction dependent. Correcting for this anisotropy elim-
inates the direction dependency. This gives the possibility
for correcting for the bias, without the influence of the
direction of two overlapping spots.

The motion patterns in the velocity field are a starting
point for analysis of living cell dynamics during cell divi-
sion. From the velocity field, motion of the total nucleus is
apparent. This nucleus motion is caused by cell migration
during image acquisition. Furthermore, if several spots
form a group with a common motion pattern, this is seen
in the velocity field. The relative motion of a single spot
compared with surrounding spots is also clear from the
velocity field. Guided by the estimated velocity field, spots
can be followed in time, creating spot trajectories in a 3D
volume. These spot motion patterns and spot trajectories
can play a role in the analysis of living cell dynamics
(Manders et al., unpublished data).
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