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Digitized C ircular Arcs: Characterization 
and Parameter Estimation 

Marcel Worring and Arnold W.M. Smeulders 

Abstract-The digitization of a circular arc causes an inherent 
loss of geometrical information. Arcs with slightly different local 
curvature or position may lead to exactly the same digital pattern. 
In this paper we give a characterization of all centers and radii of 
circular arcs yielding the same digitization pattern. The radius of 
the arcs varies over the set. However, only one curvature or ra- 
dius estimate can be assigned to the digital pattern. We derive an 
optimal estimator and give expressions for the bound on the pre- 
cision of estimation. Tbis bound due to digitization is the deter- 
ministic equivalent of the CramCrfRao bound known from pa- 
rameter estimation theory. 

Consider the estimation of the local curvature and local radius 
of a smooth object. Typically such parameters are estimated by 
moving a window along the digital boundary. Methods in litera- 
ture show a poor precision in estimating curvature values, rela- 
tive errors of over 40% are often found [34]. From the definition 
of curvature it follows that locally the curve can be considered a 
circular arc and hence the method presented in this paper can be 
applied to the pattern in the window giving estimates with opti- 
mal precision and a measure for the remaining error. 

On the practical side we present examples of the residual error 
due to the discrete grid. The estimation of the radius or curvature 
of a circular arc at random position with an estimation window 
containing 10 points (coded with nine Freemancodes) has a rela- 
tive deviation exceeding 2%. For a full disk the deviation is below 
1% when the radius r exceeds four grid units. 

The presented method is particularly useful for problems 
where some prior knowledge on the distribution of radii is known 
and where there is a noise-free sampling. 

Index Terms-Circular arcs, parameter estimation, curvature, 
precision, digitization. 

I N this paper we consider the estimation of geometric fea- 
tures of smooth continuous objects when digitized on a 

regular grid. 
We rely on the fundamental theorem in the differential ge- 

ometry of curves [28] to find what features are of importance 
in the analysis of smooth boundary curves. The theorem states 
that one can reconstruct any smooth curve up to a rigid trans- 
formation if curvature is known as function of arc length, 
where curvature is the inverse of the radius of the circle locally 
coinciding with the curve. This makes curvature (or the radius 
of the circular arc for that matter) and arc length the two basic 
features to consider in the analysis of any smooth (line) figure. 
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For the estimation of the curvature of the digitized bound- 
ary, five essentially different methods are found in [l], [2], [9], 
[20], [29]. These five methods were compared in [33], [34] on 
the basis of their performance in measuring the curvature of 
circular arcs repeatedly placed on a random position with re- 
spect to the digitization grid. It turned out that none of the 
methods yields accurate and precise estimates of curvature. 

A theoretical analysis of the methods revealed a number of 
clues for the poor performance. In [20] the curvature is esti- 
mated by applying a linear differentiating filter to the X- and y- 
coordinate separately. For circular arcs this separation, bypass- 
ing the 2D nature of the problem, introduces significant errors 
due to the truncation of the filter. The methods in [l], [2], [9] 
find curvature by applying a linear differentiating filter to the 
estimated orientation. The method in [9] is the only method 
which explicitly takes the anisotropy of the grid into account 
and in fact with proper scaling this is the method with best 
performance. In the other cases errors in the order of 40% are 
common. 

Fitting a circular arc to the digital data does take the two 
dimensional shape of the digital boundary into account, and 
algorithms can be found in [4], [ 181, [29]. It turned out that for 
noise free digitized circular arcs the precision is poor. 

Clearly, the precision of the estimation is limited as a con- 
sequence of both the stochastic noise introduced in the imag- 
ing system and by the digitization noise. There is, however, an 
important difference in the characteristics of the two types of 
noise. Stochastic noise is a random process, and the precision 
of measurement is limited by the Minimum Variance or 
Cramtr/Rao bound [5]. In contrast, the digitization noise is not 
a random process. It is completely governed by the position 
and shape of the object and by the deterministic characteristics 
of the spatial quantization, dependent on the resolution and 
connectivity of the digitization grid. Hence, for digitization 
there is a deterministic bound on the precision equivalent to 
the Cram&r/Rao bound. With high precision scanning systems 
as flat bed scanners or when images are recorded at limited 
resolution, the stochastic noise is in general much smaller than 
the digitization noise. For the purpose of accurate measure- 
ment this makes the effect of digitization most important. This 
will, therefore, be the focus of this paper. 

Extensive studies on the effect of spatial quantization on 
straight boundaries [6], [14], [19] led to accurate estimators 
for measuring arc length and bounds on their precision [7], [8], 
[16], [17], [24]. These studies also led to very accurate regis- 
tration of straight digitized boundaries in an image pair [3]. 
We proceed along the same path as [6], [14], [19] for the 
analysis of curved boundaries and seek expressions for the 
deterministic equivalent of the Cram&r/Rao bound in local 
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shape estimation as well as a method reaching this bound. 
To introduce the concept consider the curvature of a set of 

points in a window on the digital contour resulting from digit- 
izing the contour of a smooth object. The interest is not in the 
curvature of the digital pattern, but in the curvature of the 
preimage of the contour. The digitization causes an inherent 
loss of geometrical information. Other arcs (with slightly dif- 
ferent local curvature or position) may lead to exactly the same 
digital pattern. Thus, the precision of estimation is limited by 
the capability of the digital pattern to discriminate small varia- 
tions in the curvature of the arc. Here we are concerned with 
the ultimate precision one can reach. 

The first step in the analysis is to verify that the digital pat- 
tern indeed is the digitization of some circular preimage. Al- 
gorithms for this step are presented in [15], [21], [22]. One 
step further beyond the recognition is to render all centers of 
circular arcs which generate this pattern [ 101, not considering 
the radius of the arc. A complete characterization of all centers 
and radii is presented in [32]. This is done in [30] also, for a 
few very simple digital patterns only, using the theory of lo- 
cales of an object [ 131. The theory of locales is not applicable 
if only part of the boundary of the object is given. 

