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Abstract. We study the shape of a finite point set in Ill 2, where the points are not bound to a regular 
grid like Z 2. The shape of a connected point set in IR 2 is captured by its boundary. For a finite point 
set the boundary is a directed graph that connects points identified as boundary points. We argue 
that to serve as a proper boundary definition the directed graph should regulate scale, be minimal, 
have an increasing interior and be consistent with the boundary definition of connected objects. 
We propose to use the directed variant of the a-shape as defined by Edelsbrunner et al (1983), which 
we call the a-graph. The a-graph is based on a generalization of the convex hull. 
The computational aspects of the a-graph have been extensively studied, but little attention has been 
paid to the potential use of the a-graph as a shape descriptor or a boundary definition. In this paper 
we prove that the oz-graph satisfies the aforementioned criteria. We also prove a relation between 
the a-graph and the opening scale space from mathematical morphology. In fact, the a-hull provides 
a generalization of this scale space. 
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I Introduction 

In this paper we consider the shape of a finite 
(nonconnected) point set S in IR 2. The shape 
of a connected subset S' in IR ~ (called an object) 
is captured by its boundary. For a connected set 
this boundary has a unique definition. In fact, 
s p E S ~ is a point on the boundary OS ~ whenever 
an arbitrary small disc centered at s' contains 
an element not in S'. In the connected case, all 
points that are not part of the boundary are part 
of the interior of S'. (By convention, the bound- 
ary is given a direction such that the interior lies 
to the left of the directed boundary OSt). As 
a consequence, the directed boundary defines a 
cyclic ordering of points on the boundary. 

Using the boundary and interior definition as 
used for connected sets for the finite point set S 
would imply that the boundary of the point set 
S equals S. Thus the boundary would not yield 
an ordering of the elements. Furthermore, the 

*This work was supported by the Dutch Ministry of Eco- 
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interior of the point set would be empty. 

Now consider the situation where the points 
are bound to a regular grid (say, S C Z2). Then, 
it is common in image processing to define the 
boundary of S as the set of all points in S 
that have a neighbor s E Z 2 that is not in S. 
This definition is, however, not unique because 
one has to define the notion of neighbor. For 
points on a regular grid 4- or 8-connected neigh- 
borhoods are commonly used. The interior of 
the point set for this case is the set of points 
that have all their 4- or 8-connected neighbors 
in S. 

However, when S is an arbitrary finite point 
set not bound to a regular grid but resulting 
from an irregular sampling of some connected 
object, neither of the preceding definitions can 
be used to define the boundary or interior of S. 

The definition for connected sets and the def- 
inition for points on a regular grid have in com- 
mon that they identify a subset of S as being 
boundary elements. From there a cyclic or- 
dering of those boundary elements is defined. 
This suggests that the boundary of an arbitrary 
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finite point set should be a directed graph con- 
taining as vertices those elements identified as 
boundary elements. The contour thus defined 
provides a local definition of the form of S 
and permits derivation of contour parameters 
such as length, orientation, and local curvature. 
We concentrate on a proper definition of the 
boundary of S. 

A directed graph receiving considerable at- 
tention in the literature is the graph derived 
from the vertices and edges of the convex hull 
(denoted by H(S)) [13]. As a definition of the 
boundary of S, the convex hull has several limi- 
tations. Because H(S) can assume only convex 
forms, essential shape information on concave 
regions is lost. On the other hand, the boundary 
of H(S) may contain too much detail, prohibit- 
ing the reduction of the set to its essential form. 
Further, because the convex hull always consists 
of one closed face, it is unsuited for the de- 
scription of a set of finite point clusters. These 
limitations are a consequence of the fact that the 
convex hull is unable to describe the boundary 
of the point set at different scales. 

The point is illustrated by considering the 
boundary of a tree, when the tree is repre- 
sented by a finite set of points. At some scale 
the boundary of the tree should be dictated by 
the individual leaves, where as at another scale 
only foliage should be identified. As a con- 
sequence, when no a priori information about 
the amount of detail is present, the boundary 
definition for a finite point set must include a 
scale parameter, which for reasons to become 
clear in the rest of the paper, will be denoted 
by a. Following the general scale space require- 
ments [7], we will demand the boundary graph 
to be a one-parameter family with decreasing 
detail for decreasing scale (here in parameter 
a). Further, the boundary graph at a lower 
scale should be computable from a boundary 
graph at a higher scale. This is usually called 
differential computation. 

