
COMPUTER VISION AND IMAGE UNDERSTANDING

Vol. 63, No. 1, January, pp. 135–144, 1996
ARTICLE NO. 0009

Parameterized Feasible Boundaries in Gradient Vector Fields
MARCEL WORRING*,† AND ARNOLD W. M. SMEULDERS

Department of Computer Science and Logic, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

AND

LAWRENCE H. STAIB AND JAMES S. DUNCAN‡

Department of Diagnostic Radiology and Electrical Engineering, Yale University, New Haven, Connecticut 06520

Received April 7, 1994; accepted January 17, 1995

aries as a model-based segmentation procedure. This en-
Segmentation of (noisy) images containing a complex ensem- hances the quality of segmentation, as not only local image

ble of objects is difficult to achieve on the basis of local image information is used, but also the global shape of the object
information only. It is advantageous to attack the problem as captured in the model. This can be used to guarantee
of object boundary extraction by a model-based segmentation closed boundaries even if for some part of the boundary
procedure. Segmentation is achieved by tuning the parameters the image information does not indicate an edge.
of the geometrical model in such a way that the boundary As, in general, the object shape is not fixed, we need atemplate locates and describes the object in the image in an

model which is parametrically deformable. Model-basedoptimal way. The optimality of the solution is based on an
segmentation is achieved by tuning the parameters of theobjective function taking into account image information as
geometrical model in such a way that the boundary tem-well as the shape of the template. Objective functions in litera-
plate locates and describes the object in the image in opti-ture are mainly based on the gradient magnitude and a measure

describing the smoothness of the template. In this contribution, mal way. The optimality of the solution is based on an
we propose a new image objective function based on directional objective function taking into account image information
gradient information derived from Gaussian smoothed deriva- as well as the shape of the template. In the special case
tives of the image data. The proposed method is designed to where the object shape is fixed and known, model-based
accurately locate an object boundary even in the case of a segmentation reduces to standard template matching. We
conflicting object positioned close to the object of interest. We

consider the general case here.further introduce a new smoothness objective to ensure the
Apart from yielding a closed boundary, parameterizedphysical feasibility of the contour. The method is evaluated on

deformable templates have the important property thatartificial data. Results on real medical images show that the
features of the object boundary (like its curvature) can bemethod is very effective in accurately locating object boundaries

in very complex images.  1996 Academic Press, Inc. computed analytically from the template parameters. This
reduces the considerable loss of shape information caused
by the fact that edges are confined to lie on a discrete

1. INTRODUCTION grid [12].
Model-based segmentation procedures are often used

Segmentation of (noisy) images containing a complex in medical imaging as the images in general are very com-
ensemble of objects is difficult to achieve on the basis of plex, but characterized by a priori bounds on the shape and
local image information only. If a generic model of the position of the objects. Examples are found in numerous
object is available, we can pose extraction of object bound- references. In [2], ellipses are used as a model to find the

left ventricle in a cardiac scintigram using a generalized
Hough transform. An elliptical model is also the basis of* To whom correspondence should be addressed. E-mail:

worring@fwi.uva.nl. segmentation in [5]. The ellipse is a special case of the
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of parameterizations of example boundaries. A model con- segmentation procedure is to find the parameter vector
popt such that v(t; popt) locates the object of interest in ansisting of a collection of characteristic points, connected

to each other by means of springs, is used in studying optimal way.
The optimality of the solution is based on a global objec-deformations of the stomach [4].

In machine vision, active snakes [1, 3, 11] are in common tive function H(p) which is the line integral over the tem-
plate v(t; p) of some local objective function h(t; p):use as flexible models. They allow for incorporation of a

priori knowledge about corners in the contour as well as
for knowledge-guided prohibited regions in the image or H(p) 5 E

t
h(t, p) iv9(t)i dt. (1)

for regions in the image to which the snakes should be
attracted. However, as will be made precise in the next

In general, the function h is based on image information,section, active snakes as proposed in the references only
combined with information derived from the template pa-use an implicit model. An exception is the method for
rameters and a priori known shape limits of the objects.snakes in [6] in which the curve is explicitly modeled using