We start off in Section II with an analysis of the digitization 
process and give a type classification of all possible point sets 
of limited size. From there the full characterization of digitized 
circles for a given pattern is studied based on the results in 
[32]. From there (Section III) we will find expressions for the 
bound on precision and present an optimal shape parameter 
estimator for noise free digitized circular arcs. A very prelimi- 
nary presentation of the concept was presented in [27]. Finally, 
in Section IV practical bounds are calculated 

II. DIGITIZATION AND DOMAINS 

A. Digitization 

In this section we make precise how the digitization affects 
a curved object boundary. 

For the digitization of an object X we can consider two dif- 
ferent digitization models, Grid Intersect Quantization (GIQ) 
or Object Boundary Quantization (OBQ) [12]. GIQ is appro- 
priate for the generation of arcs in computer graphics, for im- 
age processing OBQ is the more common model. Thus we 
consider OBQ only; the results derived here, however, are 
applicable for GIQ with minor modifications. We further re- 
strict our attention to eight-connected grids, but this is also a 
choice not affecting the general idea in the paper; similar re- 
sults are obtained for four- or six-connected grids. 

For eight-connected objects pixels are on the boundary of 
the digital object if they are four-connected to a pixel in the 
background. The eight-connected contour of the object X is 
hence given by: 

DEFINITION 1. (Object Boundary Qu~ntiz~tion) 

L&Q(X) = {s E z2 Is E x A 3s’ E N4(s) : s’ P x}, 

where N&) is the set of points four-connected to s. We can 
order the points of &,&) in counterclockwise fashion [25]. 

So we write &&) = {sk}~, ,,,, *r, where m is the number of 
contour points in X and so an arbitrary starting point. 

In the practice of curvature or radius estimation a window 
of size n’ is moved along the points of Do&X), and from this 
set of points local estimates are derived (see 
Fig. l(a) where n’ = 6). The set of n’ points starting at point Sk 
is defined by: 

'f(', k* n') = tsj E DOBQ( '))j=k,...,((k+n'-l)modm), (1) 

where the modulo operator is used because we are dealing with 
closed, and therefore periodic, contours. 

Cl 

Fig. 1. (a) An original disk X with its object and background pixels. An example 
estimation wtndow defining the point set SP IS also indicated. (b) Freemancoding 
of the eight neighbors of a digital point. (c) Coding of the points of Sp using 
Freemancodes. An al&native circular arc is also given which in the estimation 
window would lead to exactly the same digitd pattern. 

The points of the pattern SP are the points just to the inside 
of the continuous boundary of X (Definition 1). These points 
have at least one four-connected neighbor not in SP. The set So 
of such associated background pixels is given by: 

SQ(S,)={s~Z21 s~XA~S’ES~:S’EN~(S)}. (2) 
In the sequel we will omit the parameters of SP and S,. The 
ordered pair of point sets (&, So) together constitutes the 
digital pattern S. 

The points of Sp are described using Freemancodes [ 111. 
For each point s, E Sp, the Freemancode J indicates which of 
the eight possible neighbors of si is the next point in S, (see 
Fig. 1). Note that the Freemancode is the coding of a vector. 
The vector (not its coding) is denoted by vs), where $ E [0, 71. 
The sequence Ef;)i=()*r with given starting point Sk and 
n = n’ - 1, is called the Freemanchain and denoted by F,,. Later 
we need the forward difference .4 5 = fi+i - 8, defined for 
i I n - 2. The forward difference is taken modulo 8 in such a 
way that AA E [-3,4]. 

To generate all valid Freemanchains of given length n, and 
hence all valid sets SP with n + 1 points, which might occur in 
the digitization of some circular arc, we consider the contour 
tracing algorithm as defined in [25]. Starting from a contour 
point so E X for which SO + v(0) I~X this algorithm considers 
neighbors of SO in counterclockwise order, starting from 
SO + v(O), until it encounters another element in X. Then the 
algorithm continues with this new element in X found and the 
previous pixel encountered which consequently is not in X. 

From the definition of the tracing algorithm it follows that 
for any points; E SP, with associated FreemancodeJ, the point 
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Si + v@ - 1) must be an element of S, Furthermore, if fi is 
even, the point Si + v(fi - 2) must also be in S,, as otherwise 
the tracing algorithm would have chosen this point as the next 
contour point instead of si + vV;). 

In the digitization of an arbitrary object a Freemancode fi 
could be followed by a Freemancode in exactly the opposite 
direction, i.e., AJ = 4. However,  the resulting pattern, (SP, Sp) 
can never be part of the digitization of a circular arc, which is 
easily verified using the results in Section 1I.B. 

For all the remaining cases we can give one continuous arc 
(using windowsize n = 2) which has the resulting pattern 
(SP, Se) as its digitization. Consequently, the possible Freeman 
differences which can occur in the digitization of a circular arc 
are given by: 

*” 
[-1, . ..( 31 (J; E to, 2,4,6)) 
[-2,...,3] (A ~{1,3,5,71) (3) 

By looking at all points not in the object X which the algo- 
rithm considers for an element si E SP and keeping only those 
points which are four-connected to a point in Sp we find that 
the background points qi associated with si are given by: 

I {s,+~ + Uj=2,3 vcA - j) 1 CX E lo,23 4,6) A 4 f 2) 

Isi+ + uj=0,2.3 V(A-j)) (f;~(0,2,4,61~&=22) 
qi = {Sj+) + Uj=3 ‘C~ -j)l (A E 11,3,5,71 A *A f 2) (4) 

Isi+, + Uj=,,3 v(X - i)) CA E IL 3,571 A *A = 2) 

and finally, 

sQ=nqi  (3 

The generation of the patterns is exemplified in Fig. 2. 
As there is a direct mapping from a Freemanchain F to the 

corresponding digital pattern (SP, So) we will not make a dis- 
tinction between the two in the sequel and will use the appro- 
priate format to describe the pattern. 

Fig. 2. (a) In an eight-connected boundary five different codes can follow 
Freemancode 0 originating at si. Due to the counterclockwise tracing of the 
contour an a-symmetric solution is found as the contour code 6 cannot follow 
code 0 because the code sequence 06 would be replaced by one code 7. Points 
identified as background pixels (i.e., elements of So) associated witif; are 
also shown. ForJ+t = 3 there is one more background pixel associated withA. 
h the other cases this point is either not part of SQ (fi E (0, 7)) or is Z%ssoci- 
ated withfi,t (fi E (1, 2)); (b) The six codes to follow an odd code with the 
one associated background pixel. The same special case forfi,t = 3 occurs. 

