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Background: Characterization of tissues can be based on
the topographical relationship between the cells. Such
characterization should be insensitive to distortions intrin-
sic to the acquisition of biological preparation. In this
paper, a method for the robust segmentation of tissues
based on the spatial distribution of cells is proposed.
Materials and Methods: The neighborhood of each cell
in the tissue is modeled by the distances to the surround-
ing cells. Comparison with an example or prototype neighbor-
hood reveals topographical similarity between tissue and
prototype. Processing of all cells in the tissue extracts the
regions with tissue architecture similar to the given example.
Results: Comparison with other topographical-segmenta-
tion methods shows that the proposed method is better

suited for partitioning tissue architecture. As an example,
the quantification of the structural integrity in rat hippocampi
after ischemia is demonstrated. In contrast to other methods,
the algorithm correlates well with expert evaluation.
Conclusions: The present method reduces the nonbiologi-
cal variation in the analysis of tissue sections and thus improves
confidence in the result. The method can be applied to any
field where regular patterns have to be detected, as long as the
directional distribution of neighbors may be neglected. Cy-
tometry 35:11–22, 1999. r 1999 Wiley-Liss, Inc.
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Quantitative morphological analysis of fixed tissue plays
an increasingly important role in the study of biological
and pathological processes. Specific detection issues can
be approached by classical staining methods, enzyme
histochemical analysis, or immunohistochemical pro-
cesses. The tissue can not only be characterized by the
properties of individual cells, such as staining intensity
or expression of specific proteins, but also by the geo-
metrical arrangement of the cells (1–3). Interesting tissue
parameters are derived from the topographical relation-
ship between cells. For instance, topographical analysis
in tumor grading can significantly improve routine diagno-
sis (4–6). Studies of growing cancer cell lines have
revealed a non-random distribution of cells (7,8). Partition-
ing of epithelial tissue by cell topography is used for
quantitative evaluations (9). We propose a new method
for the partitioning of tissues. As an example, structural
integrity of hippocampal tissue after ischemia will be
examined.

As a first step, tissue parts of interest have to be
segmented into cell clusters. Segmentation of cell clusters
can be based on distances between the center of gravity of
the cells. The recognition of tissue architecture is then
reduced to determining borders of point patterns. The
problem traced as such can be solved by the application of
neighbor graphs, and partitioning them.

The Voronoı̈ graph is often applied as a modeling tool
for point patterns (4,6,7,10). The definition of the Voronoı̈
graph is given by polygons Z(p), where each polygon
defines the area for which all points are closer to marker p
than to any other marker (11). A polygon Z(p) is called the
zone of (geometrical) influence of p. Neighboring markers
to p are defined by the set of all markers for which the
zone of influence touches that of p. Such a tesselation of
the plane depends on the spatial distribution of the cell
markers. Cluster membership is determined by evaluation
of geometrical feature measurements on the zones of
influence (12).

Rodenacker et al. (9) used the Voronoı̈ graph for
partitioning epithelial tissue. Segmentation was obtained
by propagating the neighbors from the basal layer of the
epithelial tissue to the surface. Borders between basal,
intermediate, and superficial areas were determined by
examining the occupied surface of propagation. In this
way, every third of the total area of the Voronoı̈ graph was
assigned to one of the regions, yielding three regions with
approximately similar areas in terms of zones of influence.
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As discussed elsewhere (7,13), the Voronoı̈ graph is
sensitive to detection errors. Removal or insertion of one
object will change the characteristics of the Voronoı̈
graph. A second drawback is that Voronoı̈’s graph is
ill-defined at cluster borders. This makes the Voronoı̈
graph unsuited for robust segmentation of tissue architec-
ture.

Another option for the recognition of point patterns is a
modification of the Voronoı̈ graph: the k-nearest neighbor
graph (14–16). The neighbors of a point p are ordered as
the nearest, second-nearest, and up to kth-nearest neighbor
of p. The k-nearest neighbor graph is defined by connect-
ing each point to its k-nearest neighboring points (11). The
strength of each connection is weighted by the distance
between points. Similarity between k-nearest neighbor
graphs is determined by comparing the graphs extracted
from detected point patterns with prototype k-nearest
neighbor graphs.

In Schwarz and Exner (16), the distance distribution to
one of the nearest neighbors was used for the separation of
clusters from a background of randomly disposed points.
The main drawback is that not all patterns can be
discriminated by considering only one specific k-nearest
neighbor distance.

Lavine et al. (14) used sequences of sorted interpoint
distances extracted from noisy point images to match the
image with one of a set of prototype patterns. Similarity
between prototype and point set is based on a rankwise
comparison. From the two sorted interpoint distance
vectors, the corresponding (relative-) difference vector is
calculated. The number of components which exceeds a
given threshold is used for discrimination between pat-
terns. A major disadvantage of the rankwise comparison is
that all components have to be detected. When the nearest
neighbor is missed in the detection, the first one in rank is
compared with the second one. Thus, failure to detect one
cell results in poor similarity.

