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Abstract. For grey-value images, it is well accepted that the neighbor-
hood rather than the pixel carries the geometrical interpretation. Inter-
estingly the spatial configuration of the neighborhood is the basis for the
perception of humans. Common practise in color image processing, is to
use the color information without considering the spatial structure. We
aim at a physical basis for the local interpretation of color images.

We propose a framework for spatial color measurement, based on the
Gaussian scale-space theory. We consider a Gaussian color model, which
inherently uses the spatial and color information in an integrated model.
The framework is well-founded in physics as well as in measurement sci-
ence. The framework delivers sound and robust spatial color invariant
features. The usefulness of the proposed measurement framework is il-
lustrated by edge detection, where edges are discriminated as shadow,
highlight, or object boundary. Other applications of the framework in-
clude color invariant image retrieval and color constant edge detection.

1 Introduction

There has been a recent revival in the analysis of color in computer vision. This
is mainly due to the common knowledge that more visual information leads to
easier interpretation of the visual scene. A color image is easier to segment than a
grey-valued image since some edges are only visible in the color domain and will
not be detected in the grey-valued image. An area of large interest is searching
for particular objects in images and image-databases, for which color is a feature
with high reach in its data-values and hence high potential for discriminability.
Color can thus be seen as an additional cue in image interpretation. Moreover,
color can be used to extract object reflectance robust for a change in imaging
conditions [4, 6, 17, 18]. Therefore color features are well suited for the description
of an object.
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Colors are only defined in terms of human observation. Modern analysis of
color has started in colorimetry where the spectral content of tri-chromatic stim-
uli are matched by a human, resulting in the well-known XYZ color matching
functions [20]. However, from the pioneering work of Land [16] we know that
a perceived color does not directly correspond to the spectral content of the
stimulus; there is no one-to-one mapping of spectral content to perceived color.
For example, a colorimetry purist will not consider brown to be a color, but as
computer vision practisers would like to be able to define brown in an image
when searching on colors. Hence, it is not only the spectral energy distribution
coding color information, but also the spatial configuration of colors. We aim at
a physical basis for the local interpretation of color images.

Common image processing sense tells us that the grey-value of a particular
pixel is not a meaningful entity. The value 42 by itself tells us little about the
meaning of the pixel in its environment. It is the local spatial structure of an im-
age that has a close geometrical interpretation [13]. Yet representing the spatial
structure of a color image is an unsolved problem.

The theory of scale-space [13, 19] adheres to the fact that observation and
scale are intervened; a measurement is performed at a certain resolution. Dif-
ferentiation is one of the fundamental operations in image processing, and one
which is nicely defined [3] in the context of scale-space. In this paper we discuss
how to represent color as a scalar field embedded in a scale-space paradigm. As
a consequence, the differential geometry framework is extended to the domain
of color images. We demonstrate color invariant edge detectors which are robust
to shadow and highlight boundaries.

The paper is organized as follows. Section 2 considers the embedding of color
in the scale-space paradigm. In Sect. 3 we derive estimators for the parameters
in the scale-space model, and give optimal values for these parameters. The
resulting sensitivity curves are colorimetrical compared with human color vision.
Section 4 demonstrates the usefulness of the presented framework in physics
based vision.

2 Color and Observation Scale

A spatio-spectral energy distribution is only measurable at a certain spatial
resolution and a certain spectral bandwidth. Hence, physical realizable measure-
ments inherently imply integration over spectral and spatial dimensions. The
integration reduces the infinitely dimensional Hilbert space of spectra at in-
finitesimally small spatial neighborhood to a limited amount of measurements.
As suggested by Koenderink [14], general aperture functions, or Gaussians and
its derivatives, may be used to probe the spatio-spectral energy distribution. We
emphasize that no essentially new color model is proposed here, but rather a
theory of color measurement. The specific choice of color representation is ir-
relevant for our purpose. For convenience we first concentrate on the spectral
dimension, later on we show the extension to the spatial domain.