B. The Domain of Digitized Circular Arcs 

In the previous section we considered the generation of 
patterns S = (S,, Se>. Now we consider the continuous arcs 
which could have led to a specific digital pattern. 

The disk B and its closed complement B* are given by: 

DEFINITION 2. (Circular Disk) 

B(m,r) = (c E ZRp2 Id(m, c) I r) 

B*(m,r)={cEW2 Id(m,c)>r) 

The 3D-parameter space (m,, mu, r) of all centers and radii of 
arcs is denoted by R. 

The digitization operator DOB, (Definition 1) maps elements 
from the continuous space R into a pattern in the discrete 
space 2’. A continuum of various (but closely related) arcs 
co E R are indistinguishable alter digitization. Hence, there 
exists no inverse operator. Now, let (S,, SQ) be the pattern 
corresponding to an estimation window, positioned somewhere 
along the digital boundary resulting from digitizing disk B(w). 
The domain of S is the set of all arcs, which after digitization 
generate the pattern S somewhere in their digital boundary. To 
that end we define the domain operator 3, being the pseudoin- 
verse of the digitization operator. It gives the equivalence class 
of wa: 

DEFINITION 3. (Domain Operator) 

WpJ,)=( w  E Q  1 S, c  &sa UW)).  

To find the set of all preimages of circular arcs leading to the 
digital pattern S we need some of the results of [32]. The do- 
main (Definition 3) is given by: 

B&, Se I= I (m, r:) E Q  1 Sp c B(m, r)ASe c B*(m, r)}. (6) 

Note that, without loss of generality, we include the elements 
on the boundary of the arc domain as well, although those arcs 
touch an element in S,. 

The set of all centers m’ such that there exists some radius f 
with (m’, f) in the arc domain, i.e., the projection of B onto 
the 2D-plane, is the generalized Voronoi polygon V(Sp, SQ) 
1101, WI: 

V(S,,S,)={x IvpESp,qESQ:d(x,p)ld(x,q)}. (7) 

The region V@, q), where p and q are elements of SP 
and S,, is the halfplane containing p and bounded by the per- 
pendicular bisector of (p, q). It immediately follows that 
V(SP, S,) can be rewritten into: 

V(S,, se,= n V(p,q), (8) 
@P.Y~sQ 

showing that V(S,, Sp) is a filled (possibly unbounded) convex 
polygon. In Fig. 3, V(Sp, Sp) is shown for an example configu- 
ration of SP and S,. 

For later use, note that the generalized Voronoi polygon 
generalizes the more familiar closest point Voronoi polygon 
associated with s  E S which is given by: 

V(s, S) = (x IVs’ E S : d(x, s) I d(x, s’)}. 

In an analogous way, the furthest point Voronoi polygon as- 
sociated with s  E S is given by: 

V(S, s) = (x IV’s’ E S : d(x, s’) 2 d(x, s)}. 
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Fig. 3. The pattern S comprised of sets SP (black dots) and Sp (open dots) 
with the corresponding Freemanchain of four codes. The general ized Voronoi 
polygon V(Sp, SQ) (grey) is the set of all centers m  such that there exists a  
radius J with disk (m, r’) including all points of Sp and excluding all of SQ, 

i.e., (m, r’) is in the arc domain.  The small area indicated within V(Sp, Sp) is 
the curved polygon containing all centers ~tl for some fixed radius ro. The 
general ized Voronoi polygon is the union of such regions for varying r. 

W ith (8) we have formulated the set of centers of all pre- 
image arcs which generate the digital pattern. Before we pro- 
ceed with the characterization of the domain of centers and  
radii in Section 1I.D we distinguish a  number  of different do-  
main types based on  the set of centers only and  use it to derive 
a  bound  on  the radii of arcs which can be  analyzed on  the basis 
of a  point set descr ibed by  a  Freemanchain of length n. 

C. Characterization of Domain Type 

In the preceding section we investigated a  pattern (Sp, SQ) 
and  found disks including all of S, and  excluding all of SQ 
locally assuming a  convex object. However,  when estimating 
the curvature of an  arbitrary smooth object, moving an  estima- 
tion window along the digital boundary,  the original curve can 
locally either be  convex or concave.  In the latter case (7) can 
still be  applied, but with the roles of S, and  SQ reversed. 

As in general  it is not known beforehand which case applies 
both have to be  considered. Depending on  whether the do-  
mains for the two cases are empty or nonempty  four different 
types are distinguished. For each  nonempty  domain we con- 
sider r,,,,, the radius of the largest disk, which might be  finite 
or infinite. This leads to two more types of patterns (see 
Fig. 4). 

Fig. 4. Examples of patterns corresponding to chains of n  =  4  codes. 

The digital pattern is called straight if both a@,, Sa) +  0. 
and  !&Se, S,,) f 0. Such patterns should be  analyzed as  straight 
lines [6]. W h e n  both domains are empty the pattern is called 
noncircular as  no  circular arcs exist leading to the given pat- 
tern. In the other cases one  of the two domains is nonempty.  
W h e n  2&Y,, Se) is the nonempty  domain the digital pattern is 
called strictly convex if r,,,, f 00  and  infinite convex otherwise. 
Strictly concave and  infinite concave are def ined likewise. 

The  different types of patterns are related in the sense that 
by  addit ion of one  Freemancode to a  Freemanchain of n codes 
only a  limited number  of type changes  occur, following di- 
rectly from the fact that the domain for the Freemanchain with 
n  +  1  codes is a  subset  of the domain of the smaller chain. The  
possible changes  are su’mmarized in Fig. 5. 

.\ir‘dy C”“L(IYI ‘. 
7 

smcrry CO”C(IW 

mfmire ~onc(~ve ;3. lmfinile concI?w 

WI,gh, l rrraighr 

non clrcul”r -- f . non cwcular 

Fig. 5. The limited number  of admissible type transitions when a  new Free- 
mancode is added to a  chain of n  codes. 

These relations are used in conjunct ion with (3) to effi- 
ciently find all patterns in the set of all Freemanchains of 
length n  (denoted by  yT”) which can be  in the digitization of a  
circular arc. W ithout loss of generality we limit ourselves to 
patterns starting with Freemancode 0  or 1. Patterns which are 
self-intersecting are classified as  noncircular as  the tracing 
algorithrn discussed in Section II will never  generate such 
patterns. For the same reason patterns with partial over lap are 
classified noncircular, except  when the last point of the pattern 
equals the first point of the pattern indicating a  c losed bound-  
ary. Count ing the number  of different types found yields the 
type classification in Table I. 