Automatic segmentation of tissue architecture is difficult
because biological variability and tissue preparation have a
major influence on the tissue at hand. The detection and
classification of individual cells in the tissue is prone to
error. Although most authors (4,7,13) were aware of the
lack of robustness in the quantification of tissue architec-
ture, little effort was made to incorporate uncertainty of
cell detection in tissue architecture quantification meth-
ods. Lavine et al. (14) showed that the k-nearest neighbor
graph is well-suited for point pattern recognition under
spatial distortions, but the method used is not able to
anticipate cell detection errors.

In this paper we present a robust method for tissue
architecture segmentation, based on the k-nearest neigh-
bor graph. A sequence comparison algorithm is used to
allow missing or extra detected cells in the detected point
set. Uncertainty in cell classification is incorporated into
the matching process. Experiments show that the robust-
ness of the method presented is superior to that of existing
methods.

The method is demonstrated by segmentation of the CA
region in rat hippocampi, where structural integrity of the

CA1 cell layer is affected by ischemia. The correlation
between manual scoring and automatic analysis of CA1
preservation is shown to be excellent.

MATERIALS AND METHODS
Hippocampal Tissue Preparation

Rat brains were fixed by intracardiac perfusion with
diluted Karnovsky’s fixative (2% formaldehyde, 2.5% glutar-
aldehyde in Sörensen’s phosphate buffer; pH 7.4). They
were immersed overnight in the same fixative. Coronal
vibratome sections of the dorsal hippocampus were pre-
pared stereotaxically 3.6 mm caudally to the bregma
(Vibratome 1000, TPI, St. Louis, MO). Slices (200 µm) were
postfixed with 2% osmium-tetroxide, dehydrated in a
graded ethanol series, and routinely embedded in Epon.
Epon sections were cut at 2 µm and stained with toluidine
blue.

Image Acquisition and Software

Images were captured by a CCD camera (MX5, Adimec,
Eindhoven, The Netherlands), which is a 780 3 576 video
frame transfer CCD with pixel size 8.2 3 16.07 µm2,
operating at room temperature with auto gain turned off.
The camera was mounted on top of an Axioskop in
bright-field illumination mode (Carl Zeiss, Oberkochen,
Germany). The microscope was equipped with a scanning
stage for automatic position control (stage and MC2000
controller, Märzhäuser, Wetzlar, Germany). The scanning
stage was calibrated for a 103 magnification, and adjacent
512 3 512 images were captured to ensure that complete
hippocampi were scanned. Typical composite image sizes
were 6,144 3 4,096 pixels, or 4.94 3 3.30 mm2. For image
processing, the software package SCIL-Image version 1.4
(TNO-TPD, Delft, The Netherlands) was used on an O2
workstation (SGI, Mountain View, CA). The package was
extended with the distance graph matching algorithm.

K-Nearest Neighbor Graph

Consider an image of a tissue containing cells. Detection
of cells in the image will result in m markers at possible
cell locations. Let V be the set of m detected cell markers,
V 5 5v1, v2, . . . vm6. The elements in V are called vertices or
nodes. A graph G(V, E) (Fig. 1) defines how elements of V
are related to one another. The relation between the
vertices is defined by the set of edges E, in which the

FIG. 1. Example of a k-nearest neighbor graph. The nodes represents
cells in tissue, while the edges represent their relation. The relations in
this graph are given by the two nearest neighboring cells, and edges are
weighted by the distance between the cells.
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elements eij connect the vertices vi to vj. A weighted graph
is defined by the graph G(V, E), where a value is assigned
to each edge eij.

The k-nearest neighbor graph of a node v is defined as
the subset of k vertices closest to v. The edges between v
and the neighboring vertices are weighted by the Euclidian
distance, or Nv

k 5 5d1, d2, . . . , dk 0 di 5 dist(v, vi), di , di116.
Taking k 5 1 for all v [ V results in the nearest neighbor
graph, in which each cell is connected to its closest
neighbor.

The average edge length in the k-nearest neighbor graph
gives a measure of scale of the pattern of cells. Division of
all distances di in a k-nearest neighbor graph by the
average of all distances in the graph, d̄, normalizes the
graph for scale, i.e., d̃i 5 di/d̄.

Distance Graph Matching

Point patterns of interest were extracted from the
k-nearest neighbor graph. As an example, consider Figure
2. A regular structured tissue was assumed, consisting of
cells regularly distributed over the tissue. Such a point
pattern reveals an equally spaced layout everywhere
within the tissue borders. The surrounding of each cell
belonging to the pattern can be modeled by the neighbor-
hood of one single cell (Fig. 2). The k-nearest neighbor
graph of a typical pattern cell gives a characterization of

the point pattern of interest. After selection of a typical
cell, the pattern is given by a prototype k-nearest neighbor
graph, with distance set P 5 5p1, p2, . . . , pk6, where pi

denotes the prototype distances. Acceptance or rejection
of a detected object as belonging to the cell cluster of
interest is based on comparison of the observed k-nearest
neighbor distances Nv

k, to the prototype defined by the
characteristic distances to the neighbors in P.