Given an initial guess p0 , the template is deformed byB-splines. Another set of explicit models used in computer
tuning the parameters to find popt . If a priori informationvision are super quadrics. These have been applied in the
on the parameters is present, p0 is the average over thesegmentation of range images [9].
learning set as described in the introduction. Otherwise,All methods, except [2], find the segmentation result in
p0 is created interactively, or by a straightforward coarsean iterative manner starting from an initial guess on the
segmentation algorithm.object boundary. In the iteration, for the various models,

The segmentation procedure boils down to a (usuallydifferent criteria based on the shape of the object and the
nonlinear) maximization problem; find the local maximumimage data are in use as objectives.
of H(p) in the neighborhood of the initial guess p0 :The contributions in this paper are twofold. First, we

consider the use of gradient vector fields derived from
the image data through Gaussian smoothed derivatives popt 5 arg max

p
hH(p)up0

j. (2)
to accurately locate the object boundary, whereas other
methods use gradient magnitude only. The practical results

This procedure should be discriminated from the use ofin this paper use the model proposed in [10]. However,
active snakes [1, 3, 11]. In these procedures, the curve is notthe use of gradient vector fields in model-based segmenta-
explicitly parameterized but, on the basis of an objectivetion has general applicability. Second, we discover a short-
function, conditions on the derivatives of the optimal curvecoming of all methods which treat the x- and y-coordinates
are derived. The latter is achieved by means of the calculusof a curve separately and propose a solution. Early results
of variations.on these topics were presented in [13].

Let v(t) again denote the curve of interest, but nowThis paper is organized as follows. In Section 2, we put
without explicit parameterization. Then the active snakesthe above-mentioned model-based segmentation in a more
use an energy functional which in its general form isabstract framework and show the relations of our method
given byto snakes. The new image objective function based on the

image gradient vector field is introduced in Section 3. In
Section 4, the particular template model used in this paper H(v) 5 E

t
h(v(t), v9(t), v0(t)) dt, (3)

is presented. The proposed solution to the problems of
methods which treat the x- and y-coordinates of a curve

where as before, h indicates a local objective function basedseparately is given in Section 5. Implementation of the
on the image characteristics and the local properties of themethod is discussed in Section 6. Results on artificial im-
curve. This equation could be augmented with derivativesages are given in Section 7, whereas results on real images
of higher order if needed. From Eq. (3), the Euler–are found in Section 8. Section 9 concludes.
Lagrange equations are derived yielding the following dif-
ferential equation:

2. BOUNDARY FINDING AS A GLOBAL
OPTIMIZATION PROBLEM

Hv 2


t
Hv9 1

2

t2 Hv0 5 0. (4)
In this introductory section, we recapitulate the principle

and terminology of boundary finding as a global optimiza-
tion problem. Here Hv denotes differentiation of H with respect to v.

Curve estimation now becomes solving the differentialLet I(x, y) denote an image containing the object of
interest and let v(t; p) be a deformable boundary template, equations for x and y given by Eq. (4) with initial conditions

defined by the curve v0 .parameterized by vector p. The goal of our model driven
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In [1, 3], the following function h is used:

h(v(t)) 5 F(v(t)) 1 a(t)iv9(t)i2 1 b(t)iv0(t)i2. (5)

Here F(v) is an objective function based on the image
characteristics encountered along v and the other terms
are regulating the stretching and bending of the curve,
respectively. The functions a and b can be used to incorpo-
rate a priori shape information.

Due to the complexity of the differential equations in-
volved the methods in [1, 3] have to use discretized deriva-
tives of v. This makes shape estimation, based on higher FIG. 1. Geometrical interpretation of the objective function D(p).
order derivatives of v(t), inaccurate. A better approach is Two objects, F1 and F2 are schematically indicated by shaded areas. It

is assumed that a gradient vector field =I is calculated where, at thefollowed in [6], where the curve is approximated by analyti-
boundary of each object, the gradient is a function of the correspondingcal B-splines and the analytical parameters are used in
object only. The vector n̂ is the unit size normal of the deformableiteratively solving Eq. (4). For all the methods presented,
template v(t). The dot product of the gradient and the normal is the size

the local objective in Eq. (5) must be such that the differen- of the projection of the gradient on the line with direction equal to the
tial equations given by Eq. (4) are decoupled for x and y. normal. At position 1 the local objective is positive, whereas at position

2 the contribution is negative.As will appear later, this limits their use.
In this paper, we follow the approach given by Eq. (2).