2.1 The Spectral Structure of Color

From scale space theory we know how to probe a function at a certain scale; the
probe should have a Gaussian shape in order to prevent the creation of extra
details into the function when observed at a higher scale (lower resolution) [13].
As suggested by Koenderink [14], we can probe the spectrum with a Gaussian.
In this section, we consider the Gaussian as a general probe for the measurement
of spatio-spectral differential quotients.
Formally, let E(λ) be the energy distribution of the incident light, where

λ denotes wavelength, and let G(λ0;σλ) be the Gaussian at spectral scale σλ
positioned at λ0. The spectral energy distribution may be approximated by a
Taylor expansion at λ0,

E(λ) = Eλ0 + λEλ0
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Measurement of the spectral energy distribution with a Gaussian aperture yields
a weighted integration over the spectrum. The observed energy in the Gaussian
color model, at infinitely small spatial resolution, approaches in second order to

Êσλ(λ) = Êλ0,σλ + λÊ
λ0,σλ
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where

Êλ0,σλ =

∫

E(λ)G(λ;λ0, σλ)dλ (3)

measures the spectral intensity,

Ê
λ0,σλ
λ =

∫

E(λ)Gλ(λ;λ0, σλ)dλ (4)

measures the first order spectral derivative, and

Ê
λ0,σλ
λλ =

∫

E(λ)Gλλ(λ;λ0, σλ)dλ (5)

measures the second order spectral derivative. Further, Gλ and Gλλ denote
derivatives of the Gaussian with respect to λ. Note that, throughout the paper,
we assume scale normalized Gaussian derivatives to probe the spectral energy
distribution.

Definition 1 (Gaussian Color Model). The Gaussian color model measures

the coefficients Êλ0,σλ , Êλ0,σλ
λ , Êλ0,σλ

λλ , . . . of the Taylor expansion of the Gaus-
sian weighted spectral energy distribution at λ0 and scale σλ.

One might be tempted to consider a higher, larger than two, order structure
of the smoothed spectrum. However, the subspace spanned by the human visual
system is of dimension 3, and hence higher order spectral structure cannot be
observed by the human visual system.



2.2 The Spatial Structure of Color

Introduction of spatial extent in the Gaussian color model yields a local Taylor
expansion at wavelength λ0 and position x0. Each measurement of a spatio-
spectral energy distribution has a spatial as well as spectral resolution. The mea-
surement is obtained by probing an energy density volume in a three-dimensional
spatio-spectral space, where the size of the probe is determined by the obser-
vation scale σλ and σx, see Fig. 1. It is directly clear that we do not separately
consider spatial scale and spectral scale, but actually probe an energy density
volume in the 3d spectral-spatial space where the “size” of the volume is specified
by the observation scales.

Fig. 1. The probes for spatial color consists of probing the product of the spatial and
the spectral space with a Gaussian aperture.

We can describe the observed spatial-spectral energy density Ê(λ,x) of light
as a Taylor series for which the coefficients are given by the energy convolved
with Gaussian derivatives:
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Êλx Êλλ

](

x

λ

)

+ . . . (6)

where

Êxiλj (λ,x) = E(λ,x) ∗Gxiλj (λ,x;σλ, σx) . (7)

Here, Gxiλj (λ,x;σλ, σx) are the spatio-spectral probes, or color receptive fields.
The coefficients of the Taylor expansion of Ê(λ,x) represent the local image
structure completely. Truncation of the Taylor expansion results in an approxi-
mate representation, optimal in least squares sense.
For human vision, it is known that the Taylor expansion is spectrally trun-

cated at second order [10]. Hence, higher order derivatives do not affect color as



observed by the human visual system. Therefore, three receptive field families
should be considered; the luminance receptive fields as known from luminance
scale-space [15] extended with a yellow-blue receptive field family measuring the
first order spectral derivative, and a red-green receptive field family probing the
second order spectral derivative. These receptive field families are illustrated in
Fig. 2. For human vision, the Taylor expansion for luminance is spatially trun-
cated at fourth order [21].

Fig. 2. A diagrammatic representation of the various color receptive fields, here trun-
cated at second order. The spatial luminance only yields the well-known [15] receptive
fields from grey-value scale-space theory (column denoted by 0). For color vision, the
luminance family is extended by a yellow-blue family (column 1) measuring the first-
order spectral derivatives, and a red-green family (column 2) measuring the second-
order spectral derivatives.