Distance Graph Comparison

The difference between observation and prototype set
is expressed by the replacements necessary to match the
prototype with the observation. This is referred to as
dissimilarity between sets (17). For example, consider for
simplicity the discrete observed set 53, 10, 11, 15, 20, 20,
21, 256 and prototype 55, 5, 10, 10, 20, 206. When
disregarding the last distances in the observation (21 and
25), two substitutions (3 = 5, 11 = 10), one insertion (5),
and one deletion (15) transform the observed distance set
into the prototype. So there are four modifications be-
tween prototype and observation. The extra distances at
the end of the observed set are necessary for expanding
the comparison when elements are deleted in the begin-
ning of the set. Without these extra elements, deletion of
one item at the beginning of the set implies the addition of
an item at the end of the set. There will be no need for
addition when there is a cell at the correct distance.
Therefore, the amount of elements in the observation l
should be larger than the prototype length k to allow for
expansion in the comparison.

A cost is assigned to each type of replacement. Let ci be
the cost for insertion, cd the cost for deletion, cs the cost
for substitution, and cm the cost for matching. In the
example, 11 is closer to 10 than 3 is to 5, which can be
reflected in their respective matching costs. The minimum
total cost t, necessary to transform the observed set into
the prototype, gives the similarity between the sets. The
minimum cost is obtained by using a string matching
algorithm (17) (see Appendix).

The lowest possible value for the cost t is obtained
when both sets are equal. The amount of replacements is
zero, and thus the cost is zero. An upper bound for the cost
necessary to match two sets is obtained when all elements
are replaced. In this case, either all elements are inserted at
the beginning of the set, or all elements are substituted,
depending on the respective costs. The upper bound is
then given by tupper 5 k min(ci, cs). Normalization of the
minimum total cost gives a correspondence measure,
indicating how well the observed pattern matches the
prototype, i.e.,

C 5
tupper 2 t

tupper

3 100%. (1)

Discrimination between two known point patterns,
cluster and background, can be based on example and
counterexample. Consider the observed k-nearest neigh-
bor graph Nv

k, the prototype P describing the pattern of

FIG. 2. Extraction of tissue architecture. A typical relationship around a
cell is obtained from an example of the tissue of interest (a). The
prototype k-nearest neighbor graph is derived from distances to cells (b).
All prototypes shown are considered equal to fit deformed tissue parts.
Further freedom is given by a certain elasticity of the edges in the
prototype graph. Extraction of the tissular architecture proceeds by fitting
the prototype graph on each cell and its neighborhood in the tissue (c).
Within the similar tissue parts, the graph will fit. Outside these regions,
matching is limited to only one or two edges. In order to safeguard against
cell detection errors, not all edges in the prototype have to fit the cellular
neighborhood.
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interest, and a prototype B characterizing the background
pattern. When elements in background B match elements
in P, the cost tbackgr related to matching P with B is less than
the upper bound for the minimum cost. Then, discrimina-
tion between the two patterns is enhanced by normalizing
the correspondence to the cost given by matching P with
background B, or

C 8 5
tbackgr 2 t

tbackgr

3 100%. (2)

Note that C8 can be negative for patterns which neither
correspond to the foreground prototype nor to the back-
ground prototype. The extension to multiclass problems
can be made by considering prototype P for the class of
interest, and prototypes B1, B2, . . . , Bn for the remaining
classes. Matching P with each of the prototypes Bi gives
the correspondences between the pattern of interest and
the other patterns. The pattern Bi which is most similar to
P results in the lowest matching cost, which should be
used for normalization.

Cost Functions

The total cost depends on the comparison between
each of the individual elements of Nv

k and P, and thus the
replacements necessary to match them. The replacement
operations are given by insertion (cost ci), deletion (cost
cd), substitution (cs), and match (cm).

The cost for matching cm is zero when the two distances
are equal. The difference between two distances is defined
as their relative deviation, or d 5 0di 2 pj 0/pj. Here, di

denotes the observed distance and pj the prototype
distance with which to compare. Robustness against
spatial distortion is obtained by allowing a percentage
deviation a in the comparison of distances (14). In this
case, two distances are considered equal as long as their
relative deviation is smaller than the tolerance a. A
minimum value for a is given by the distance measurement
error.

When the deviation percentage between two distances
is higher than a, their correspondence is included in the
matching cost. The correspondence C then depends on
the total distance deviation between the compared ele-
ments. The matching cost is taken linearly proportional to
the distance deviation, or

cm 5 5
0 if d # a

(d 2 a)
cs

cs2 a
if a , d , cs

cs otherwise.

(3)

The cost for matching is cs if d $ cs, which is equivalent to
a substitution operation.

For our case, cell detector properties determine the cost
for insertion. For a sensitive detector, the probability to
miss a cell is low. As a consequence, the cost for insertion
should be high compared to deletion. Alternatively, a

low-sensitive cell detector will overlook cells, but fewer
artifacts will be detected. Thus, the costs for insertion
should be low relative to deletion. The insertion cost is
therefore tuned to the cell detector performance, or

ci

cd

~
#A

#M
. (4)

Here, #A denotes the estimate of the average amount of
artifacts detected as cells, and #M denotes the estimate of
the average amount of missed cells.