It is important to note that this rationale be- 
hind the use of the scale parameter exists only 
for the type of finite point sets considered here. 
It is to be discriminated from those approaches 
to shape description of connected objects in IR 2 
or points on a regular grid [1], [2], [7], [10] 

in which a parameter of scale is used. Those 
methods are applied once the boundary of the 
object has been defined, which is not the case 
for the finite point sets considered here. 

Thus far we found two important demands the 
boundary definition should satisfy: it should be 
a one-parameter family, and furthermore, as the 
convex-hull example showed, it should contain 
only the essential boundary information. Of 
course, as a consequence of the scale parameter 
used in the definition, the set of points giving 
essential boundary information is also a function 
of scale. 

As of yet we have not considered the interior 
of the point set. No proper definition of the 
interior of an arbitrary finite point set exists 
in literature. We use the intuitive definition 
of the interior as being the region in IR 2 in 
which points can be inserted into the point set 
without leading to a change in the boundary of 
the point set. Now consider an interior point 
at a high scale, indicating that this point is not 
providing essential boundary information at that 
scale, then it is obvious that at a lower scale this 
point should also be interior. This implies that 
the interior at the lower scale should contain 
any interior at the higher scale, i.e., it should 
be increasing with decreasing scale. 

One final demand follows from the fact that 
the point set is resulting from an irregular sam- 
piing of some connected object. Now, when 
sampling becomes infinitely dense, the bound- 
ary defined on S should be consistent with the 
boundary definition for connected point sets. 
Stated otherwise, it should approach the bound- 
ary of the connected object. 

To summarize, a boundary graph to capture 
the shape of a point set should have the follow- 
ing properties: 

1. Scale: A boundary graph should be part of a 
one-parameter family, with decreasing detail 
at decreasing scale, and the one-parameter 
family should allow for differential computa- 
tion. 

2. Minimality: At every scale the shape descrip- 
tion should contain only the essential bound- 
ary information of S. 

3. Increasing interior: The interior of the point 
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set should be increasing with decreasing scale. 
4. Consistency: When the point set S is the re- 

sult of sampling the connected set X c IR 2, 
the boundary as defined on S should ap- 
proach the boundary of X when the sampling 
is infinitely dense on X. 

As a potential boundary definition, we study 
in this paper the directed variant of the a-shape 
as proposed by Edelsbrunner et al. [4] and call 
it the a-graph. The a-graph is based on the 
a-hull, which is a generalization of the convex 
hull. An introduction to the work of Edels- 
brunner et al. is given in section 2. Whereas 
the aforementioned reference [4] emphasizes the 
computational aspects of the a-shape, we study 
its use as a boundary definition, using the cri- 
teria as previously derived (section 4). As an 
example we show in section 5 how the o~-graph 
could be used in the recognition of industrial 
objects. This work's relation to other work is 
presented in section 6. An important relation 
established in this paper pertains to the opening 
scale space from mathematical morphology [2]. 

2 The a-Hull and the a-Graph 

This section gives an overview of the work of 
Edelsbrunner et al. on the a-hull and a-shape 
[3], [41. 

We adopt the following notational conven- 
tions. Let X be a (closed or open) connected 
set in IR 2. Then 

X c - the complement of X, 

- the set closure of X, 

A7 - the interior of X, 

OX - the boundary of X, 

g(OX) =_ the ordered set of 

(possibly curved) edges of OX, 

V(OX) - the ordered set of vertices of OX. 

Further, let G and G' be two graphs, and let x 
and y be two points in IR 2, with x # y. Then 

g(G) - the edges of G, 

v (g )  =_ the vertices of G, 

{x, y} - the undirected edge connecting 

x and y, 

(x, y ) -  the edge directed from x to y. 