TABLE I 
COUNTI~GTHETYPEOFAU.~X~"- 'FRIMANCHAINSOFL.ENGTH~ WITHO 

OR 1  ASFJRSTCODE,THECLASSIFICATIC~NOFTHEPATTERNSIS G~N.ALSO 
GIVENISTHEMAXIMUMRBCOGNIZABLERADIUSFORVARYlNGn,WHERE 

FOR CONCAVE PAWERNS THE OBVIOUS EXTENSION OF MRR TO SUCH 
PAITERNS ISUSED. 

It follows from the table that only a  small fraction of 
elements in 7’ lead to valid circular patterns. Furthermore, 
most of these circular patterns are either strictly convex or 
strictly concave.  

Now, consider a  cont inuous disk placed on  an  arbitrary 
posit ion with respect to the grid. W h e n  moving a  window 
along the digital contour of the disk we expect  to find strictly 
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convex patterns only. However,  when the windowsize is cho- 
sen too small the local pattern might be of the infinite convex 
or even straight type. This is undesirable and poses a limit on 
the radius of continuous circular arcs we can analyze with a 
given windowsize. To be precise, for a window with corre- 
sponding Freemanchains of size n the maximum recognizable 
radius MRR(n) is defined as the radius of the largest disk 
which at an arbitrary position is assured to yield convex-type 
patterns only. To find MRR we ha\ye to consider all straight 
and infinite convex patterns corresponding to chains in y’“and 
make sure that the radius of the original disk is smaller than 
the smallest radius in any such domain i.e.,: 

DEFINITION 4. (Maximum Recognizable Radius) 
MRR(n) = 

FE~":rype~E(i~$Le convcx,r r r r r ighf)  
(r,,,AF)17 

where rmin(F) is the minimum radius of any disk in the domain 
of the pattern associated with F. 

In Table I the maximum recognizable radius is given for 
n=3, . . . . 9. The MRR values show that only small radii can 
be recognized if the number of codes is limited. For larger IZ 
the MRR(n) tends to a linear relationship with n. 

D. Characterization of the Arc Domain 

In Section II.B the set of all centers of circular arcs which 
could lead to the given pattern S was shown to be the general- 
ized Voronoi polygon. In this section we consider the full extent 
of the domain in G! and present an algorithm for computing a 
characterization of the domain. As the emphasis in this paper is 
on the shape estimation part of the problem proofs concerning 
the characterization will be omitted. Here we give a summary 
only; interested readers are referred to [32]. We restrict our- 
selves to the convex case. However,  results are exactly the same 
if the roles of SP and Sg are reversed throughout this section. In 
fact, SP and S, can be two arbitrary disjunct point sets, they do 
not even have to be confined to the discrete grid. 

Now, consider the set of centers for a fixed value of r, de- 
noted by M,(SP, S,), which consequently is a subset of the 
generalized Voronoi polygon. This set is given by: 

DEFMMON 5. (Arc Centers) 

M,(S,,SQ)={m~R2 ISPcB(m,r)~SQcB*(m,r)}. 

Thus, the set of centers is bounded by a polygon with convex 
and concave edges in its boundary.’ For an example see Fig. 3. 
Clearly we have: 

Uw(s,3 se) = V(SPl se) (9) 
r 

The curved edges in the boundary of M,(S) form a sequence, 
where each curved edge is centered at some element in S. They 
are the points of the set which constitute the local constraint on 
M,. Hence, we have an ordering of the elements in S which is 
denoted by SE&,(S). 

I. This should not be confused with the digital pattern being convex or 
concave. If the digital pattern is concave the roles of Sp and SQ are reversed, 
but in the boundary of M#Q, Sp) still alternating sequences of convex and _ 

DEFINITION 6. (r-sequence) 

SEQ,(S) = ordered sequence of the elements of S, corre- 
sponding to the ordered sequence of edges in WQ).  

For example, in Fig. 3 we have SEQ,(S) = p2, p3, qo, ql, q3, q5. 
It should be noted that the r-sequence may actually contain a 
number of sequences each of which has a cyclic ordering. 
Further, note that not necessarily every element of S is part of 
the sequence. The remaining points of S do not play a limiting 
role on the arcs of radius r. 

Every three subsequent points (s’, s, s”) in the sequence de- 
fine one curved edge in the boundary of MXS). The point s  
defines the center of the edge and the points s’ and s” in con- 
junction with s  determine the endpoints of the edge. Whether 
the edge is convex or concave depends on whether s  E S, 
(convex) or s  E S, (concave). 

For varying r, the shape of d!(r) changes in a continuous 
fashion in the sense that the radius of the bounding edges in- 
creases. The composition of c%&, i.e., SEQ,(S) changes only at 
discrete values of r. At these values of r a new edge is added to 
the boundary or an existing edge will no longer participate for 
larger radii. The domain of a pattern S is fully characterized if 
all changes to SEQ,(S) are known for varying r. 

To compute the characterization we divide V(SP, SQ) in re- 
gions (in 2D-parameter space) such that every region is criti- 
cally determined by a specific s  E S. For the elements of SP we 
use the intersection of the furthest point Voronoi polygon, a 
structure well known in computational geometry [23], with 
V(SP, Sp). For elements in S, we use the closest point Voronoi 
polygon. 

DEFINITION 7. (s-Region) 

L(s) = 
1 

v(sp, s)nv(s,, se) (s E s,) 

V(s,SQ)nqs,~ SQ) (s E se) 

In Fig. 6. the s-regions are shown for a simple arbitrary 
pattern. 

The s-regions provide a disjunct covering of V(SP, Se), 
which will be called the Lp-diagram for set S, and the L,- 
diagram for set S,. 