We will use the Fourier parameterized model for p (see
Section 4). The function h will be based on the gradient consider the dot product of this vector with the image
direction in the image at every point of the boundary tem- gradient. For the case considered, the dot product yields
plate and on a measure regulating the smoothness of the positive contributions for the object located to the inside
template. of the template and negative contributions for the object

located to the outside. Integrating the dot product of n̂
3. IMAGE OBJECTIVE FUNCTION with the image gradient along the boundary template gives

the objective function D(p), measuring the local correspon-
Our goal is to locate the edge of the object in the image. dence of the direction of the normal and the direction of

Thus, we concentrate on the image gradient =I(x, y). In the gradient, weighted by the magnitude of the gradient.
the literature, at this point, only the magnitude of the The geometrical interpretation of the objective function is
gradient is taken into consideration in the optimization [3, illustrated in Fig. 1.
10]. This leads to the global objective function M(p) (an In practice, the gradient field =I(x, y) is estimated by
instantiation of H(p) in Eq. (1)): Gaussian smoothed derivatives, implemented as a convolu-

tion with a Gaussian differential filter set with scale param-
M(p) 5 E

t
i=I(v(t, p))i iv9(t)i dt. (6) eter s defined as the standard deviation of the kernel.

Thus, the data field =I and therefore the objective function
are dependent on parameter s :The magnitude of the gradient is a 2D scalar field. How-

ever, as is well known, more detailed information on the
Ds(p) 5 6 E

t
=Is(v(t; p)) ? n̂(t; p) iv9(t; p)i dt. (7)local image characteristics is present in the gradient as it

is a 2D vector field. To illustrate, consider the case where
two dark objects are located close to one another, each The sign of the objective function should be positive when
with a contour of the same gradient magnitude. For the searching for a dark object and negative for a bright object.
objective function M(p), the two objects locally yield an Since n̂ 5 v9'/iv9i, where v9'(t) 5 (y9(t), 2 x9(t))t, the
equal contribution and are equally likely to be included in objective function can be rewritten into
the final path parameterized by popt. So, it is undetermined
where the resulting boundary will be drawn. Using the

Ds(p) 5 6 E
t
=Is(v(t; p)) ? v9'(t; p) dt. (8)directional information of the gradient, we are able to

make a distinction between the two objects, even if they
are close, as the gradients point in opposite directions. This image objective function, in principle, can also be

used in the snake paradigm i.e., setting F(v) in Eq. (5) toTo incorporate gradient direction in the image objective
function, we place a unit vector n̂ in the direction perpen- the integrand in Eq. (8). However, the Euler–Lagrange

equations (Eq. 4) lead to a coupled system of differentialdicular to the boundary template (pointing outward) and
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equations. Hence, the optimization method used in [3] to
solve Eq. (4) is not applicable. We will therefore use the
formulation as given by Eq. (2) and consequently use a
different optimization method.

4. FOURIER PARAMETERIZED DEFORMABLE
BOUNDARY TEMPLATES

To illustrate the use of the new image objective function
we concentrate on the model as proposed in [10]. This is
a very general model. It is based on the observation that
for objects with closed boundaries the x- and y-coordinates
of the template are periodic. Hence, a natural parameter-
ization is by means of Fourier coefficients. The parameter-
ization of the boundary v as function of the parameter t
(where t [ [0, 2fl) is given by

v(t; p) 5 Sx(t)

y(t)
D5 Sa0

c0
D1 OK 2 1

k 5 1
Sak bk

ck dk
DScos kt

sin kt
D , (9)

FIG. 2. The boundary c (dark line) is constructed using four harmon-
ics. Harmonic 0 defines the overall position of the boundary indicated

where the 4K 2 2 parameters describing the template are by c0 . Harmonic 1 defines an ellipse centered at c0 . For three different
represented by the parameter vector p: values of t, the position on the ellipse corresponding to harmonic 1 is

indicated by c11 , c12 , and c13 , respectively. The ellipse corresponding to
harmonic 2 is for the three different values of t centered at c11 , c12 , andp 5 (a0 , . . . , aK21 , b1 , . . . , bK21 ,
c13 , respectively. As a function of t, the position on the boundary due to

c0 , . . . , cK21 , d1 , . . . , dK21)t. the first three harmonics is given by c21 , c22 , and c23 . The same construction
applies for the fourth harmonic leading to the final boundary.

