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Abstract 

We present a software tool for the analysis of 3D-line shaped objects in a 3D grey valued image. We discuss the extraction of 
the object from the image, the measurement of its shape features and its display. 
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1. Introduction 

In 3D, one can distinguish objects bounded by a 
surface, such as cells, organs, and the skull, from ob- 
jects which are tubular shaped. Examples of the latter 
are condensed chromosomes, blood vessels, and 
transport channels. The shape of the tubular objects 
is best described by the shape of the axis of  the object 
which is a 3D-spatial curve. 

Segmentation of such objects differs from the more 
usual 3D-volume segmentation as in, for example, 
Strasters and Gerbrands ( 1991 ). We use the "hom- 
ing cursor", as described in Houtsmuller et al. (1993), 
to extract the axis of  the line-shaped object from the 
image. This cursor automatically finds the axis be- 
tween an interactively indicated start and end point, 
without reference to the surface bounding the object. 
The method assumes that the axis of  the object is the 
local extremum of intensity. It traces the extremum 
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until the indicated end point is reached. I f  in the 
course of the tracing, the algorithm reaches a point 
where there are two possible paths, it asks for inter- 
active guidance from the user. The cursor yields an 
ordered set of 3D-points with sub-voxel accuracy as 
output. 

The next step in the analysis is the shape measure- 
ment from the points on the axis found. The shape of 
this curve is captured by its bending and its twisting 
(related to the torsion of the curve). Estimation of 
these properties is a difficult task as it requires accu- 
rate estimation of higher order derivatives. Few 
methods for shape estimation of 3D-curves are found 
in the computer vision literature. In Mokhtarian 
( 1988), only the theoretical aspects of the evolution 
of curves from progressive Gaussian smoothing of the 
coordinates are considered. As in the 2D-case (Lowe, 
1988), Gaussian smoothing leads to a considerable 
shrinking of the curve, which cannot easily be cor- 
rected for as in the reference, because the shrinking 
in 3D depends on both the bending and the twisting 
of the curve. Practical aspects of 3D-curve shape 
are considered in Kehtarnavaz and deFigueiredo 
(1988a). They use one measure, the "structural vari- 
ation" of the curve, which incorporates both the 
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bending and twisting properties of the curve. Points 
of high structural variation are used in the reference 
to define breakpoints on the curve. These break- 
points are the basis for the reconstruction of 3D-sur- 
faces (Kehtarnavaz and deFigueiredo, 1988b). In 
Kehtarnavaz and deFigueiredo (1988a) the influ- 
ence of noise is considered, but only its effects on the 
position and number ofbreakpoints. 

The last step in the analysis is the display of the 
axis of the object. Displaying a 3D-curve to reveal its 
winding shape is a difficult visualization problem. 
Live rotation renders the best perceptual clue, but is 
of little help in hard copy publications. For that pur- 
pose we prefer a visualization offering a set of stand- 
ardized orthogonal and simultaneous views. Such 
visualization captures the visual aspects of the object 
in a standard way. 

A software tool for the analysis of line shaped space 
objects should contain all three steps mentioned 
above. In this paper we consider the shape estima- 
tion and visualization, we do not go into detail on the 
curve extraction (see Houtsmuller et al., 1993). 

2. The shape of 3D-curves 

We need some concepts from differential geome- 
try, in particular the geometry of space curves. For 
more details, the reader is referred to text books 
(Struik, 1984). Let x(s) denote an arbitrary 3D-curve 
where s is the arclength parameter along the curve. A 
frame field on x is a set of 3 vectors {e~, e2, e3} defined 
for every point on x such that the vector ei has unit 
length and is perpendicular to each of the vectors ej if 
i~j. For description of the space curve shape, the 
Frenet frame, see Fig. 1, is the natural choice. The 
first vector of the frame is the tangent t(s) of the 
curve. The second vector n(s) is the unit normal of 
the curve. The third vector is the binormal b(s) de- 
fined as the vector product of the tangent and the 
normal. 