The deletion cost is derived from object features. A
probability distribution can be obtained from well-chosen
measurements, e.g., the contour ratio, on a test set of
objects. Afterwards, the probability P(vi) for object vi

being a cell is extracted from the measured distribution.
When an object has a low probability of being a cell, the
object should be deleted. Therefore, rather than consider-
ing a fixed deletion cost, the probability of an object being
a cell determines the deletion cost for that object, or

ci (vi ) ~ P(vi ). (5)

As a result, the correspondence measure for the object
under examination is only slightly affected by the deletion
of artifacts. The rejection of detected objects as being
artifacts can be based on both cell probability P(vi) and the
correspondence C of the object to the cluster prototype.

Evaluation of Robustness on Simulated Point
Patterns

Four algorithms, based on the Voronoı̈ graph, nearest
neighbor distance, Lavine’s method for matching, and the
proposed distance graph matching, were tested in simula-
tions. The segmentation performance was measured as a
function of the input distortion. The input consisted of a
foreground point pattern embedded in a background
pattern, distorted by some random process.

For the simulations, two arbitrarily chosen patterns
were generated. A hexagonal point pattern was embedded
in a random point pattern with the same density, and the
same pattern was placed in a hexagonal pattern with half
the density (Fig. 3). Artificial distortion was added to the
sets by consecutive random removal, addition, and displace-
ment of points. The distortion was regulated from 0% up to
a maximum, resulting in a noisy realization of the ideal
patterns. By removing points, the algorithm is tested for
robustness against missing cells. Addition of points reveals
robustness of the algorithm against false cell detections.
Robustness against spatial distortion is examined by means
of point displacement. Each one of the four methods was
tested for robustness against the given distortions. The
combination of removal and displacement of points shows
robustness against touching cells. The other combinations
show the interaction of distortions on robustness.

The segmentation performance indicates how well the
foreground pattern was discriminated from the back-
ground points. It was measured as function of the distor-
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tion. The performance of the various algorithms was
measured as one minus the ratio of the false negatives
combined with the ratio of false positives, or

P 5 1 2
#Fb

#Truthf

2
#Bf

#Truthb

. (6)

Here, #Fb denotes the number of foreground markers
classified as background, #Bf denotes the amount of
background markers classified as foreground, and #Truthf

and #Truthb denote the true number of foreground and
background markers, respectively, in the distorted data
set.

Algorithm Robustness Evaluation

For the experiments, the area of the influence zones in
the Voronoı̈ graph was thresholded (18) in order to
partition the test point patterns. The thresholds were
chosen such that 10% distortion on the distance to the
nearest neighbors was allowed for the undistorted fore-
ground pattern. This yields calculation of the minimum
and maximum areas for scaled versions of the pattern,
with scaling factors 0.9 and 1.1.

With regard to the nearest-neighbor distance, thresholds
were taken such that 10% perturbation in the nearest-
neighbor distance was allowed, determined in the undis-
torted foreground pattern.

The method given by Lavine et al. (14) was tested for k
[ 55, 10, 15, 20, 256. Implementation of this method was
achieved by using the distance graph matching algorithm.
Examples of both foreground and background pattern
were used for discrimination. Costs for insertion and
deletion were taken as infinity (ci 5 cd 5 `); thus, only
substitutions or matches were allowed. The allowed
perturbation in the distances was set at 10% (cs 5 a 5 0.1).
The correspondence C8 (Eq. 2) was thresholded at 50%.

Experiments for the proposed distance graph matching
method were taken with prototype length k [ 55, 10, 15,
20, 256. In order to allow the string matching to expand,
the amount of observed elements considered for matching
was twice the length of the prototype set (l 5 2k).
Examples of both foreground and background pattern
were used for discrimination. Substitution of cells was not
allowed, except as a deletion followed by an insertion
operation. This can be achieved by taking the cost for
substitution equal to the sum of the costs for insertion and
deletion (cs 5 ci 1 cd 5 c). The costs for insertion and
deletion were taken as equal. The allowed perturbation in
the distances was taken to be 10% (c 5 a 5 0.1). The
correspondence C8 (Eq. 2) was thresholded at 50%. This
way, parameters were set to permit fair comparison
between the four methods for tissue architecture segmen-
tation.

Robustness for Scale Measure

In order to investigate the influence of distortions on the
scale normalization measure, the measure was tested in
the simulations. The normalization factor d̄, the average
neighbor distance, was calculated under addition, re-
moval, and displacement of points. The percentage error
to the initial scale measure, d̄ for 0% distortion, was
measured as function of the distortion. The amount of
neighbors k considered for calculation of the scale mea-
sure was taken to be 51, 5, 10, 156.