Given a closed curve v(t), its parameterization can be
found using the Fourier transform:

In models that parameterize the x- and y-coordinates of
the contour independently we are faced with the problem
that smoothness of the coordinate functions is not a suffi-
cient condition to prohibit cusps or self-intersections of
the template. This is a consequence of ignoring the 2D3

a0 5
1

2f
E2f

0
x(t) dt c0 5

1
2f

E2f

0
y(t) dt

ak 5
1
f
E2f

0
x(t) cos kt dt ck 5

1
f
E2f

0
y(t) cos kt dt

bk 5
1
f
E2f

0
x(t) sin kt dt dk 5

1
f
E2f

0
y(t) sin kt dt.

4 shape of the template. For the Fourier parameterized tem-
plates, this is illustrated in Fig. 3. It shows that limiting the
number of harmonics K of the template does control the

(10)

smoothness of the coordinate functions but the template
is not cusp-free. Smoothness and physical feasibility ofIn general, to reconstruct the curve v(t) exactly, one needs
the contour are guaranteed for the trivial case K 5 2an infinite number of harmonics (i.e., K 5 y). However,
(ellipses) only.in practice a limited number of harmonics suffice. As the

higher harmonics are associated with high frequencies, lim-
iting the number of harmonics yields smoother bound-
ary templates.

The geometric interpretation of the parameters describ-
ing the template is illusrated in Fig. 2.

5. FEASIBLE TEMPLATES

The result popt of the optimization should represent a
smooth and physically feasible template. That is, the con-
tour should: FIG. 3. The deformable template (cos t, sin t 2 1/2 sin 2t) composed

1. contain no cusps; of only three harmonics. It illustrates that whereas the two coordinate
functions are each smooth, the template is not, as it shows a cusp.2. not be self-intersecting.
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As a possible solution one may intuitively wish to apply Now, considering self-intersections of the template, we
note that in the unconstrained case they appear in theGaussian filtering to the coordinate sequences, rather than

limiting the number of harmonics. However, straightfor- process of iterative optimization in two different ways.
First, given initial parameter vector p0 , the template goesward filtering of the coordinate sequences with a Gaussian

kernel is known to yield self-intersections and cusps as through some parameter vector p1 , creating a cusp, before
reaching the ‘‘optimal’’ popt . From p1 and onward, thewell [7]. In the reference, it is argued that to avoid cusps

one should repeatedly filter the sequence with Gaussian template is self-intersecting at one point. Those self-inter-
sections cannot occur by the above prohibition. The secondkernels with small scale parameter. In this procedure one

reparameterizes the curve by arclength after each filtering way occurs when the boundary intersects itself at least
twice (for different values of t). Such a template can neverstep. It should be noted that taking into account arclength

indeed considers the 2D nature of the curve. However, describe a true physical boundary of an object. Either those
intersections indicate that the template is attached to edgesthis reparameterization prohibits the use of standard opti-

mization techniques (as will be used in this paper), as the from different objects, or the boundary of the object is
not followed in its natural order. Thus, these intersectionsparameters describing the curve will also be altered in

this step. provide a basis to split the template into two separate
ones, or one simpler non self-intersecting template can beAnother candidate solution is to use true 2D models

like star-shaped curves; however, these models tend to be derived. So, after optimization, the template generated by
popt should be examined to determine whether it is self-much less general and hence only applicable in specific situ-

ations. intersecting (where only the second way can occur) and
handled based on which of the above mentioned cases oc-The approach followed in [10] uses probabilistic infor-

mation on the parameters derived from many examples. curred.
If such information is accurate, templates having cusps or
self-intersecting templates have a very low probability of 6. IMPLEMENTATION
occurring. Without accurate a priori information on the
parameters, smoothness and physical feasibility have to be We wish to compute the solution to the optimization
enforced in a different way. problem of Eq. (2).