The shape of  the curve is completely characterized 
by the changing of the Frenet frame {t, n, b} when we 
move along the curve. The changes are given by: 

t ' -~  Kll , 

n ' =  - -Kt  + zb , 

b 
t 

Fig. 1. The Frenet frame on a curve is a local frame of reference, 
defined by the tangent t, the normal n and the binormal b. 

b ' : - T n .  (1) 

The functions x(s) and z(s) are the curvature and 
the torsion of the curve, respectively. The curvature 
measures the deviation of the curve from being 
straight, whereas the torsion measures the deviation 
from being a planar curve. The fundamental theorem 
in the differential geometry of curves states that if 
curvature and torsion are known as function of arc- 
length then we can reconstruct the curve up to a rigid 
transformation. Hence, the curvature and torsion 
capture all of the shape information of the curve. For 
the arclength parameterized curve they are given by: 

(x'x"x'") 
x =  IIx"ll, z =  x2 (2)  

where (x 'x"x ' )  is the triple scalar product, whose 
absolute value gives the volume of the parallelepiped 
spanned by the three derivative vectors. 

Note that curvature is always positive, in contrast 
to the curvature of curves in 2D where it is given a 
sign distinguishing convex from concave regions. For 
3D-curves the notions concave and convex do not 
apply as one cannot discriminate between the inside 
and outside of the object as in the 2D-case. We de- 
scribe the bending properties of the curve by the local 
bending energy BE. 

At positions where the curvature vanishes, torsion 
is not defined. Therefore, we prefer to use the deriv- 
ative volume as a measure TW for the twisting of the 
curve. This measure has the same sign as the torsion, 
but at (almost) straight parts of the curve it is forced 
to zero. So we have: 
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B E =  l~ "2, T W =  x2z . ( 3 ) 

The local behavior  of  a curve is revealed by consid- 
ering the movement  of  the Frenet frame along the 
curve, expressed in its own coordinate frame. In the 
Frenet frame with coordinates (xf, yf, zf), the follow- 
ing relationships can be derived from Eq. ( 1 ) by tak- 
ing the first-, second- and third-order derivative with 
respect to t, n, and b, respectively, see Struik ( 1984): 

x } =  1, y~=0 ,  z ~ = 0 ,  

x~ '=0,  y ' f '=x,  z [ = O  , 

" =  - , z f  = ~ : r .  ( 4 )  

The formulae indicate that in first order, the 
movement  o f  the curve is along xf, that is the tangent, 
only. In second order, the movement  is in the direc- 
tion o f  the normal only. These two movements  fol- 
low from the definition o f  the Frenet frame, really. In 
third order the torsion comes in. In lowest-order ap- 
proximation for the small changes of  s, we arrive at 
the following well known relations between the Fre- 
net coordinates for any smooth curve: 

2r2 3 K ~ _~Z ~ z~=_~xy~ .  (5) yf = ~  Xf, Zf-- 6 Xf,  

Consequently, the local projection of  any smooth 
space curve on the tangent-normal  plane is a para- 
bola with width determined by curvature. In con- 
trast, the projection on the tangent-binormal  plane 
is a curve of  degree 3. Depending on the sign of  r the 
curve goes through the local origin with negative or 
positive slope. The projection on the normal-binor-  
mal plane is a curve with a cusp in the local origin 
(see Fig. 2a ). 

The approximations are valid only if both xve 0 and 
r ~ 0 .  If  x = 0  the curve degenerates locally into a 
straight line and the Frenet frame is not defined. 
However, if the torsion vanishes and the change of  
torsion does not, we need to consider higher-order 
terms in the local approximation of  the curve. In 
Worring (1993) it is shown that the projections 
become: 

K 2 /C"( r 2"r' 
y f = ~ X r ,  z f = ~ x  4, zf=~y 2. (6) 

It follows that the characteristics o f  the projection 
in the tangent-normal  plane do not change as com- 
pared to the case of  non-vanishing torsion. However. 
in the tangent-binormal  plane the curve does not 
change sign in the origin any longer, but is locally 
either positive or negative depending on the sign of  
the change of  torsion. In the normal-binormal  plane 
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Fig. 2. Schematic drawing of the projections of an arbitrary curve on the planes defined by the local Frenet frame for a curve which locally 
has r#0 (a) and a curve with r=0 (b). 
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the curve again has a cusp, but the curve leaves the 
cusp the same way it entered (see Fig. 2b). These as- 
pects of  the curve will be used in the display of the 
3D-curve. 