Cell Detection

Cell domes were extracted from the hippocampal
images by grey-level reconstruction (19), resulting in a
grey-value image containing the tops of all mountains
when considering the input image as a grey-level land-
scape. From the dome image, saturated transparent parts
were removed, and the remaining objects were thresh-
olded. The results contained cell bodies, neurite parts, and
artifacts. An opening was applied to remove the neurite
parts. After labeling, the center of gravity of each object
was calculated and used for determination of the k-nearest
neighbor graphs. The reciprocal contour ratio (1/cr) was
used as a measure for cell probability (Eq. 5).

Hippocampal CA Region Segmentation

Segmentation of the CA region was obtained by super-
vised selection of an example region. An arbitrary section,

FIG. 3. Point patterns used for the experiments. a: A regular pattern
inside a regular pattern with half the density. b: A regular pattern inside a
random pattern with the same density.
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unaffected by ischemia, was taken and, after cell detection,
one of the cells in the CA1 region was manually selected.
The neighborhood of the selected cell was used as a
prototype for segmentation. No counter (background)
example was taken. Each of the four algorithms was used
for segmentation of the CA region. Parameters for segmen-
tation were derived from the example neighborhood to
permit fair comparison between methods.

Thresholds for the area of the influence zones in the
Voronoı̈ graph were derived from the example, such that
35% distortion on the distance to the nearest neighbor was
allowed.

For the nearest-neighbor method, thresholds were taken
such that 35% distortion on the nearest-neighbor distance
in the example was allowed.

The method of Lavine et al. (14) was implemented by
using the distance graph matching algorithm. Costs for
insertion and deletion were taken as infinity (ci 5 cd 5 `),
allowing only substitutions or matches with 35% tolerance
(cs 5 a 5 0.35). The deletion cost for individual objects
was adjusted by the cell probability, derived from the
contour ratio. For graph matching, 15 neighbors were
taken into account. A cell was considered as a cluster cell
when the similarity between distance graph and prototype
was at least 50%.

For the distance graph matching method, substitution of
cells was not allowed, achieved by setting cs 5 ci 1 cd 5 c.
The substitution cost was tuned to allow for 35% distortion
in the distances, from which the last 25% was included in
the correspondence measure (c 5 0.35, a 5 0.1). After
visual examination of the detector performance, the inser-
tion cost was set at twice the deletion cost. The deletion
cost for individual objects was adjusted by the cell
probability, derived from the contour ratio. For distance
graph matching, 15 neighbors were taken into account.
Matching was allowed to expand to twice the amount of
neighbors in the prototype (l 5 2k). A cell was considered
as a cluster cell when the similarity between distance
graph and prototype was at least 50%.

RESULTS
Algorithm Robustness Evaluation

Figure 4 shows the results of the performance of the
algorithms on the simulated point patterns, where 0%
performance corresponds to random classification of the
markers. The distortion for removal and addition of points
is given as the percentage of points removed or added. For
displacement of points, the distortion is given as percent-
age of displacement up to half the nearest neighbor
distance (100%) of the undistorted hexagonal foreground
pattern. When the distortion in displacement reaches
100%, the hexagonal pattern has become a random pat-
tern, indistinguishable from the random background pat-
tern (Fig. 4f). The optimum performances which can be
reached for the three types of distortion are shown in
Figure 4b,d,f. In those cases, the segmentation result
corresponds to correct classification of all (remaining)
markers. The results of the combined experiments are
examined for interaction between the different kinds of

distortions, and their relation with the individual perfor-
mances.

The behavior of the algorithms under all distortions
remains similar for both test patterns. This suggests that
the performance of the different methods is insensitive to
the type of test pattern.

For addition and displacement of points, the minimum
and maximum performance over the 25 simulation trials
remains within 20% from the average. For removal of
points, the minimum and maximum performance was
within 40% from the average for the Voronoı̈, Lavine et al.
(14), and distance graph matching methods. The nearest-
neighbor method shows a deviation of 60% from the
average for removal of points, which is due to the
normalization of the performance measure to the amount
of markers (Eq. 6).

Figure 4a–d reveals that thresholding the area of influ-
ence in the Voronoı̈ graph is inadequate in determining
cluster membership when cell detection is not reliable. No
point can be removed or added without changing the
Voronoı̈ partition for all (Voronoı̈) neighbors surrounding
the removed or added point. A second drawback is the
high initial error of 20% and 35%, respectively. Under
displacement of points (Fig. 4e,f), segmentation based on
the Voronoı̈ graph is shown to be robust. Figure 4f reveals
the bias (100% distortion, 10% performance) for the
Voronoı̈ graph at the image border. Points near the image
border are all (correctly) classified as background due to
their deviation from the normal area of influence, resulting
in a better than random classification for the indistinguish-
able fore- and background. Experiments for the Voronoı̈
method performed with thresholding the deviation on the
nearest-neighbor distance at 5% give only marginally better
performances (data not shown). For the combination of
displacement and removal, the resulting segmentation
error showed both factors to be additive below 15%
removal (data not shown). Similarly, for the displacement
and addition of points, the combined error was shown to
be the addition of errors caused by applying each distor-
tion separately. The performance under removal and
addition of points is only slightly better than the addition
of the individual errors.