The ordinary convex hull can be defined in 
several alternative ways. The a-hull is a gener- 
alization of the definition verbally given as "The 
convex hull of S is the intersection of all half- 
planes containing S." In the definition of the 
a-hull the half-planes are replaced by general- 
ized discs. As a consequence, the edges of the 
a-hull are circular arcs with curvature a, rather 
than straight line segments. 

We first introduce the notion generalized disc. 
Let B*(c,r) denote the closed disc in IR 2 with 
center c and nonnegative radius r. Then the 
generalized disc B(c, r) is defined as follow.,;. 

DEFINITION 1 (generalized disc). 

{B *(c, < 0),  
B(c, r) ==_ B*(c, r) (r > 0). 

Figure 1 shows examples of generalized discs of 
both positive and negative radii. 

C,(S), the set of a-centers, is the set of all 
centers of discs of radius 1/a that have S as 
a subset. 

DEFINITION 2 (a-centers). 

C~(S) = {x d IR 2 I S c_ B(x, l / a )} .  

Let X be an arbitrary (finite or connected) set 
in IR 2, then the intersection of all closed gen- 
eralized discs with varying centers x c X and 
fixed radius l /a  is denoted by Ms(X),  where we 
adopt the convention that the intersection over 
an empty set of generalized discs is equal to the 
entire plane. 

DEFINITION 3 (intersection of discs). 

2 ( x  = 0), 
M,~(X) =_ N~ezB(x, la )  (X -# $). 

The c>hull of S is the intersection of all closed 
generalized discs of radius 1/a that contain all 
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(x<O 

Fig. 1. GeneraliZed discs for negative and positive a. 

the points of 5' [4]. Thus the a-hull is given by 
the following definition. 

DEFINITION 4 (a-hull). 

H~(S) - M,(C~(S)). 

As in the limit case of infinite radius (i.e., a close 
to zero), the generalized disc becomes a half- 
plane; this definition also includes the common 
convex hull H(S). In figure 2, H~(S) is shown 
for an arbitrary negative and an arbitrary positive 
a; the ordinary convex hull is also shown. 

A point s E S is termed a-extreme in S if there 
exists a closed generalized disc of radius 1/a such 
that s lies on its boundary and it contains all 
other points of S. The set of all a-extremes in 
S is denoted by E,~(S). It will be shown later 
that a-extremes are important for the boundary 
of the point set S. 

DEFINITION 5 ( a - e x t r e m e s ) .  

E~(S) -- {s E S I 3c E C~(S) : s E OB(c, l /a )} .  

The set M~(S) is nonempty if there exists at 
least one closed generalized disc containing the 
whole set S. This condition always holds for 
negative a, but for positive a it holds only if 
1/a is larger than the radius of the smallest 
enclosing circle. In the rest of the paper we 
always assume that this restriction on a holds, 
implying that M~(S) ~ ¢ for all a considered. 

Now we define a relation between elements 
of E~(S). Let s, s' e S. Consider the (unique) 

~ > 0  

(a) 

l/(x 

Co) 

c~=0 

(c) 

1/c~ 

Fig. 2. a-Hull for an example set S: (a) negative a; (c) 
positive a. Part (b) shows the ordinary convex hull. Note 
that the a-hull in (c) contains the a-hull in (b) and that, 
in turn, this a-hull contains the a-hull in (a). For ease of 
comparison, the positions of points falling in the interior of 
the a-hull are also shown. 
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Example 
(z-neighbors wi th 
arrow indicating direction 

Example 

~ -  extreme element 

Fig. 3. The generalized disc of radius 1/c~ with a < 0 is one of the discs that make the points Pl elements of the a-extreme 
set of the point set. It also makes the pair (/~, P3) a pair of directed a-neighbors. Note that it is only an example of a 
pair, many of the other points are also c~-neighbors or a-extremes. In fact, the elements of the directed pair (P3, P2) are ;also 
directed a-neighbors. 

center ca of the disc having radius l / a ,  having 
s and s' on its boundary, and being positioned 
in the half-plane bounded by the directed edge 
(s, s'). Then the two elements of E~(8) are 
identified as directed neighbors if the thus-defined 
disc contains all other points of the point set. 

