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Abstract— This correspondence deals with the segmentation of a video
clip into independently moving visual objects. This is an important step in
structuring video data for storage in digital libraries. The method follows
a bottom-up approach. The major contribution is a new well founded mea-
sure for motion similarity leading to a robust method for merging regions.
The improvements with respect to existing methods have been confirmed
by experimental results.
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I. INTRODUCTION

Video is becoming an important datatype in digital libraries.
Besides the traditional verbal user queries, the library should
support queries based on object shape and motion. Objects and
their characteristics therefore form basic units for content-based
retrieval and presentation of video. They are further useful for
video compression and the creation of hypervideo documents.

Our correspondence deals with motion segmentation, i.e. the
decomposition of a video scene into independently moving vi-
sual objects. Starting from an oversegmentation of the scene, it
merges regions based on motion similarity.

The paper is structured as follows. In Section Il we formu-
late the problem and provide a short review of existing litera-
ture. Our new region merging method is described in Section
I1l. Section IV shows the results of applying the method on
some standard test image sequences.

I1. PROBLEM FORMULATION

Suppose there are K moving rigid objects in the scene, we
want to recover their regions of projection C1, ..., Ck on the
image plane. When a surface of a rigid moving object is planar
or distant enough from the camera, its optic flow at position x =
(z,y) is well modeled by the quadratic transformation [1]:

Ve = a1+ ax+asy+arxy+ a8x2

vy = as+asz+agy+ary’ +aswy @
where 9 = (a1, ..., as) are the motion parameters of the mov-
ing surface. In existing literature the modelling of the optic flow
of a region by a parametric model is used either in the direct
form (1) or in combination with the intensity matching equa-
tion. In both cases we can consider it in the generalized form:

y(x) =f(x; %) +ex WXeCy k=1,.,.K (2)
where y(x) is the measurement at pixel x. In (1) y would cor-
respond to the vector (v,, v, ). f isa known function. 9y is the

vector of motion parameters of region C which is unknown a
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priori and is to be estimated together with C.. The term ex rep-
resents the measurement error. The problem can then be viewed
as segmenting the data, which are described by multiple regres-
sion models, into groups so that data in each group is described
by a common model. The challenge is that both C}, and 9, are
not known a priori.

First, a granularity level for regions has to be selected. Pixel-
wise classification is inherently not reliable due to the aperture
problem as pixels in homogeneous regions can be assigned to
any model. Trying to overcome this problem recent methods
start from homogeneous regions, usually obtained through in-
tensity or color segmentation. Then regions are merged accord-
ing to motion based criteria. Several criteria have been proposed
[1], [8], [5], [2]. The earliest method [8] used a scaled Euclidean
distance. This measure has been criticized to be sensitive to in-
accuracy in parameter estimation as well as the choice of the
scaling matrix [5], [2]. Furthermore, we have shown that the
merging results depend on the choice of the origin of the co-
ordinate system [6]. In [9] the merging decision is based on
whether residuals in two regions can be expressed by one Gaus-
sian distribution. We found that the measure tests for the differ-
ence in motion parameters of the regions as well as difference in
noise variance. The latter test is, in fact, not needed. Altunbasak
et al [2] proposed a merging procedure minimizing the resid-
ual over all regions. The global minimum corresponds to the
maximum likelihood solution for both region labels and motion
parameters. The problem is that the objective function usually
has very many minima and the proposed technique finds a local
minimum only. A good starting point is therefore required. An
elaborate method was developed by Moscheni et al [5]. How-
ever, an asymmetric similarity measure is used. Moreover, the
method depends on a large number of parameters that need to
be set.

In conclusion, existing merging criteria are still ad-hoc. To
this end, we propose a new rigorous approach for definition of
motion similarity and develop a new merging method utilizing
the strengths of the methods of [9] and [2] and at the same time
overcoming their shortcomings.