We first consider cusps in the boundary and add a The image objective function D(p) is approximated by
smoothness term to the objective function to prevent the evaluating the local objective function at N discrete points
creation of cusps. The 2D shape of the object is captured (with uniform sampling of the parameter t). Computation
in the curvature k of the template. Now, let v(t0) be the of the discrete points v(ti) with ti 5 2fi/N is done using the
position of a cusp. The curvature k(t0) of the template is fast Fourier transform of the coordinates [8]. Derivatives of
infinitely large. Further, the change of curvature k9(t0) is the boundary template are obtained in similar way. The
also infinitely large. We prefer to use a smoothness contri- points v(ti) in general do not fall on gridpoints and there-
bution to the objective based on the curvature change as fore bilinear interpolation is used to estimate the gradient
a mechanism to prevent cusps. In this way, regions of from the partial derivative images. The discrete formula-
high curvature in the boundary are still possible. As the tion of the image objective becomes
smoothness objective should only regulate the shape of
the object, not its size, the measure has to be made indepen-

D*s (p) 5
2f
N ON21

i50
=Is(v(ti ; p)) ? v9'(ti ; p). (13)dent of spatial scale. We arrive at independence by multi-

plication of the smoothness measure with the length of the
boundary template. The resulting smoothness objective

The smoothness term is approximated byS(p) is given by

S(p)
S*(p) 5 S2f

N ON21

i50
k9(v(ti ; p))2 iv9(ti ; p)iDS2f

N ON21

i50
iv9(ti ; p)iD.

5 SE2f

0
k9(v(t; p))2 iv9(t; p)i2 dtDSE2f

0
iv9(t; p)i2 dtD. (11)

(14)
The final objective function Hl is a linear combination

of the image objective D and the smoothness term S, with In these equations, k9 and v9 are computed analytically
a parameter l # 0 regulating the relative importance of from the template parameter vector p. This should be
the two: discriminated from the estimation of derivatives in [3],

where the derivatives are approximated using divided dif-Hl(p) 5 D(p) 1 lS(p). (12)
ferences.

In total, the discrete formulation of (2) is given byThe value of l is chosen problem-dependent.
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FIG. 4. The artificial images used in the experiment (256 3 256 pixels). The object in image (a) is created using a Fourier deformable template
with six harmonics and has grayvalue 150 on a background of grayvalue 100. In (b), the same object is present, but now containing a large hole
with the same intensity as the background. Image (c) shows the initial boundaries where from experments start.

The boundary of the object in Fig. 4a is generated fromp*opt 5 arg max
p

h(D*s (p) 1 lS*(p))up0
j. (15)

the template parameter vector p. As starting point for the
algorithm, we rotate p with respect to the pont (a0 , c0)

The solution to the nonlinear optimization problem is over an angle c, resulting in the parameter vector pc . This
found using conjugate gradients [8]. To that end, one needs parameter vector is input to the optimization procedure.
expressions for the derivative of the objective function The initial boundaries for the values of c considered are
with respect to parameter vector p. For an element p of shown in Fig. 4c. The goal is to retrieve the original object.
the parameter vector describing the x-coordinate (p 5 a0 , The solution qc found by the algorithm and the parame-
p 5 ak , or p 5 bk), the derivative of D(p) is given by ter vector p are compared in terms of how close the corre-
(for clarity omitting the dependence of v on p and the sponding templates are in position. To do so, one has
dependence on s) to find a correspondence between similar points on both

contours. We arrive at a correspondence by first resampling
the two curves such that the curves are parameterized byD(p)

p
5

2f
N ON21

i50
Ixx(v(ti))

x(ti)
p

y9(ti)
(16) arclength. Then, a fixed starting point on the first curve is

taken and the corresponding starting point on the second
curve is found by minimizing the overall distance between2Ixy(v(ti))

x(ti)
p

x/(ti) 2 Iy(v(ti))
x9(ti)

p
,

points of corresponding index. The average difference in
position between corresponding points serves as our mea-

with sure E(c) of positional error between the two curves p
and qc:

x(t; p)
a0

5 1
x(t; p)

ak
5 cos kt

x(t; p)
bk

5 sin kt (17)

E(c) 5 min
0#t0,N

1
N ON21

t50
ip(t) 2 qc(t 1 t0)i. (19)

x9(t; p)
a0

5 0
x9(t; p)

ak
5 2sin kt

x9(t; p)
bk

5 cos kt. (18)
We ran the algorithm and evaluated the result for the

seven different starting positions as given in Figure 4. Re-
The derivative of the smoothness term is easily found from

sults are shown in Fig. 5.
Eq. (14).