DEFINITION 6 (directed a-neighbors). 

s~(s) 

{ {(8, s') e s 21 c~(8', 8) e co(s) }  
- {(s, ~') e s 21 c~(~, ~') e co(s) }  

(c~ < 0), 
(,~ > o). 

The two cases for a < 0 and ~ > 0 have 
been introduced to reach continuity in the limit 
case of a = 0. The notions of a-extremes and 
a-neighbors are exemplified in figure 3. 

The a-graph is the graph with vertices given by 
the a-extremes and directed edges given by the 
set of a-neighbors. Note that this is the directed 
variant of the a-shape as used in the reference. 
We introduced the term a-graph to make the 
distinction from the undirected a-shape explicit. 

DEFINITION 7 (a-graph). 

{ v(a~(s)) = E . ( S ) ,  
Ca(S)-- e(a~(s)) N~(S). 

The a-graph is a directed graph with a special 
structure. Except for a finite set of values of 
a (the set TR(S), which will be introduced in 
subsection 4.1), the faces of the graph are all 
cycles of the graph [4]. The faces bounded by 
a cycle with counterclockwise order are called 
interior faces [4]. 

Apart from interior faces, the a-graph con- 
tains isolated vertices, i.e., vertices s E E,~(S) 
with deg(s) = 0 or bidirectional edges not lying 
in an interior face. 

Now, consider the shape of the a-graph :for 
increasing a. Let ami n be half of the smallest 
distance between two elements in S. Then, for 
all a < -amin, all points are isolated. Increas- 
ing a will introduce bidirectional edges into the 
a-graph. Increasing a further will introduce, at 
some point, interior faces. These interior faces 
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merge with increasing a until the common con- 
vex hull is reached for a = 0. For a = 0 the 
region enclosed by the single interior face of 
the a-graph has maximum area. For larger pos- 
itive a the area of this interior face is reduced. 
When 1/a reaches the radius of the smallest disc 
enclosing the point set, the a-graph is reduced 
either to one triangular-shaped interior face or 
to one bidirectional edge. For higher values 
of a the a-graph is empty. The a-graph at 
different scales is illustrated in figure 4. 

3 The Boundary and Interior of a Finite Point 
Set 

The a-graph as defined in section 2 is a directed 
graph on a subset of the point set. As such, it 
might serve as a boundary definition for a finite 
point set. Thus we define the scale-dependent 
boundary of the finite point set S E IR 2 as being 
the a-graph. 

DEFINITION 8 (a-boundary). 

OSs = Gs( S). 

The scale-dependent interior of the finite point 
set is the region in IR 2 in which points can 
be inserted and not lead to a change in the 
boundary. 

DEFINITION 9 (a-interior). 

Ss - {x E IR 2 [ Gs(S U x) = Gs(S)}. 

Note that the a-interior of S is not a finite 
point set. Thus the common definitions for 
connected point sets apply. However, the a- 
boundary of S does not equal the boundary of 
the a-interior, but it turns out to be closely 
related (see subsection 4.3). 

4 Properties of the a-Graph 

In section 1 we gave a set of criteria that a 
boundary definition should satisfy. In this sec- 
tion we systematically consider those criteria for 
the a-graph. 

4.1 Minimality 

A boundary of a finite point set should contain 
a minimal set of essential points describing the 
boundary; otherwise, information is lost or su- 
perfluous information is present. Because the 
boundary is defined as a function of scale, this 
necessary and sufficient set of points is also scale 
dependent. In this section we consider the min- 
imality of the a-extremes of S as elements on 
the boundary of S. 

Some basic properties of the operator Ms 
(Definition 3), needed in the rest of the paper, 
are given in the following proposition. 

PROPOSITION 1. 

M,~(X U Y)  = Ms(X)  M Ms(Y) ,  (1) 

Vx E X : Ms(X)  C B(x,  1/a), (2) 

X C_ Y =~ Ms(Y)  C_ Ms(X) .  (3) 

The operator Ms is directly related to the set 
Cs. 

PROPOSITION 2. 

Cs(S) = M,~(S). 