I1l. NEW ROBUST METHOD FOR REGION MERGING.
A. Motion statistics based region similarity

Let Ry, ..., Rz be the regions obtained from the initial over-
segmentation. We assume that the initial segmentation is such
that there are no regions occluding the object boundaries, hence,
each R; isasubregion of one C}. Let 0, be the vector of motion
parameters of R;, then 8; € {9, ..., 9k }. Obviously, two re-
gions undergo a common motion and therefore are supposed to
be merged if and only if 8; = 6;. In practice, however, we have

to base our decision on an estimate 6; of 8, which is commonly



obtained via least squares minimization:

0; :argnbinSi(G) where S, (0

=) Iy(x

XeR;

) —f(x; 0)?
3)

In the presented method we first apply the robust estimation
technique given in [4] to detect outliers defined as pixels whose
measurement is not described by the same model as the majority
of pixels in the region. Then the parameters are reestimated for
the clean data using least-square. Although the influence of the
outliers is reduced, @ may be different from the true 6 due to
noise. As a consequence, two regions of the same object may
turn out to have different estimated motion parameters. There-
fore, inference about the equality of 8, and @, should be made
by means of a statistical test.
We need to test the hypothesis :

Hy:0;=0; versus H;:0;#6; 4)

The problem is much like testing whether two sets of data
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Fig. 1. Test if two sets of data points represent the same model.

points represent the same line ( see Figure 1). Let L be the
likelihood function of the measurements in R; and R;, given 6;
and 6;:

L(y(X),x € Ri UR;|6;,0;) = (2m07)"/?(2m07) "1/ x
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eXp{—[ﬁSi(G’i) + T‘?Sj(ag‘)]}

(%)
where o; and n; are the variance of the measurement errors and
the number of pixels in R; respectively. We construct the log-
likelihood ratio statistic:

A(i,j) = —2log( sup L/ sup L) (6)
6.,=0;, 0.0,

If A exceeds a given threshold T', Hy is rejected in favor of H;.
It is easy to show that:
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Although in practice noise variance may show minor variation

over the image, it is advantageous to assume it is constant over

the whole image. That means ¢; = o; = o. Then

A=L18;-8-5) ®)
0'

where

S; = Hbin Si(6) and S;; = main[S,-(a) +.5;(0)]
Hence, A is proportional to the increase in the residual sum of
squares when a common model is chosen for the two regions
instead of the optimal model for each one. This statistic yields
our measure for similarity between motions of two regions R;
and R;.

As an aside if we test the hypothesis: Hy : 8; = 8; AND
o; =0; versus Hp : 0; # 6; OR o, # o, we then get the
statistic used in [9]: A = n;j log(Si;/ni;) — nilog(Si/n;) —
n;jlog(S;/n;). The drawback of A is that it is non-zero even if
the motion parameters estimated in the two regions are equal.

For simplicity we now focus on the case where f is linear with
respect to 6. If not, all results below are applicable if Taylor’s
approximations of f are made. We have shown that [6]:

Air) = 5rp(Bi = 6)THI(H: +Hy) (85 - 6))
= (B0 TIH HH G- 8) @)

where H; is the hessian matrix of S;(@), which is constant if f
is linear. This matrix is a by-product of minimization of S;(8).
It is important to note that 202H; ! is the covariance matrix of
6,. Moreover, when a merging decision is accepted, the optimal
motion parameters and the hessian of the union R; U R; can be
obtained directly from those of R; and R; as follows [6]:
éij = (Hi-i-Hj)_l(Hiéi-i-Hjéj) and Hij :Hi-i-Hj
(10)
We also want to assess how close the motion of R; is to a
hypothesized motion model with parameters 4. In this case ¥ is

deterministic and its covariances are zero, eq. (9) then becomes:

LA T
202 3520 =)

This expression coincides with the Mahalanobis distance be-
tween 6; and the class center 9.

Aq(6;,9) = Hi (8, — 9) (11)

B. Properties of the proposed measure

It is important to note that 5 [(H +H; 1]~ in (9), the

inverse of the covariance matrlx of the vector 0; — éj, is the
optimal scaling matrix. This contrasts the ad-hoc one used in
[8].

The other desirable properties of A are given in the following
theorem, proofs of which can be found in [6]:

Theorem 1: The similarity measure A(i, j) defined in (9) sat-
isfies the following properties:
L A4, 5) > 0; A(i,8) = 0; A4, j) = A(j,4)
2. A has a chi-squared distribution x2()) with degree of free-
dom p equal to the number of the motion parameters, whose
non-centrality parameter is:

1
A= g

3. For the velocity model (1) A is invariant to affine transfor-
mations of the coordinates in the image space.

—0;) "Hi(H; +H;)"'H;(8, — 6;) (12



The second property guarantees that A well discriminates re-
gions undergoing the same motion from those undergoing dif-
ferent motions. In the former case 8; = 6, and, hence, A = 0
and A has a central chi-squared distribution. In the latter case
A > 0, the distribution of A becomes non-central and the mea-
sure tends to be large as the chance it exceeds the threshold 7" is
much higher. The third property guarantees the independence of
the merging result from translation or rotation of the coordinate
system which is not the case for some earlier methods [8].