3. Curve approximation and shape measurement 

The result of the line finding algorithm is given as 
a set of 3D-digital points {vi}~= 1 ....... representing some 
continuous curve x. To be precise: 

(vi)i=l . . . . . .  = x ( i )  + ~( i )  . (7)  

The vector ~ (i) gives the deviation of the observed 
position of a point from its true position on the curve. 
The characteristics of  ~ depend on the method of de- 
riving the curve from the image. For the "homing 
cursor", which measures positions with sub-voxel ac- 
curacy, systematic influences in the noise due to dig- 
itization effects are neglectible. So, adoption of a sto- 
chastic noise model is appropriate. 

Given the noise-corrupted points v, our goal is to 
find estimates {/,~, 6} of Athe local Frenet frame and 
shape estimates B E  and T W .  To that end one needs 
accurate estimates of  the derivatives of  the curve up 
to third order. 

We pose the shape estimation problem as a curve 
estimation problem: find a curve a~ approximating the 
"true" curve x as faithfully as possible. From there, 
shape is calculated from the parameters of the fitted 
c u r v e .  

In order to calculate the approximation one has to 
define a mapping t(. ) associating with every/-value 
a parameter value t~ (commonly called a knot).  It de- 
fines the correspondence between a data point and 
one point on the estimated curve. I f  the points x(t~) 
arise from some physical phenomenon where param- 
eter t measures time for example, the choice of t~ is 
obvious. This is less so in the case of  a space curve 
derived from an image. Ideally, t equals the arclength 
parameter of  the underlying true curve. This true 
curve is not known, however. We use the arclength of 
the polygon through the points v: 

i 
t ( i ) =  ~ I I v j - v j - l l l .  (8) 

j=2  

In the absence of noise the estimated curve should 
interpolate the data, i.e. £¢(t ( i ) )=vi ,  in the smooth- 
est way. I f  noise is present, however, such an inter- 
polating curve could yield unreliable shape esti- 
mates. It is then natural to introduce two terms that 
must be minimized simultaneously, one for the dis- 
tance between corresponding points and one which 
favors smooth estimates with a parameter 2 regulat- 
ing the relative weight among the two. For 1 D-func- 
tion estimation it is common to bound a high-order 
derivative of the curve to control smoothness (Shah- 
raray and Anderson, 1989; Woltring, 1986). Extend- 
ing the methods in the references, we can pose the 
curve estimation problem as follows: 

~a =arg  min I l f c ( t ( i ) ) - x i l l  2 
n i  1 

t(n) } + (St) 2 , n - ~  IIx(m)(u) II 2du 
t(1) 

(9) 

where 8 t = t ( n ) - t ( 1 ) .  This term is introduced to 
make the estimated shape for fixed 2 independent of 
linear rescaling of the parameter t (for example, to 
normalize to the interval [ 0,1 ] ). The approximating 
curve ~ is restricted to the class of functions having 
m -  1 continuous derivatives and square integrable 
mth derivative. 

The solution of Eq. (9) can be computed indepen- 
dently for each of the coordinates once the mapping 
t ( .)  is computed from Eq. (8). Each coordinate yields 
a smoothing spline of  order 2m, with simple knots at 
every t ( i ) .  Between knots, such a spline is a poly- 
nomial of degree 2 m -  1 at the most. At the knots the 
polynomials are joined such that the first 2 m - 2  de- 
rivatives of  the curve are continuous. At the end 
points of the interval the derivatives of  order /> m 
vanish. 

There are two parameters to be set at this point: the 
parameter m governing the order of  the curve 
( = 2m),  and the smoothing parameter 2. 