Proof. Recall the definitions of the set of 
a-centers (Definition 2) and the definition of 
M, (Definition 3). For S = 0 the proposition 
clearly holds. For nonempty S we have 

e c (s) w e s : ,  e 1/a) 

.' ;. Vs e S : z e B(s, l / a )  

.: > x E N B ( s , 1 / a  ) 
sES 

x E Ms(S). 

This allows us to write the a-hull as a repeated 
application of the operator Ms. 

PROPOSITION 3. 

Hs(S) = Ms(Ms(S)) .  
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Fig. 4. Shape of the a-graph of point set S for increasing a. For ¢~ small enough, all points are isolated (a). Increasing a 
will introduce bidirectional edges into the a-graph (b). Increasing c~ further will introduce, at some point, interior faces (c). 
These interior faces merge with increasing a (d), (e) until the common convex hull is reached for a = 0(f) .  Note that the 
graph in ( f )  corresponds to both the negative and the positive values of c~ indicated, as well to a = 0, Increasing a reduces 
the area of the interior face (g). At a m a  x = 1 / p ( S ) ,  where p(S) is the radius of the smallest disc containing S, the a-graph 
is reduced to one bidirectional edge (h). Note that (e), (f), and (g) correspond to the a-hulls in figure 2. The c~-graph can 
be viewed as resulting from straightening the curved edges of the c~-hull. 
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Proof. By definition, the a-hull is given by 
(Definition 4). 

H,~(S) = M,~(C,(S)). 

Hence from Proposition 2 we have 

H,~(S) = M,~(M~(S)). 

The set of a-extremes is important for the 
computation of M,~(S). In fact, the elements in 
S that are not in E,~(S) can be left out of the 
computation without altering the result. 

PROPOSITION 4. 

M,~(S) = M,~(E,~(S)). 

This proposition is proved by considering an 
arbitrary element of S not in E~(S). This ele- 
ment does not contribute to the region Ms(S). 

Proof. First, note that as M~(S) ¢ 0 we have 
that E , (S)  ¢ O. For the trivial case E~(S) = 
S, Ms(S) = M,~(E,~(S)). Now let s • S\E,,(S). 
According to the definition of E~,(S) we have 

s • S\Ea(S) ~ s f[ E~,(S) 
=~ Vc • C~(S) : s f[ aS(c, l / a )  

=~ Vc • Ca(S) : c f[ OB(s, l / a )  

Vc e M,~(S) : cf f  OB(8, I /a ) .  

This leads to three different cases for the rela- 
tion of M,~(S) and OB(s, l / a ) :  

M~(S) n B(s, l / a )  = 0, (4) 

M~(S) C B(s, l / a ) ,  (S) 

Ms(S) D B(s, 1/a). (6) 

Relation (2) of Proposition 1 and the fact that 
M,~(S) ~ 0 yield that (5) is the only possible 
case. But then we have that 

M,,(S\{s}) = M,~(S), 

which implies that s is unnecessary for the com- 
putation of M,~(S). Because s is an arbitrary 
element of S, we conclude 

It follows that the elements of E~(S) are a suf- 
ficient point set for the computation of Ms(S). 
To prove that E~(S) is also the necessary point 
set, we have to introduce the set TR(S), which is 
based on concepts from computational geometry 
[11]. The definitions are given in the appendix. 
The set TR(S) is the set of all reciprocals of 
the radii of the circles circumscribing the trian- 
gles in the closest- and furthest-point Delaunay 
triangulation of S. Figure 5 gives examples of 
two triangle radii. These finite sets of values in 
the continuous range of a will later turn out to 
be important in the description of the shape of 
S for varying scale. 

Now we prove that the elements of E~(8) 
in general form a necessary point set for the 
computation of Ms. In fact, when a proper 
subset of E~ is used in the computation, the 
result properly encloses the true result obtained 
when the whole set S is taken into consideration. 

PROPOSITION 5. 

a • TR(S) =~ (VS' C E,~(S) : M~(S) C M~(S')). 

The proof considers all incomplete a-extreme 
sets S'. Then, by considering the contribution of 
the elements that have been left out to the edge 
of Ms(S) it is concluded that every point of the 
complete a-extreme set is necessary whenever 
a is not in TR(S). 