The proposed measure is not a metric as required by many
standard clustering methods. It satisfies the conditions of posi-
tivity and symmetry as shown above, but not the triangular in-
equality. Thus, A is a good measure when an appropriate merg-
ing method is developed.

C. Merging procedure

Maximum likelihood approach for merging regions requires
minimization of the residual sum of squares over all regions:

M M
S(z,91,...,9K) = Zsiwz» =3 Iy —f(x; 92,

i=1 XER;

(13)
where z = (z1,..,zp) and z; € {1,..., K} is the region label
specifying the index of the global moving surface to which R;
belongs. A similar approach was used in [2].

We now show that the above minimization can be viewed as
a generalized version of standard K-means clustering and the
algorithm used in [2] can be improved to save computations.
Considering f is linear with respect to the motion parameters
and applying Taylor’s theorem, it is easy to show that:

Si(9.,) = Si +

(0; —9.,)TH;(6; —9.)) (14)

N |

Since S; is constant, the minimization of S boils down to mini-
mization of S’ where:

M
1 - N
S(z,91,..,9x) = 52(01-—1927)THL(0L 9.,)
i=1
M
= 0” ) A(6:,9.,) (15)
i=1

This is, in fact, similar to the objective function in the K-means
algorithm except that the Euclidean distance between 6, and
4., is replaced with the Mahalanobis distance (11). Like tra-
ditional K-means, good initial cluster centers are required. The
ad-hoc pixel-based technique used in [2] for deriving the initial
set of global motions is very likely to miss the motion of fore-
ground objects. We propose an algorithm encompassing two
stages where the first one performs hierarchical region merging
and provides a good starting point for the generalized K-means
iterative procedure in the second:

MERGING STAGE 1

1. Specify K, the number of objects. Initialize each cluster with
one region: Cp, = {Rim};m=1,..., M.

2. Merge the two adjacent clusters C; and C;with the smallest
A defined in (9). Repeat until the number of clusters is reduced
to K.

MERGING STAGE 2

1. Assign each 6, to the nearest cluster center 9.,, using the
distance measure A1, defined in (11).

2. Update the cluster centers 1, so that the sum of differences
between the center and the cluster members is minimized. As
we showed in [6] the new 9}, can be found by solving the fol-
lowing system of equations:

(Y H)dk =D Hib;
zi=k zi=k

3. Repeat 1 and 2 until cluster membership is unchanged.
Since the number of objects is specified in the beginning, the
value of variance of noise does not affect the final result and we
do not have to specify o. The convergence in the second stage
is guaranteed as the cost function always decreases. Actually, if
starting from the same initial set of cluster centers, the second
stage gives the same result as the two-step iterative procedure
used in [2] does . However, our algorithm requires much less
computations, considering that 8; and H; are already obtained
from the least-squares minimization of S;. Note also, that the
above algorithm merges non-adjacent regions as well, which is
not the case for some methods [1], [9], [5].

(16)

IV. RESULTS

In Figures 2 and 3 we show the results of applying the pro-
posed merging algorithm on standard test sequences. The initial
segmentation was obtained with the morphological multiscale
technique [7]. The results for Table Tennis and Flower Gar-
den were obtained with optic flow matching. As measurements
y(x) we used the dense optic flow field, computed from two
successive images using the hierarchical method in [3]. For the
Calendar sequence we used the model, which is based on the
linearized intensity matching equation [6].

The improvements due to the use of the new similarity mea-
sure are confirmed by comparison with Figure 2c,d, in which we
show the results of the existing methods in [9] and [2] applied
for the same set of initial regions. More elaborate evaluation can
be found in [6].

V. CONCLUSION

We have proposed a new criterion for similarity of regions
movement in a video scene based on a statistical test for equal-
ity of motion parameters. The uncertainty in parameter esti-
mation is incorporated in an optimal way. Using this measure
we have developed a new merging algorithm consisting of two
stages. The agglomerative merging in the first stage provides a
good starting point for the second stage in which the regions are
merged according to a K-means like algorithm. The improved
performance over existing methods has been demonstrated on
real sequences. As extracted objects and their motion parame-
ters are accurate, they can be used for content-based video re-
trieval in digital libraries.
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