Segmentation based on the nearest-neighbor distance
behaves like the optimum when distorted by removal of
points (Fig. 4a,b). Under the condition of addition of
points (Fig. 4c,d), performance is as bad as with the
Voronoı̈ method. Since 10% distortion on the nearest-
neighbor distances is allowed, the method performs well
up to 10% displacement (Fig. 4e,f). As shown elsewhere
(16), segmentation based on one of the other k-nearest
neighbors is able to improve the discrimination between
patterns. Behavior of the method under distortions for
higher k remains similar to the results shown for k 5 1.
The performance for the combinations removal-addition
and removal-displacement was completely determined by
addition and displacement (data not shown), respectively.
As can be expected from Figure 4a,b, the influence of
removal of points may be neglected. For the combination
of addition and displacement of points, the effect on the
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segmentation error is the addition of the errors caused by
each distortion separately.

For the method of Lavine et al. (14), the results are
shown for k 5 10. The initial segmentation error between
the test point patterns (Fig. 4a,b) is smaller than with both
the Voronoı̈ and nearest-neighbor method. Taking more
neighbors into account clearly results in better discrimina-
tion between point patterns. The performance under

removal of points degrades faster than the nearest neigh-
bor segmentation (Fig. 4a,b), while the performance for
addition of points (Fig. 4c,d) degrades less severely for
small distortions. The tolerance for spatial distortion is
improved in comparison to the nearest-neighbor method.
Analysis based on higher neighborhood sizes (k [ 515, 20,
256) shows that the performance for removal and addition
of points degrades faster, whereas the performance im-

FIG. 4. Average segmentation performance is plotted as function of the distortion. Each point represents the average performance over 25 trials for the
given percentage of distortion. For the method of Lavine et al. (14) and the distance graph matching method, results for k 5 10 are shown. a: Point removal,
hexagonal background. b: Point removal, random background. c: Point addition, hexagonal background. d: Point addition, random background. e: Point
displacement, hexagonal background. f: Point displacement, random background.
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proves under the condition of displacement of points.
Additionally, the initial error increases with a few percent-
ages. For k 5 5, segmentation performance is comparable,
except for the initial error, which increases a few percent-
ages. The error due to both the combinations removal-
displacement and addition-displacement was shown to be
almost perfectly additive (data not shown). For the combi-
nation of addition and removal of points, the error due to
removal is counteracted by the addition of points for large
distortions.

The distance graph matching method performs slightly
better than the method of Lavine et al. (14) for removal of
points (Fig. 4a,b). Under the condition of point addition,
the distance graph matching method is clearly superior.
The initial error in the discrimination between both
hexagonal foreground and background is zero for both the
distance graph method and that of Lavine et al. (14). For
the discrimination between hexagonal foreground and
random background, the initial performance for the dis-
tance graph matching is better than with the method of
Lavine et al. (14). Performance for a small neighborhood
size is comparable to the performance with the method of
Lavine et al. (14) (k 5 5). For large neighborhood sizes
(k $ 15), performance for removal and addition degrades
faster, but remains better than with the method of Lavine
et al. (14). Under displacement of points, the performance
increases for high k. Additionally, the initial error increases
a few percentages. The performance for the combined
distortion from addition and displacement of points was
shown to be completely determined by the point displace-
ment (data not shown). For removal and addition, the
error due to removal was reduced by the random addition
of points for severe distortions. The combination of
removal and displacement was shown to be better than
the addition of the respective errors.

From these experiments, it can be concluded that both
thresholding the area of influence in the Voronoı̈ graph
and thresholding the distance to one of the nearest
neighbors are not suitable for robust segmentation of
tissue architecture. The experiments undertaken show the
instability of the Voronoı̈ graph for detection errors. The
Voronoı̈ graph is certainly useful for determination of
neighbors (6), but more robust parameters can be esti-
mated from the Euclidian distance between these neigh-
bors (20). The proposed distance graph matching algo-
rithm indeed has a better performance under detection
errors than the method of Lavine et al. (14). Therefore, the
distance graph matching method is more suitable for use
in the partitioning of tissue architecture.

Robustness for Scale Measure

Robustness of scale normalization was tested on both
artificial data sets. Results for k 5 10 on the hexagonal-
hexagonal data set are shown in Figure 5. The result for
k 5 1 degrades for addition and displacement of points,
while removal of points is more stable. The results for
k 5 5 and k 5 15 are almost identical to the results shown
for k 5 10. The results for the hexagonal-random data set
are almost identical to the hexagonal-hexagonal results for

k [ 55, 10, 156. The experiment shows that the average
k-nearest neighbor distance is useful in normalization for
scale when taking k large enough.

Hippocampal CA Region Segmentation

The new method of distance graph matching was tested
on the segmentation of the CA region in rat hippocampi
(Fig. 6a), based on the preservation of the CA1 structure
after ischemia (21). Here, the correlation between manual
and automatic counting of the preserved cells in the CA1
region is shown. An example of cell detection is shown in
Figure 6b. As a result from the distance graph matching, all
cells in the CA and Hillus region were extracted from the
image (Fig. 6c). Only cluster cells are preserved in the
segmented image.