The choice of  m is a compromise between the flex- 
ibility of  the spline curve and the control over its 
smoothness. Using high-order splines allows faithful 
tracing of all possible bends and twists of the curve. 
Lower-order splines, however, are less affected by 
noise in the data and hence one has better control over 
their smoothness. Cubic splines (m = 2 ) are not flex- 
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ible enough for space curves as torsion vanishes at 
every knot t~. With m = 3  the curve has smoothly 
varying curvature and torsion at the knots, but at the 
end points the torsion is forced to zero. We therefore 
use m--  4, i.e. an 8th order spline, which is the lowest- 
order spline having smoothly varying shape with no 
predetermined curvature or torsion at end points. 

In the current program the value of 2 is set inter- 
actively. Automated methods based on cross-valida- 
tion (Shahraray and Anderson, 1989) do not apply 
in the current context (see Worring, 1993). In the in- 
teractive setting it is important for the user to have 
an immediate visual feedback on the consequences 
of using this particular value of 2. To that end, for a 
chosen 2, the system shows both the estimated shape 
as well as the smoothed curve. It is our experience 
that one quickly chooses a reasonable value of the 
parameter. 

The result of approximation, captured in the points 
ci.~ and the knots t~, for properly chosen 2, is an ana- 
lytical representation of the curve best approximat- 
ing the data. Hence, the Frenet frame and shape fea- 
tures can be calculated analytically. 

4. Experiments 

4. I. Experimental setup 

We performed Monte Carlo experiments to estab- 
lish the quality of the curve approximation as pre- 
sented in the previous section for the purpose of shape 
measurement. The natural test curve for experiments 
is the helix which has constant curvature and torsion. 

In its standard form (winding along the z-axis) the 
helix is given by: 

x (u )  = (a cos u, a sin u, bu) , (10) 

where a is the radius of  the cylinder the helix clings 
to, and b is the pitch of the helix. The curvature and 
torsion are given by: 

a b 
/~=a2+b2 , r=a2 + b 2 . ( 1 1 )  

The length 1 of the path traversed by the helix for 
u~ [Uo, u~] equals 

l= ( ul - U o ) ~  2 . (12) 

The equation is used to obtain N approximate unit 
length samples on the curve (i.e. h ~ hgrid) for param- 
eter range u=u~-uo.  Using b=va we find the 
relations: 

N 
b=ua .  (13) a = u ~ ,  

In the experiment three helices of different radius 
and pitch are employed, defined by v=-~, 1 and 3, 
respectively. With u=2n  and N =  50 we find the re- 
spective (a, b) pairs: (7.55, 2.52), (5.63, 5.63), and 
(2.52, 7.55). The axes of the helices have one arbi- 
trarily chosen orientation (see Fig. 3). 

We perform Monte Carlo experiments on the basis 
of  Eq. (7), with the following expression for the noise: 

~ ( i )  = ~  cos ~ n(i)  +ri sin ~- b( i ) ,  (14) 

where ?g is zero-mean normally distributed indepen- 
dent noise with standard deviation y. The angle ~ has 
uniform distribution for each i. The parameter y vat- 
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Fig. 3. The three helices used in the experiment,  corresponding to different ratios v. 
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Fig. 5. The average displacement of the estimated points on the smoothed curve with respect to the corresponding true data points, i.e., 
prior to the addition of noise. Results are shown for the three helices l,= ~, 1 and 3. 

ies between 0.0h and 0.5h. In Fig. 4 an example noisy 
curve is shown. K =  100 realizations of  the noise are 
used for each experiment. For each realization the 
curve is reparameterized by the length o f  the line 
through the noisy datapoints. 

The measure Z is the square root of  the average dis- 
placement of  all K . N =  5000 datapoints with respect 
to their position in the smoothed curve. To avoid end- 
point effects the helices are extended to both sides 
with one full period 
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x 2 ( 7 )  = II v ,~  ( i )  --~,r (t,)II 2• ( 1 5 )  

In Fig. 5 the results are shown for different values of 
2. 

For every datapoint we calculate the shape descrip- 
tors (denoted by BE and TW, see Eq. (3) ) from the 
fitted curve. As a measure of performance of the shape 
measures the bias B and the deviation SD in the shape 

estimate are defined by: 

l K N 

B~(T) =K-~ i~ ,  j=~ {BE~,~(t,I-BEt~ue}, (16) 

SD~(Y)=K--.N £ ~_, { B A E a , , ( t i ) - B E a . y }  2 , (17) 
• i=I j = l  

where BE is the average estimate obtained for the 
given 2 and 7• Formulae for TW are likewise. Results 
are shown in Figs• 6-9. 
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Fig. 9. Deviation in measuring the derivative volume, TW. 