To verify robustness against noise, the image of Fig.
4a was subjected to additive Gaussian white noise with

7. EXPERIMENTS
standard deviation c between 0.0 and 50.0, ranging from
no noise to a signal-to-noise ratio of 1. As the initial startingIn this section, we evaluate the performance of the objec-
curve, the curve rotated over an angle of c 5 2208 wastive function Hl on artificial data, in the next section we
selected. Results are shown in Fig. 6.give results on real data. For comparison we also give

results with the magnitude objective function as in Eq. (6)
7.1. Discussion of the Experiments

with the additional smoothness term of Eq. (11) (denoted
by Ml). From Fig. 5a, it is concluded that for an image containing

the object without a hole, the performance of the magni-The test images used are depicted in Figs. 4a and 4b.
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sented is much more robust against noise than any local
method.

For reasonable amounts of noise, performance is equiva-
lent to the noise-free case if a Gaussian kernel of moderate
size is used. As a consequence, it seems important to estab-
lish the effect of Gaussian smoothing on the complexity
in the image due to conflicting objects and how this influ-
ences the gradient computation and subsequent optimi-
zation.

8. RESULTS ON MEDICAL IMAGES

As a first example of the practical significance of direc-
tional information we consider the segmentation of the
corpus callosum from an MRI image of the brain (Fig.
7a). The selected image shows a notorious segmentation
problem as the dark line separating the corpus callosum
from the other image entities is very thin. Previous ap-
proaches to automated extraction found the corpus callo-
sum by using a different objective function attracting the
template to the black line rather than the edge of the object
[10]. This leads to an overestimation of the actual area of

FIG. 5. The average positional error E(c) (measured in pixels) be-
tween the original object boundary and the result of optimization: in (a)
(b), for the object without a hole; in (c) (d), for the object with a hole
(see Fig. 4). Input to the algorithm is the template resulting from rotation
of the target boundary over an angle of c degrees. The gradient of the
image is calculated using a Gaussian kernel with scale parameter s 5 3.0.

tude based objective Ml and the direction based objective
Hl is approximately the same. For a large range of the
rotation c, the object is found correctly. At the extreme
values of c, the performance degrades dramatically. This
is a direct consequence of the creation of cusps in the
boundary template. Following the creation of a cusp, the
template becomes self intersecting, resulting in large posi-
tional deviations. Incorporation of the smoothness term S
clearly prevents the cusp creation as follows from Fig. 5b.

As a consequence of the increased complexity of the
image in Fig. 4b, where only a small wall remains, perfor-
mance of both objective functions degrades. However, over
almost the entire range of c considered, the method with
directed gradient now outperforms the method using gradi-
ent magnitude only. This holds for other transformations
like translation and scaling as well [14].

Considering the results on noisy images (Fig. 6), it is
FIG. 6. For increasing noise level c, the resulting error E(c) is shown

found, as expected, that the choice of s is a compromise for the directional objective Hl in (a) (b) and for the magnitude-based
between noise reduction and accurate localization of the objective Ml in (c) (d) with (l 5 20.1). Note that in (c), one curve is

not drawn, as it did not fall into the range of plotting.edge. In general we can say that the global method pre-
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applied, with the sign of the directional objective function
used to find the epicardium (Fig. 9b) or the endocardium
(Fig. 9c). The two cases are distinguished by the fact that
in the first case there is a light object on a dark background,
whereas in the second case there is a dark object on a light
background. Note that this is the only geometric a priori
information in use, showing the generality of the method.