Fig. 6. For every element of p E Sp the intersection of the generalized Voronoi 
polygon of S with the furthest point Voronoi polygon corresponding to p 
yields the s-region of p. For pl the corresponding s-region is highlighted (a). 
In a similar way (b) shows the s-regions of elements in SQ with the 9-region of 
91 highlighted. 

concave edges are found. 
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Changes in the r-sequence are related to straight edges and 
vertices in the two diagrams. To that ‘end we list all admissible 
transitions of the r-sequence, when increasing r (see Table II). 
For reasons of simplicity we make the assumption, common in 
Voronoi related results, that no four points in the pattern S are 
co-circular. 

TABLEII 
THISTABLEGIVESACIIARA~~ERIZATIONOFALLPOSSIBLEISOLATED 

CHANGESTO SEQ,(S)OCCURRING,WHEN ~PASSESTHROUGHONEOFTHE 
VAL~FSINTHEARCSPELTRUMOFS.THECHANGEISDETERMINEDBY THE 

CONFIGURATlONOFTHEPOINTSDEFININGTIIEMlMh4UMORMAXIMUM 
DISTANCETOANEDGEINTHE L,D- ORLQ-DIAGRAM DEPENDINGONTHESET(S) 
THEELEMENTSSTEMFROMANDONTHE TYPEOFTRIANGLETHEYFORMTHE 
SYMBOLSaAND~DENOTEA(POSSIBLY)EM~YSEQUENCEOFPOINTSFROMS. 

TI+ECHANGEOCCURSIF~PASSESTHROUGHP(T),THERADIUSOFTHE 
SMALLESTDISKCONTAINING T EVERYESSENTIALLYDIFFBRENTCHANGEIS 

GlVENAUNIQUELABEL..NOTETHATCASESwHICHONLY DIFFERINARE- 
FLE~TI~NOFTIIEPOINTS AREGIVENTHBSAMELABEL.FURTHER,NOTETHAT 
IFCASE14APPLJES,THECONTOURSPLITSINTOTWOSEPARATECOMFONENTS. 

This table and the Lp- and Le-diagrams form the basis for 
the algorithm to compute the characterization of a pattern S. 
The pseudocode for this algorithm is given in Fig. 7. 

The algorithm first constructs the Lp- and LQ-diagram. From 
there the edges in the diagram are assigned a direction, such 
that the distance to the points of which the edge is the perpen- 
dicular bisector is increasing. Edges which properly contain 
the point of minimum distance cannot be assigned such a di- 
rection and therefore such edges are split into two separate 
edges by introduction of an artificial vertex at the point of 
minimum distance. Thus, following an edge in its given direc- 
tion is always corresponding to increasing r. 

Recursively all vertices of the diagrams are treated, starting 
from the vertex defining the minimal disk. At every vertex 
with all incoming edges labeled, the change to the sequence of 

edges in &4,(S) is applied, (where the actual change is deter- 
mined from Table II) and then the algorithm has to choose the 
appropriate diagram to continue with. If the vertex considered 
lies in the interior of V(Sp, SQ) the same diagram has to be cho- 
sen. However,  if the vertex lies on the boundary of V(Sp, SQ) 
the choice depends on whether the center of the newly created 
arc is an element of S, or SQ. Then the algorithm treats all 
endpoints of the outgoing edges. If one of the diagrams con- 
tains artificial vertices, which do not define the minimal disk, 
some preprocesing has to be done as such a vertex does 
not have incoming edges and thus, would otherwise never 
be processed. 

Characterize4rcDamaill( POINTSET Sp, Sy ) 
begin 

compute Lp- and Ly-diagram from Sp. SQ 
@I: every edge e associated with case l&13 or 14 

mt~oducr artificial vertex u 01, e where minimal distance to e is reached 
smlfor 

FullowEdges.~~o,,lVerter( VERTEX v ) 
begin 

ti all incoming edges of v are labeled 
determine case corresponding to v 
apply cbalge to SEQ,(S) 
choose appropriate diagram 
~ wery outgoing edge e o v 

label e 
FollowEdgesFrom\‘trtex( EndpointOf( e ) ) 

gx& 
aI& 

end J’ FollowEdgesFromVertex */ 

Fig. 7. Algorithm for the computation of the characterization of the arc 
domain of a point set S. 

An example characterization of a pattern is given in 
Table III. 

III. SHAPE PARAMWER ESTIMATION 

In the previous section the arc domain of a pattern described 
in parameter space was considered; now we consider the esti- 
mation of the radius or curvature from the digital pattern re- 
sulting from digitizing a circular arc. 

A. The Geometric Minimum Variance Bound 

By definition all circular arcs in the arc domain yield the 
same digital pattern S. However,  only one estimate g^ for the 
shape parameter of the arc can be assigned to the pattern S. As 
the true shape parameter g varies over different elements in 
!B((s), an uncertainty is unavoidably introduced in the estima- 
tion of the shape parameter of the preimage. This is quantified 
in the domain variance. 

DEFINITION 8. (Domain Variance) 
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TABLE III 

CHARACTERIZATION OF THE ARC DOMAIN OF THE EXAMPLE PATIERN S USED 
IN RG. 6. SHOWN ARE THE ~-VALUES FOR WHICH CHANGES IN SEQ, (5’) 

OCCUR. THE POINTS TCAUSING THE CHANGE (WHERE r =p(T), THE CASE IN 
TABLE II CORRESPONDING ‘TO THE CONFIGURATION OF T, AND FINALLY THE 

CHANGING r-SEQUENCE. 

where p(uu’S) is the probability of o being the original leading 
to the pattern S and g((m, r)) = r when estimating the radius of 
Ihe arc and g((m, r)) = l/r for curvature estimation. 

We seek the estimator i,,(S) minimizing the domain 
variance, i.e., 

DEFINITION 9. 

g,,(S) = argmin (VAl$(S)) 
d 

This turns out to be the expectation g over the arc domain. 