The CA1 region (Fig. 6) is that part inside the CA region,
starting orthogonally at the end of the CA inside the hillus,
and ending where the CA region becomes thicker before
the U-turn. Manual counting was performed on 2–4 slices
for each animal, resulting in a total number of preserved
neurons counted in a total length of CA1 region (cells/
mm) per animal.

To demonstrate the usefulness of the proposed segmen-
tation method, correlation between these manual count-
ings and automatic counting is shown. Due to the ambigu-
ous definition of the CA1 region, manual indication of the
CA1 region in the hippocampus image was necessary. For
each hippocampus, three points were obtained, indicating
the start (S), middle (M), and end (E) of the CA1 region.
The segmented cells between start and end point, and
within a reasonable distance from the line segment SME
connecting the three points, were classified as belonging
to the CA1 region. The average amount of cells per unit
length was calculated for the obtained cell cluster. The
cluster length was taken to be the length of line segment
SME. Figure 7 shows the correlation between the manual
and automatic counting for each of the algorithms tested.
Results obtained with segmentation based on the Voronoı̈
graph and for the nearest-neighbor distance do not corre-

FIG. 5. Influence of removal, addition, and displacement of points on
the scale normalization measure d̄ for k 5 10. Average percentage error
over 25 trials.
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late well with manual counting. The method of Lavine et
al. (14) is biased (mean error, 212.9) and results in a mean
squared error of 405.0 (22). For the distance graph
matching algorithm, the mean error is 0.1 and the mean
squared error is 174.8.

DISCUSSION
The geometrical arrangement of cells in tissues may

reveal differences between physiological and pathological
conditions based on structure. This intuitive notion does
not imply the quintessence that the arrangement can be
captured easily in an algorithm. Quantification of tissue
architecture, when successful and objectively measurable,
opens the way to better assessment of treatment response.
Before deriving parameters from tissue architecture, parti-
tioning of the tissue in its parts of interest is necessary.

We present a method for the segmentation of homoge-
neous tissue parts based on cell clustering. The objective is
to develop a method which is robust under spatial
distortions intrinsic to the acquisition of biological prepara-
tions, such as squeezing the tissue as well as taking a
two-dimensional transection through a three-dimensional
block. These manipulation artifacts lead to two major
confounding factors: 1) distortion in cell density, and 2)

errors in cell detection. Distortion in cell density is
reflected in the distance between cells. Irregularity or
spatial distortion in the cell positions, and thus distortion
in the neighbor distances, is inherent to tissues. Squeezing
of tissue or local nonrigid deformations result in structural
changes in cell density and thus changes in neighbor
distances. Small changes in transection angle cause loss of
cells in regions of the tissue. A second source of error in
cell detection is the classification of artifacts as cells, or
else cells may be overlooked during detection, causing
lack of proper definition of local tissue architecture. When
neighboring cells touch one another, they are often
erroneously detected as one single cell. The method also
deals with the uncertainty in cell classification often
encountered in the automatic processing of tissues. Errors
in the assignment of cells on cluster borders should be
minimal to prevent influence of cluster shape on the
segmentation result. The quantitative method enables
reliable classification of areas by type of tissue.

In contrast to other cell pattern segmentation methods,
the proposed distance graph matching algorithm meets
the various demands as formulated above. Detection
errors such as missing cells or artifact detection are
corrected by respective insertion and deletion operations.

FIG. 6. Example of the segmentation of cell clusters in the hippocampus of a rat. The line segment SME indicates the CA1 region. All segmented cells in
figure (c) between points S and E are considered part of the CA1 region. The length of the CA1 region is derived from the length of line SME. a: Hippocampus
image as acquired by the setup. b: The resulting image from the cell detection. c: Cell clusters after the distance graph matching.
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Deviation of the distances to neighboring cells is incorpo-
rated by allowing some tolerance in distance matching.
Local deformation of the tissue has only minor influence as
long as the deviation in distances remains within toler-
ance. The total sum of errors, combined with deviation in
distances, indicates how well the cell and its environment
fit the prototype environment. A possible drawback of the
algorithm is its insensitivity to orientation. It is possible for
two different patterns to have the same distance graphs.
Under these circumstances, segmentation is not possible
by any algorithm based on interpoint distances.

Including cell probability in the matching process fur-
ther improves segmentation performance. The interfer-
ence between the probability indicating that the object is
or is not a cell, and the fit of the object in the cluster
prototype, allow a better rejection of artifacts, while
cluster cell classification is less affected. Cell confidence
levels can be derived from the evaluation of the probability
distribution of cell features as contour ratio. In order to
remain independent of microscope and camera settings,
the cell features chosen should not depend on scale,
absolute intensity, etc.

The selection of an example often involves a supervised
(i.e., interactive) procedure. The design of such a proce-
dure requires adherence to several principles (23). Among
other requirements, reproducibility under the same inten-
tion is considered the most important for our purpose. As
a consequence, any prototype selection algorithm should
only consider cells in conformity with the expert’s inten-
tion.