The results show that the algorithm indeed is able to
make the distinction between the two cases. Using the

FIG. 7. An MRI image of the corpus callosum. (b) The initial bound- gradient magnitude only, those results can never be ob-ary template represented using four harmonics.
tained without the use of a priori information. At best, the
objective based on gradient magnitude finds one out of
the two boundaries.the corpus callosum. Using directional information, we

should be able to find the genuine edge. The image used is part of a temporal sequence. The
algorithm was applied to six images of the sequence. Initial-In general when applying the model based method to

an image three choices have to be made, namely the num- ization is done on the first image by roughly indicating
the boundary, one for the epicardium and one for theber of harmonics of the model (K), the smoothing parame-

ter l and the scale parameter (s) of the Gaussian kernel endocardium. The resulting optimized boundaries were
then used as the initial boundaries for the second image,used in estimating the image gradient. To illustrate the

dependency on these parameters in segmentation of this and so on. The results are shown in Fig. 10. They show
that the Fourier deformable contour allows us to trackparticular image, we interactively defined an initial bound-

ary and represented it using four harmonics (see Fig. 7b). the endocardium and epicardium of the left ventricle in a
sequence automatically.We applied our method with varying number of harmonics

(K 5 4, 6, 8, 16), where at initialization the higher order The time to analyze one image (or slice) is less than
30 s on a Sun sparc LX system, not yet suited for trueharmonics not present in the initial four-harmonic template

were set to zero. The smoothing parameter was also varied interactive segmentation. The time is, however, dependent
on the shape of the object and the initial parameters, as(l 5 20.1, 20.01, 20.001, 20.0001). The image gradient

was computed with a Gaussian kernel with s 5 2.0. Results well as the complexity of the image. If the initial boundary
is close to the final solution convergence is much faster.are shown in Fig. 8.

From the figure a number of interesting observations
can be made. First, we see that with appropriate smoothing 9. CONCLUSION
(ulu $ 0.001) the genuine edge of the corpus callosum is

In model-based segmentation, one optimizes an objec-found except for the case K 5 16, l 5 20.1, where only
tive function based on image information and the smooth-part of the boundary is found. With insufficient smoothing

(ulu # 0.0001) and six or more harmonics, the contour gets
too much freedom in its movement and is attached to the
boundaries of other objects. A second observation is, as
expected, that finding smooth object boundaries can be
achieved in two different ways, either by limiting the num-
ber of harmonics or by adjusting the smoothing parameter.
Limiting the number of harmonics has the advantage that
the method is more robust and the choice of the smoothing
parameter is less critical. On the other hand, with a high
number of harmonics every small detail in the contour can
be followed, at the cost of reduced robustness and a more
noisy curvature function. For the particular example cho-
sen, we feel that the best compromise between conciseness
to the data and smoothness is yielded by the parameter
combination K 5 6 and l 5 20.001.

As a second example, we consider finding the endocar-
FIG. 8. Result of applying the model-based segmentation methoddium and epicardum of the left ventricle in an MRI image

with the initial contour as in Fig. 7(b) using varying number of harmonics
of the heart. The algorithm is started using an initial tem- K in the optimization and varying smoothing parameter l. The scale
plate positioned between the endocardium and epicardium parameter of the Gaussian kernel used in estimating the gradient was

set to 2.0.(see Fig. 9a). From there, the optimization algorithm is
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FIG. 9. The three images show the initial boundary (a) from where the algorithm is started using a six-harmonic deformable template. The
second image (b) shows the result when a dark object on a light background is searched for. In the third image (c), the roles of dark and light are
reversed (s 5 3.0, l 5 20.01).

ness of the template to locate an object in the image in The power of the method is best illustrated in Fig. 9,
where an initial template is placed in the middle of a smalloptimal way.

Methods proposed in literature concentrate on image wall. By using the directional information, the method is
able to make the distinction between the inside and theobjectives based on the magnitude of the gradient (for

example, in [3, 10]). However, as the gradient is a 2D vector outside of the wall. This is not possible with any of the
other methods.field, more information is present. The method proposed in

this paper, using a 2D gradient vector field derived from Boundary templates parameterizing the x- and y-coordi-
nates of the template separately suffer from the possibleGaussian smoothed derivatives of the image data as image

objective, utilizes this extra information. introduction of cusps in the boundary. In [10], accurate a

FIG. 10. The results of applying the algorithm to a sequence of images where the result of one image is used as the input for the algorithm
applied to the next image in the sequence (s 5 2.0, l 5 20.01).
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