THEOREM 1. 

i,“(S) = I&(S) PC@ / S)g(w)d@ 

PROOF. From the definition of the domain variance and j,,,, 
we have: 

i,” = arg mjn P(W / Wi -g(W)* dw 
8 

Rewriting the expression, taking constants not. depending on 
w out of the integration, and using 

I p(wlS)do=l 0 

yields: 

We are looking for a stationary point with respect to g^ of 
the above term within the curly braces. Taking the first de- 
rivative with respect to g^ and substituting g = g,, leads to 
the following condition on i,,(S) : 

%,“Wj oelB(S) p(w / S)g(w) dw = 0 

The second derivative with respect to i of the term within 
the curly braces is a positive constant (2) not depending on 
i . Hence, the stationary point is a minimum and thus, 

As the domain variance is a deterministic measure, the do- 
main variance of jj,, is the minimal variance one can reach for 
any possible estimator.* This should be discriminated from the 
bound on the minimum variance of parameter estimates from 
stochastic data [5] (MVB, or Cram&-Rao lower bound). In 
this bound the variance is a stochastic measure. The latter 
bound is a genuine lower bound only if one restricts the class 
of estimators to be linear and unbiased. Hence, we define the 
Geometric variant of the Minimum Variance Bound and de- 
note it by GMVB, 

DEFINITION 10. (Geometric Minimum Variance Bound) 
GMVB,(S) = VARkv (S) 

The bound quantifies the ability of the pattern S to discrimi- 
nate among variations in the shape parameter of the preimage 
of the arc, i.e., it expresses the maximum achievable precision 
in shape parameter estimation. 

To find an expression for the bound we make the following 
three assumptions: 

1) Features only depend on r 
2) There is no preferred position 
3) Radius and position are independent. 

Now, consider the following moment generating function 
for features g which only depend on r (assumption 1): 

T;(S)=j P(rlS)g’(r)dr, (10) r 
where the function j$rlS) is proportional to the conditional 
probability function on r given the pattern S. It gives the 
“number” of centers corresponding to this value of r, weighted 
by the prior probability on r. 

The equation has important applications [31]. First, con- 
sider T,‘(S), this gives a measure for the total number of pre- 
images of the pattern. It is the normalization factor needed to 
make i; a proper probability density function. Second, it al- 
lows to express g,, and GMVB as: 

T;(S) L =- ‘g’ (9 
r,“(S) 

GMVB, (S) = -o - 
‘* (S) 

(11) 

In the next section we consider the computation of Ti (S). 

B. The Computation of the Moment Generating Function 
We seek the probability on the radius r, given that the dig- 

itization of the arc leads to the digital pattern S. We assume no 
a priori information on position (assumption 2). Thus, within 
the domain of S, the centers have a uniform distribution and 
the probability on r is proportional to the area A in domain 
space of the set of arc centers M,(S). For the time being we 
leave open the choice for the prior distribution on r. Using the 
independence of position and radius (assumption 3) we find: 

2. In [7] the equivalent theorem for straight lines is proved in a different 
way. In their proof they need to make the assumption that the estimator is 
linear. Our result shows that this assumption is not needed. 
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p(r / 9  = iW~( M , (S)), (12) 
and  it follows that we have to find an  expression for the area of 
M,(S). 

The  boundary  of the set M,(S) is a  polygon with curved 
edges.  Let the vertices of M,(S) be  given by  vi and  let $i be  the 
size of the edge  (in radians) connect ing vi and  vi+i; then the 
area of M,(S) is expressed using dot products as  [26]: 

a(M,o)=C{~(Vi)‘(vi+l)~ *+r’($i -SinOi)} (13) 

with 

0, ( Y = 
-X 1 

The first term of the equation, summed over  all i, gives the 
area of the straight polygon through the vertices vi. The  second 
term corrects for the area of the segment  between the curved 
arc and  the chord from vi to v;+l, denoted by  (vi, vi+i). The  area 
of the segment  is added  if the curved edge  is convex 
(the center is in S,) and  subtracted if it is concave (the center is 
in Se). 

W e  obtain a  summation over  contributions from individual 
arcs in the boundary  of M,(S). As noted, each  curved edge  in 
M,(S) is def ined by  three subsequent  points in SEQ,(S). Let 
(s’, s, s”) be  such a  triplet of points and  recall that s def ines the 
center and  s’ and  s” in conjunct ion with s determine the start 
and  endpoint  of the edge.  

The  start point v’ of the arc lies on  the perpendicular bisec- 
tor of s’ and  s. To  be  precise, the start point is an  intersection 
of the circles centered at s’ and  s with radius r. The  two inter- 
sect ions of these circles are given by  (see Fig. 8(a)): 

v,i(r)=s++(s’,s)k 
Jr’ -#s, s’)1j2 

lb’7  S)I II 
(14) 

In [32] it is shown that whenever  s, s’ are in the same set of S 
(i.e., s, s’ E SP or s, s’ E Se) one  should take the minus case, 
otherwise one  should take the plus. To  find the end  point v” 
one  simply replaces s’ by  s and  s by  s”. 

The  size of the arc connect ing v’ to v” is calculated as: 

q.5,~,,~- (r) =  cos 
-, (s,v,~,(r))~(s,v,~~(r)) 

t r2 I 
(13 

The geometr ic construction used to derive the equat ion is 
examplif ied in Fig. 8(b). 

The  contribution a  of the triplet (s’, s, s”) to the area of 
the curved polygon M,(S) is given by: 

~((s’,s,s”)) =  3v,~,,~(r).v,~,~-(r)~ 

~~r2(0,~,,-(r)-sin~~~.~,~,~(r)) 
(16) 

Now, let x(5’) be  the set of all triplets defining edges  in the 
boundary  of M,(S) i.e., all triplets obtained by  (cyclically) 
taking three subsequent  points in SEQXS). Then it follows 
from (12) that: 

P(rlS)=F(r) C -%(a> 
as%(S) 

I , 
j ,#’ 
I’ 

v,,’ I 

p$:p, l q  p&4cqv2 

pandp’ : 
bisector of 

- pandq 

(17) 

Fig. 8(a). The geometric construct used in (14). The local sequence of edges 
in the boundary of M,(S) is given by p’. p. 9. This triplet defines the curved 
edge centered at p, starting at v’ and ending at v”. The start point v’ is on  the 
perpendicular bisector of p’ and p to the left of @ ‘, p) as p’ and p are both in 
Sp. The endpoint  v” is on  the perpendicular of p and 9, to the right of @. 9) 
asp E Sp and 9  E SQ. The vector sum resulting in v” is indicated. Any other 
combinat ion or configuration of points in a  triplet defining an  edge is treated 
likewise. (b) The angle Q between @, v’) and @. v”) depends on  r. It is used 
in (15) to calculate the area between the straight chord and the curved edge 
from v’ to v’. 