3 Colorimetric Analysis of the Gaussian Color Model

The eye projects the infinitely dimensional spectral density function onto a 3d
‘color’ space. Not any 3d subspace of the Hilbert space of spectra equals the
subspace that nature has chosen. Any subspace we create with an artificial color
model should be reasonably close in some metrical sense to the spectral subspace
spanned by the human visual system.
Formally, the infinitely dimensional spectrum e is projected onto a 3d space

c by c = AT e, where AT = (XY Z) represents the color matching matrix. The
subspace in which c resides, is defined by the color matching functions AT . The
range <

(

AT
)

defines what spectral distributions e can be reached from c, and

the nullspace ℵ
(

AT
)

defines which spectra e cannot be observed in c. Since any

spectrum e = e<+ eℵ decomposed into a part that resides in <
(

AT
)

and a part

that resides in ℵ
(

AT
)

, we define

Definition 2. The observable part of the spectrum equals e< = Π< e where Π<
is the projection onto the range of the human color matching functions AT .



Definition 3. The non-observable (or metameric black) part of the spectrum
equals eℵ = Πℵ e where Πℵ is the projection onto the nullspace of the human
color matching functions AT .

The projection on the range <
(

AT
)

is given by [1]

Π< : A
T 7→ <

(

AT
)

= A
(

ATA
)−1

AT (8)

and the projection on the nullspace

Πℵ : A
T 7→ ℵ

(

AT
)

= I −A
(

ATA
)−1

AT = Π⊥< . (9)

Any spectral probe BT that has the same range as AT is said to be colorimetric
with AT and hence differs only in an affine transformation. An important prop-
erty of the range projector Π< is that it uniquely specifies the subspace. Thus,
we can rephrase the previous statement into:

Proposition 4. The human color space is uniquely defined by <
(

AT
)

. Any

color model BT is colorimetric with AT if and only if <
(

AT
)

= <
(

BT
)

.

In this way we can tell if a certain color model is colorimetric with the
human visual system. Naturally this is a formal definition. It is not well suited
for a measurement approach where the color subspaces are measured with a
given precision. A definition of the difference between subspaces is given by [9,
Section 2.6.3],

Proposition 5. The largest principle angle θ between color subspaces given by
their color matching functions AT and BT equals

θ(AT , BT ) = arcsin
(∥

∥<
(

AT
)

−<
(

BT
)∥

∥

2

)

.

Up to this point we did establish expressions describing similarity between
different subspaces. We are now in a position to compare the subspace of the
Gaussian color model with the human visual system by using the XYZ color
matching functions. Hence, parameters for the Gaussian color model may be
optimized to capture a similar spectral subspace as spanned by human vision,
see Fig. 3. Let the Gaussian color matching functions be given by G(λ0, σλ).
We have 2 degrees of freedom in positioning the subspace of the Gaussian color
model; the mean λ0 and scale σλ of the Gaussian. We wish to find the optimal
subspace that minimizes the largest principle angle between the subspaces, i.e.:

B(λ0, σλ) = (G(λ;λ0, σλ)Gλ(λ;λ0, σλ)Gλλ(λ;λ0, σλ))

sin θ = argmin
λ0,σλ

(∥

∥

∥
<
(

AT
)

−< (B(λ0, σλ)
T
)
∥

∥

∥

2

)

An approximate solution is obtained for λ0 = 520 nm and σλ = 55nm. The
corresponding angles between the principal axes of the Gaussian sensitivities and



the 1931 and 1964 CIE standard observers are given in Tab. 1. Figure 4 shows the
different sensitivities, together with the optimal (least square) transform from
the XYZ sensitivities to the Gaussian basis, given by
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Since the transformed sensitivities are a linear (affine) transformation of the
original XYZ sensitivities, the transformation is colorimetric with human vision.
The transform is close to the Hering basis for color vision [10], for which the
yellow-blue pathway indeed is found in the visual system of primates [2].

Fig. 3. Cohen’s fundamental matrix < for the CIE 1964 standard observer, and for the
Gaussian color model (λ0 = 520 nm, σλ = 55nm), respectively.

Gauss – XYZ 1931 Gauss – XYZ 1964 XYZ 1931 – 1964

θ1 26◦ 23.5◦ 9.8◦

θ2 21.5◦ 17.5◦ 3.9◦

θ3 3◦ 3◦ 1◦

Table 1. Angles between the principal axes for various color systems. For determining
the optimal values λ0, σλ, the largest angle θ1 is minimized. The distance between the
Gaussian sensitivities for the optimal values λ0 = 520 nm, σλ = 55nm and the different
CIE colorimetric systems is comparable. Note the difference between the CIE systems
is 9.8◦.
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Fig. 4. The Gaussian sensitivities at λ0 = 520 nm and σλ = 55nm (left). The The best
linear transformation from the CIE 1964 XYZ sensitivities (middle) to the Gaussian
bases is shown right. Note the correspondence between the transformed sensitivities
and the Gaussian color model.