Proof. If E,~(S) = 0 or the set of a-extremes 
contains only one element, the proposition holds 
trivially. Therefore we consider the case for 
which E , (S ) \S '  ~ 0. Thus we have to establish 
only that elements of E,~(S) are necessary for 
the computation of M,~(S). Let s e E,~(S)\S', 
then from relation 3 of proposition 1 and from 
Proposition 4 we have 

M,~(S) C M,~(E,~(S)\{s}). 

Assume that Ms(S) = M~(S\{s}). From the 
fact that s e E~(S) and the definition of E,~(S) 
we have 

M~(S) = M~(E~(S)). Bc e C~(S) : s ~ aB(c, l / a ) .  
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Fig. 5. (a) Closest-point Voronoi diagram of S (solid lines), 
and closest-point Delaunay triangulation (dashed lines). (b) 
For the same point set the furthest-point Voronoi dia- 
gram (solid lines) and furthest-point Delaunay triangula- 
tion (dashed lines). Examples of circles circumscribing the 
triangles in the triangulation are shown. 

The equivalence of C,~(S) and M~(S) (Proposi- 
tion 2) leads to 

3¢ e ,~(6 ' )  : c e oB(~, l / a ) .  

But this can be true only if 

3c E OM~(S) : e E aB(s, 1/a). (7) 

Every edge in OM~(S) is centered at a unique 
element in 6'. Now, if part of the disc centered 
at s were an edge in OM,~(S), the boundary could 
not be the same as OM,~(S\{s}). Therefore the 
disc centered at s can intersect OM~ only at a 
vertex, i.e., 

B(~, 1/a) n OM~(S) c_ V(OM~(S)). 

Now, from (7) we have that this intersection 
cannot be empty. Let c be an element of this 
intersection. From the fact that c is not part 
of an edge, apart from the vertices of OM,,(S), 
we have 

8 I1 

But, recalling the definition of N~ (Definition 6), 
we get 

{~, ~'}, {8, ~"}, {~', j ' }  e N~(S). 

Because s, s', and 8" are a-neighbors of one an- 
other, they form, depending on the sign of a, a 
triangle in the closest-or furthest-point Delaunay 
triangulation, denoted by DT~ and DTy respec- 
tively. Using the fact that 8, 8', s" ~ OB(c, l /a),  
we have 

({8, ~', J '} e DT,(S) v {8, J ,  ~"} e DTs(S)) 

Ap({8, ~'s"}) = 1/lal, 

where p(({s, s', s"}) is the radius of the circle 
circumscribing the triangle with vertices s, s' and 
s". But then 

a E TR(S). 

Because this is exactly the restriction given on 
a, we conclude that 

a ~ TR(S) =~ (VS' c E~(S) : M~(S) C M~(S')). 

The propositions immediately lead to the fol- 
lowing theorem. 
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THEOREM 1. Let S ~ C__ S, Then 

a ¢ TR(S) 

= M (S) 

E (S) C S'). 

Theorem 1 states that whenever a is not an 
element of TR(S), the elements of E~(S) are a 
sufficient and necessary point set for the com- 
putation of M~(S) and therefore also for the 
computation of the a-graph. We conclude that 
the set E~(S) contains all essential boundary in- 
formation and further that it is the smallest set 
of points having this property. This also gives 
an immediate clue to the observation made in 
[4] that "different values of a give rise to hulls 
that have only in some sense essential points on 
their boundary." Theorem 1 is illustrated in 
figure 6. 

4.2 Scale 

As stated in section 1, the boundary of a point 
set must be a function of a scale parameter 
whenever a priori information about the amount 
of detail present is absent. We demand that the 
boundary definition is a one-parameter family 
in which members show a decreasing amount 
of detail. Further, we demand that the family 
member at specific scale can be computed from 
any member at a higher scale. 

The parameter a in the definition of the 
a-graph serves as a parameter of scale. The 
amount of detail can be expressed as the num- 
ber of elements in the set of a-extremes. To 
identify a as a scale parameter, we prove the 
following theorem. 