Every triplet of points defining an  edge  in the boundary  of 
M,(S) does  so for a  distinct range of r-values, see Section B. 
Thus,  the term under  the integral sign in the moment  generat-  
ing function (10) changes  (for increasing r) whenever  an  edge  
is introduced in the boundary  of M,(S) or one  annihilated, i.e., 
whenever  a  change to SEQ,(S) occurs. It is more convenient  to 
rewrite the equat ion in terms of the triplets defining edges  and  
their associated minimum and  maximum radius. So, let A(S) 
be  the set of all triplets occurr ing in SEQ,(S) for some value of 
r and  let r,i,,(a) be  the value of r at which the edge  def ined by  
triplet a  occurs in MXS) and  let r,,,, be  the value at which the 
edge  is annihilated. 

W e  can now summarize the main theoretical result of this 
paper  in the following 

THEOREM. 2. 

where Ti is the moment  generat ing function (10) for the fea- 
ture g(r) (e.g., the radius) to be  estimated. p(r) is the a  priori 
distribution of r. A(S) is the set of all triplets of points defining 
edges  in M,(S) for some value of r and  a(a) is the contribu- 
tion of triplet a  to the area of M,(S), which is nonzero only for 
r E  [rh(a), r-WI. 

The characterization of the arc domain presented in the pre- 
ceding section provides us  with all the information needed  to 
compute the set A(S) and  the associated rmin and  r,, values. 
From there a  numerical integration method is used to calculate 
the .moment generat ion function using Theorem 2. This in turn 
allows for the computat ion of the optimal estimator g,, and  the 
GMVB, using (11). 

In Figs. 9  and  10  the lower bound  and  optimal radius esti- 
mate are illustrated for example patterns using a  uniform a  
priori distribution on  r. 
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C. The Positional Error 

The Geometric Minimum Variance Bound gives a bound to 
the precision of the measurement for a given pattern of points. 
Now consider the estimation of shape properties from a given 
continuous disk of radius r. 

When the continuous disk is placed at some fixed position 
on the grid and a window containing n Freemancodes is moved 
along the resulting digital contour, optimal estimates of the 
radius or curvature will vary for different parts of the contour. 
Further, when the disk is placed at different positions with 
respect to the grid, the optimal estimates in the windows vary 
as the digital contour of the disk is not the same for each posi- 
tion. As the measurement error for a pattern only depends on 
the codes in the Freemanchain and not on its start position we 
can fix the start position of all Freemanchains to the origin and 
see whether it contains arcs of radius r. The expected posi- 
tional error is thus defined as: 

DEFINITION 11. (Positional Error) 

E;(r) = C  p(F*lr)(g(r)-&F*))2 
F’EF’” 

As the centers are uniformly distributed we find the following 
conditional probability for a specific Freemanchain F. 

p(Fl r) = JWf,(F)) 
c F,EFn -aW,(F*N 

(18) 

The estimator i,, has the smallest expected positional error 
(for varying r) among all possible estimators: 

PROFQSITION 1. 

c!Lw = arg mjn 
R 

{Jr p(rV$‘(r) dr] 

I , 
pWS)I I 

Fig. 9. The example digital pattern S of Fig. 3 with the largest and smallest 
disk which locally are mapped to the pattern S (a). In (b) the probability on 
the radius with the optimal radius estimate r.,,,. Adding one point to pattern S 
leads to a smaller volume in the arc domain (c). Hence, the radius estimate is 
more precise (d). 

Fig.10. The digitization of the disk with radius 1.9 centered at the origin (a) 
and the digihzation when the disk is positioned at (0.2, 0) (c). Although the 
preimage of both patterns is equal, different domains are found. Hence, dif- 
ferent optimal radius estimates and precisions result (b)(d). 

PROOF. From (11:) we have: 

c p(F*lr)(g(r)-j(F*))2 dr(19) 
FIEF” 

In order to change the order of integration and summation 
we apply Bayes’ rule to p(F/r) and find: 

p(F, r) = P(r ‘F)p(F) 
r(r) 

Let again p(r) denote the unnormalized a priori probability 
on r. Then the terms in the equation are given by: 

F(rW(M,(F)) 
p(r’ F)= Jr p(r)A(M,(F))dr 

Jr F(r)fi(M,(F))dr 

p(F)= ~,.,,.(I, p(r)A(M,(F*))dr} 

Rearranging terms we find: 

-a(WF)) 
14~‘~)~ Cp,,n{I, p(r)d(M,(F*))dr} 

By changing the order of summation and integration (noting 
that the right hand side is a constant times -a(M,(fl) we find: 

J r p(r)Ei(r)dr DC c  (Jr P(r)Aa(Mr(F*))(g(r) - i(F*))2 dr} 
F*E_T” 

As we have a sum of positive terms the total expected posi- 
tional error is minimized if each individual term is mini- 
mized. It follows from Theorem 1 that each term is mini- 
mized if g,,(F) is used which proves the proposition. 

ri 
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Hence,  the positional error Ei for estimator i,, quantif ies 
the ultimate bound  on  the error for shape parameter  measure-  
ment  on  the arc when placed at random positions. 

To  study the error it is convenient  to split the error in a  bias 
and  a  deviation part. The  positional bias tells us  how the dig- 
itization affects the apparent  shape of the cont inuous preimage. 

DEFTNITION 12.(PasitionalBias) 

BIAS"(r) = E {&t,(F)}-g(r) 
where & denotes expectat ion over  all e lements in yT”, i.e.,: 

~(h}= c p(Flr)h(F). 
FEY 

The positional deviation quantif ies the ultimate precision with 
which we can measure the shape parameters of the arc. 

DEFINITION 13. (Positional Deviation) 

{S,,(F)*)-(&{i,,(F)})* 

IV. RESULTS 

W e  calculated BIAS”(r) and  DEV”(r) for n  =  7, 8, 9  with 
r I MRR(n) for the convex patterns. The  results are summa- 
rized in Fig. 11, for estimation of the radius of the predigit ized 
arc, and  in Fig. 12  for curvature estimation. Both were calcu- 
lated with uniform priors on  the feature to be  estimated. They 
cannot  be  directly compared as  the priors on  the radius of the 
original arcs are different. 