4 Results

4.1 The Gaussian Color Model by a RGB-Camera

A RGB-camera approximates the CIE 1931 XYZ basis for colorimetry by the
linear transform [11]
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The best linear transform from XYZ values to the Gaussian color model is
given by (Eq. 10). A better approximation to the Gaussian color model may be
obtained for known camera sensitivities. Figure 5 shows an example image and
its Gaussian color model components.

Fig. 5. The example image (left) and its color components Ê, Êλ, and Êλλ, respectively.
Note that for the color component Êλ achromaticity is shown in grey, negative bluish
values are shown in dark, and positive yellowish in light. Further, for Êλλ achromaticity
is shown in grey, negative greenish in dark, and positive reddish in light.



4.2 Color Invariant Edge Detection

An interesting problem in the segmentation of man made objects is the seg-
mentation of edges into the “real” object edges, or “artificial” edges caused by
shadow boundaries or highlights [8]. Consider an image captured under white
illumination. A common model for the reflection of light by an object to the
camera is given by the Kubelka-Munk theory [12, 18, 20]

E(λ,x) = i(x)
{

ρf(x) + (1− ρf(x))
2
R∞(λ,x)

}

(12)

where i denotes the intensity distribution, ρf the Fresnel reflectance at the object
surface, and R∞ the object spectral reflectance function. The reflected spectral
energy distribution in the camera direction is denoted by E. The quantities i and
ρf depend on both scene geometry and object properties, where R∞ depends on
object properties only. Edges may occur under three circumstances:

– shadow boundaries due to edges in i(x)
– highlight boundaries due to edges in ρf(x)
– material boundaries due to edges in R∞(λ,x).

For the model given by (Eq. 12), material edges are detected by considering the
ratio between the first and second order derivative with respect to λ, or

∂

∂x

{

Eλ

Eλλ

}

where E represents E(λ,x) and indices denote differentiation. Further, the ra-
tio between E(λ,x) and its spectral derivative are independent of the spatial
intensity distribution. Hence, the spatial derivative

∂

∂x

{

Eλ

E

}

and

∂

∂x

{

Eλλ

E

}

depend on Fresnel and material edges. Finally, the spatial derivatives of E, Eλ,
and Eλλ depend on intensity, Fresnel, and material edges. Measurement of these
expressions is obtained by substitution of E, Eλ, and Eλλ for the measured
values Ê, Êλ, and Êλλ (Eq. 10) at scale σx, together with their spatial derivatives.
Combining these expressions in gradient magnitudes yields Fig. 6.

5 Conclusion

In this paper, we have established the measurement of spatial color information
from RGB-images, based on the Gaussian scale-space paradigm. We have shown



Fig. 6. Edge detection in a color image. The left figure shows edges due to object
reflectance; the second figure includes highlight boundaries, whereas the figure on the
right also exhibits shadow boundaries. Spatial scale σx = 1 pixel. The image is captured
by a Sony XC-003P camera, white balanced under office lightning, gamma turned off.

that the formation of color images yield a spatio-spectral integration process at
a certain spatial and spectral resolution. Hence, measurement of color images
implies probing a three-dimensional energy density at a spatial scale σx and
spectral scale σλ. The Gaussian aperture may be used to probe the spatio-
spectral energy distribution.
We have achieved a spatial color model, well founded in physics as well as

in measurement science. The parameters of the Gaussian color model have been
estimated such that a similar spectral subspace as human vision is captured.
The Gaussian color model solves a fundamental problem of color and scale by
integrating the spatial and color information. The model measures the coeffi-
cients of the Taylor expansion of the spatio-spectral energy distribution. Hence,
the Gaussian color model describes the local structure of color images. As a
consequence, the differential geometry framework is extended to the domain of
color images.
Spatial differentiation of expressions derived from the Gaussian color model is

inherently well-posed, in contrast with often ad-hoc methods for detection of hue
edges and other color edge detectors. The framework is successfully applied to
color edge classification, labeling edges as material, shadow, or highlight bound-
aries. Other application areas include physics-based vision [6], image database
searches [7], color constant edge detection [5], and object tracking.
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