4.2. Discussion o f  the experiments 

The results on the displacement of the curve in Fig. 
5 show that displacement of the curve is small for all 
values of 2 < 10 5. On the other hand, Figs. 6 and 7 
show that the smallest measurement errors are found 
for the largest value of 2. Taking a strong damping 
factor of 2 = 10 6 leads to the smallest deviations in 
the shape measures, for a noise-free curve at the prize 
of severe displacement of the points from their true 
position. It is the shrinking effect known from the 
Gaussian smoothing in 2D. The displacement is re- 

flected in the bias of the shape measures. A choice of 
2= 10 3 hardly leads to any displacement, but now the 
standard deviation of the shape measures is high. 

With appropriate 2 (for our experimental setup 
2 = 10 4 or 2 = 10 5 for small amounts of noise or,t = 10 6 
for ?,>0.4) the displacement is small and shape 
measures are almost unbiased. 

The standard deviation shows similar characteris- 
tics for all 2 considered. As expected the deviation is 
higher in the estimation of the derivative volume as 
it requires the use of third-order derivatives. 

We conclude that for the purpose of quantitative 
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Fig. 10. Typical output of the system showing a 3D-image of an individual chromosome, selected from a 3D confocal microscopy scan. 
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way of displaying 3D-curves, bending properties are seen in the tangent-normal plane, whereas twisting properties are visualized in the 
tangent-binormal plane. The actual rendering technique of the tube representation of the line is a volume renderer known as Simulated 
Fluorescence Process (van der Voort et al., 1993). 

shape measurement  the curve approx imat ion  yields 
reliable results for reasonable  amounts  of  noise. It 
should be born in m i n d  that  the conclusion is l im- 
ited, however,  to curves of  constant  curvature  and 
torsion. For  a more general conclusion one should also 
include figures with zero-crossings in the torsion 
function as such zero-crossings might  yield impor-  
tant  shape informat ion  for 3D-curves.  

5. C o n c l u s i o n  

The analysis o f  3D-line shaped objects in an image 
consists o f  three steps. Extract ion o f  the axis of  the 
object,  es t imat ion  of  shape features, and display o f  
the curve. 

We have t raced the axis with sub-voxel accuracy as 
in Houtsmul le r  et al. (1993)  which is impor tan t  for 
reliable shape es t imat ion.  

For  the shape es t imat ion  we have presented a 

method  based on smoothing splines which make a 
compromise  between the d isplacement  of  the data  
points  and the smoothness of  the curve. The results 
of  es t imat ion yields an analytical  curve, hence shape 
features and the Frenet  f lame can be calculated from 
the spline parameters .  The exper imenta l  results show 
that  with appropr ia te  sub-voxel tracing, reliable esti- 
mates of  shape can be obtained.  

For  3D-curves, the method  of  display should be 
considered as a s tandard  part  of  the analysis, as the 
3D- to 2D-project ion may dis tor t  the impress ion o f  
the observer  considerably.  Therefore,  we suggest to 
do so in a s tandard  way, using three orthogonal  pro- 
ject ions.  The Frenet  frame provides  such a s tandard  
for display,  where the local bending o f  the curve can 
be seen in the t angen t -norma l  plane and the twisting 
o f  the curve is d isplayed in the t angen t -b inorma l  
plane. Note  that  such a method  of  display requires 
the analysis of  the shape o f  the curve as the Frenet  
plane depends  on the local shape of  the curve. The 
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sys tem is i l lus t ra ted  in Fig. 10. T h e  f igure gives  the  

o u t p u t  for  an  image  o f  a c h r o m o s o m e ,  where  the  

v i e w p o i n t  co r r e sponds  to one  o f  the  zero-cross ings  in 

the  twis t ing  o f  the  cu rve  ( c o m p a r e  Fig. 2) .  
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