From the figures we conclude that the observed radius of 
the arc increases if we use too few Freemancodes in the chain 
as  confirmed by  the curvature estimates obtained. Curvature 
estimates are unbiased, a  consequence of the fact that for cur- 
vature estimation the a  priori probability on  r is proport ional to 
l/r2 and  hence  favors smaller radii. As expected,  more precise 
estimates are found when n  is larger. However,  for the range of 
radii used,  the deviation for n  =  9  is still between 2 %  and  9 %  
in both radius and  curvature estimation. To  find better esti- 
mates, one  needs  larger values of n, hence  considering larger 
arcs. As an  alternative one  can use denser  sampling but then 
one  has  to change n  accordingly to keep the arc in the window 
of the same size. 

Now consider the estimation of the radius r of a  disk when 
given its full digital boundary.  Then  n  is no  longer constant but 
equals the number  of points in the digital boundary  which 
varies when the disk is p laced at random posit ions on  the grid. 
The  values for bias and  deviation are der ived from Monte 
Carlo experiments placing the disk at random posit ion with 
respect to the grid a  1,000 times. Results are presented in 
Fig. 13. 

It follows that for a  full disk the estimation of the radius is 
virtually unbiased. Deviation is below 1 %  if the radius is 
larger than four grid units. 

r (in gnd unit! 
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Fig. 11. The BIAS”(r) and DEL”‘(r) for radius estimation from (open) circular 
arcs with r in the range 2.0 to MRR(n) and n  =  7, 8, 9. Both expressed as 
fraction of the true radius. 
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Fig. 12. The BIAS”(r) and DEV”(r) for curvature estimation from (open) 
circular arcs with r in the range 2.0 to MRR(n) and n  =  7, 8, 9. Expressed as 
fraction of the true curvature. 

. . bias 
_ deviation 

-(III grid units 

Fig.13. Optimal estimation of the radius of a  full circular disk, when repeat- 
edly placed at random positions with respect to the grid. The bias and devia- 
tion are indicated, both relative to the true radius. 

V. SUMMARY ANDCONCLUSION 

In this paper  we have considered two topics. First, we have 
character ized the set of all cont inuous circular arcs which give 
rise to a  given digitization pattern. Second,  we have derived 
optimal estimates for the curvature and  radius of the continu- 
ous  arc which due  to the inherent loss of information in the 
digitization process cannot  be  improved. 

The  local curvature or local radius of an  object is est imated 
by  moving a  window along the digital contour. Optimal 
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estimation can only be  achieved if all circular arcs which give 
rise to the specific digital pattern in the window are consid- 
ered. The  set of parameters of arcs which give rise to the pat- 
tern is called the arc domain of the pattern. 

A domain can be  classified as  one  of six types (straight, 
strictly convex,  infinite convex,  strictly concave,  infinite con-  
cave, and  noncircular) which is calculated for all possible 
Freemanchains of length n  = 3, . . ., 9  (see Section 1I.C). Based 
on  the domain types one  can find the maximal recognizable 
radius MRR(n) which poses a  limit on  the radius of cont inuous 
arcs one  can estimate using a  window of n  Freemancodes.  The  
type classification can further be  used to decompose a  given 
digital contour of an  object into straight, convex,  and  concave 
parts. A full characterization of the domain of any  specific 
digital pattern in (x, CR,Pr, ycpntcr, radius)-space is given in 
Section I1.B based on  the changes  in the sequence of curved 
edges  bounding the set of centers in the domain for varying r. 

The arc domain of a  given digital pattern by  definition is the 
set of all predigit ized arcs which are mapped  to this pattern. As 
the radius of elements in the arc domain varies, an  unavoidable 
error is made  in the radius or curvature estimation. This error is 
bounded  by  the equivalent of the CramtrlRao bound  expressing 
the inf luence of digitization rather than stochastic noise. It is 
called the Geometr ic Minimum Variance Bound (Definition 10). 
Computat ion of the GMVB using the characterization of the arc 
domain is based on  the moment  generat ing function given in 
Theorem 1. The  unique estimator achieving this minimal vari- 
ance  is the expectat ion of the shape feature over  the arc domain 
(Theorem 1). Theorem 2  again provides the basis for comput ing 
the estimator in terms of the characterization. 

In contrast to methods commonly used (see [34]) the 
method presented in this paper  allows to incorporate prior 
knowledge on  the distribution of the shape parameter  of the 
circular arcs, always achieving optimal precision. The  shape of 
the prior distribution is arbitrary. In the absence of other prior 
information a  uniform distribution of the feature can be  as- 
sumed (as is used in this paper).  

Practical bounds  on  the precision in measur ing curvature or 
the radius using uniform priors were presented in Section IV. 
It is found that the relative deviation in the digitization limited 
optimal shape parameter  measurement  of arcs placed at ran- 
dom posit ions with r I 6  grid units, using a  window of n  =  9  
Freemancodes,  is between 2 %  and  9%. For digitizations of full 
disks (and hence  varying n) the deviation is below 1 %  for r 2 4 
grid units. 

The  bounds  derived cannot  directly be  compared to the 
more practical curvature measurement  methods discussed in 
[33], [34]. In the reference arcs of larger radii were considered 
and  larger number  of Freemancodes were used with a  weight- 
ing function on  the points in the window. However,  the pre- 
sented method does  not suffer from any  of the problems asso- 
ciated with the other estimators which ignored the two dimen- 
sional character of the curve and  the special structure of digit- 
ized circular arcs. The  per formance is also better than arc fit- 
ting as  full knowledge of the digitization process is incorpo- 
rated. The  precision of estimation of the new estimator, even 
when using small chains, clearly supports these observations. 

In practical situations, the theoretical best estimator can be  
calculated from the digital pattern directly or it can be  pre- 
computed for all patterns of a  given size and  stored in a  lookup 
table. For chains of nine Freemancodes,  the table has  about  
4,500 entries. All other 33,000,OOO chains of nine codes are 
not the digitization of a  circular arc. 

This method is particularly useful for problems where some 
prior knowledge on  the distribution of radii is known and  
where there is a  noise-free sampling. It can lead to optimal 
per formance for a  given measurement  error. For example, in 
the surveil lance of circular holes in industrial objects perform- 
ance will be  critical, the sampling can be  ar ranged such that it 
is noise-free, and  the distribution p(r) is known. Under  these 
circumstances the grid size can be  reduced to the bare mini- 
mum given the maximum tolerable measurement  error. 
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