Application of the method to the detection of the CA
structure in rat hippocampi showed that even narrow
elongated structures, only a few cells thick, can be
well-segmented using the proposed distance graph match-
ing. Results obtained semiautomatically correlate well
with manual countings of preserved cells in the CA1
region, as long as there are enough cells left to discern
regular clusters. The other segmentation methods tested,
based on the area of influence in the Voronoı̈ graph, the
distance to the nearest neighbor, and the method of Lavine
et al. (14), resulted in poor correlation between automatic
segmentation and the countings by the expert. For the
case of CA region determination, the proposed method
proved to be compatible with the perception of the

FIG. 7. Correlation between average number of cells per mm CA1 length per animal counted manually, and the number of segmented cells per estimated
mm CA1 length per animal. Dashed line indicates y 5 x. a: Voronoı̈ method. b: Nearest-neighbor method. c: Method of Lavine et al. (14). d: Distance graph
matching method.
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pathologist. We have not applied the method to other
tissue segmentation problems.

For the recognition of tissue architecture, the proposed
distance graph matching algorithm has proven to be a
useful tool. The method reduces the nonbiological varia-
tion in the analysis of tissue sections and thus improves
confidence in the results. The present method can be
applied to any field where regular patterns have to be
recognized, as long as the directional distribution of
neighbors may be neglected.
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APPENDIX

The dynamic programming solution for matching the
observation with the prototype is given in Figure 8. The
graph searches a small set (horizontal) inside a larger set
(vertical). The graph represents horizontally the prototype
set P 5 5p1, p2, . . . , pk6 and vertically the input set Nv

l 5 5d1,
d2, . . . , dl6. Each node C[i,j] in the graph represents the
comparison between the ith element from the prototype
with the jth element from the input set.

The directional edges in the graph determine which
operations (deletion, insertion, or matching/substitution)
are necessary to obtain the observed and prototype
distance at the same position in the comparison string. For
instance, each valid path from ‘‘start’’ to node C[2,3]
describes the operations necessary to end up with a set
where the third element in the observation is considered
as the second one. A horizontal step represents insertion
of the prototype element; the same observed distance is
compared to the next prototype element. A vertical step
implies deletion of an observation; the next observed
distance is compared to the prototype element. Matching
or substitution is represented by a diagonal step.

A cost is assigned to each edge. Using an edge to reach a
particular node implies the addition of the edge penalty to
the total cost involved for reaching the node. Horizontal
edges have cost ci; vertical edges cost cd. The cost for
diagonal edges depends on the comparison between the
elements connected to the node from which the arrow
starts. The cost is zero when the elements match (cm 5 0),
cs when the observed element is substituted for the
prototype (when cs # cm), or cost cm for making them
match otherwise.

The cost to reach a particular node is the sum of all costs
necessary when taking some valid path from ‘‘start’’ to the
node considered. The minimum cost to reach that node is
related to the path with the least total cost compared to all
other possible paths. When considering only the previous
nodes, i.e., all nodes from which the one under consider-
ation can be reached, the problem can be reformulated
into a recurrent relation. In this case, the minimum cost
path is given by the least of the minimum cost paths to the
previous nodes, increased by the cost for traveling to the
node of interest.

Comparison begins at the ‘‘start’’ node, and each col-
umn is processed consecutively from top to bottom. In
this manner, the minimum cost paths to the previous
nodes are already determined when arriving at a particular
node. The minimum cost to reach the node under consid-
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eration is then given by:

C[i, j] 5 min 5
C[i, j 2 1] 1 cd

C[i 2 1, j] 1 ci

C[i 2 1, j 2 1] 1 cm

C[i 2 1, j 2 1] 1 cs

. (7)

The initial value at ‘‘start’’ is zero; the cost from ‘‘start’’ to
the first node is also zero. The cost assigned to nonexisting
edges (at the border of the graph) is considered infinity.

The ‘‘term’’ nodes at the bottom and right side of the
graph are used for collecting the matching costs assigned
to matching the last element in the observation (bottom)
or the last element from the prototype (right). The term
node C[k 1 1, l 1 1] describes the costs associated with

matching the input set exactly to the prototype. The only
interest is in finding the prototype in a (larger) number of
observed distances, for which the cost is given by node
C[k 1 1, k 1 1]. This is the first node where the observa-
tion is exactly transformed in the prototype. When there
exist additional insert and delete operations on the ob-
served set which result in a smaller matching cost, this
path should be taken as the minimum cost path. There-
fore, the minimum total cost is given by the minimum of
the term nodes from C[term, k 1 1] to C[term, l 1 1].

The order of the string matching algorithm is O(l 3 k)
(17). Here, k is the amount of neighbors in the prototype,
and l is the amount of neighbors taken from the observa-
tion. When the cost for matching is constant, as is the cost
for substitution, then algorithms with a lower complexity
are known to compare ordered sequences.

FIG. 8. The dynamic programming solution for string matching.
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