THEOREM 2. 

a >_ a' g_ E . , (S )  

^ E . ( S )  = 

Proof. Let s E S. We first prove that elements 
are only removed from E~(S) and are never 
introduced. From [4, Lemma 2] we have 

~amax : (8 e Ec~(S) "¢==~ a < amax). 

Thus 

(a ~ a' A s e Ec~,(~°)) ==~ s E E~(S). 

Because s is an arbitrary element, 

a > a' ~ E~(S) c E~,(S). 

Combining this with Proposition 4 allows us to 
prove the differential computation part of the 
theorem: 

a > a' E (S) c_ c S 

M~(E. ,(S))  = M~(E~,(S)) 

=~ E~(E~(S)) = E~(E~,(S)) 

Theorem 2 identifies the parameter a as a 
genuine scale parameter on the set E~,. In 
this one-parameter family one can compute any 
member at a given scale from any member at 
a lower scale. An example of a point set at 
different scales is shown in figure 4. 

4.3 Interior of a Finite Point Set 

The a-interior S of the finite point set S is 
defined as the region in IN 2 in which points can 
be inserted without leading to a change in the 
a-boundary of the point set (Definition 9). As a 
consequence of the fact that the a- boundary is 
a function of scale, the a-interior also depends 
on scale. In fact, the a-interior follows the 
rule "once not important at a high scale, never 
important at any lower scale." In other words, 
the a-interior at a high scale is contained in any 
a-interior at a lower scale. It turns out that the 
a-interior of a finite point set is the interior of 
the a-hull. Note that the latter is the common 
definition of interior for connected sets. 

PROPOSITION 6. 
O o 

S .  = H~(S). 

This proposition is proved by first considering 
a point in the interior of the a-hull and proving 
that it does not lead to a change in the a-graph. 
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(a) 

(c) 

" s  l 

" S l  

- s 2 - s 3 

" s 2  " s 3  

(b) 

" S l  

" s 2  " s 3  

Fig. 6. To illustrate the a-extreme elements are sufficient and necessary for the computation of M,~(S), consider the three 
points sl, s2, and s3. We concentrate on the intersections of the discs centered at the points s~ and to the left: of 
edge (sl, s3). The radii used in (a), (b), and (c) are 1/c~, 1/~b, and 1 / ~ ,  respectively. They are chosen such that 
I I / ~ ]  < I1/~bl = p({sl, s2, s3}) < [l/~bl, where p({sl, s2, s3)}) denotes the radius of the triangle with vertices sl, szb and 
s3. For positive c~, sz is necessary in the computation of Mo for a = c~b because then the edge from x12 to x23, centered at 
s2 (dashed curve), is part of OM,~. For a = aa the edge from xza to xl2, centered at s2, is not part of OMo and therefore 
sl and s2 are sufficient for the computation of OM,~ for c~ = ~a. The situation for which c~ = c~ is precisely the transition 
between the situation for which c~ is an example and the situation for which C~b is an example. In this case all intersections 
xlj coincide. For negative ~ the same results hold but with the roles of c~ and ab reversed. 

T h e n  a p o i n t  n o t  in t h e  i n t e r i o r  is c o n s i d e r e d ,  

a n d  it  is p r o v e d  t h a t  i t  d o e s  l e a d  to  a c h a n g e  

o f  t h e  a - g r a p h .  

Proof. Firs t ,  c o n s i d e r  an  e l e m e n t  x in t h e  in-  

t e r i o r  o f  t h e  a - h u l l .  P r o p o s i t i o n  3 a n d  ~the 

d e f i n i t i o n  o f  t h e  s - e x t r e m e s  ( D e f i n i t i o n  5) y i e ld  

o o 

x e H s ( S )  ~ w e M s ( S )  : ~ e B( ,~ ,  1 /a )  
O 

v ~  e M s ( S )  : m e B (x ,  l/a) 
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O 

=:> Me(S) C B(x, i / a )  

=> G.(  S U x) = Gs( S) 
o 

=~x E Sa. (8) 

Thus points in the interior of the a-hull do not 
lead to changes to the a-boundary of S. To 
prove that those are the only points with this 
property, let x • (H°e(S)) ~ and x ~ S. Then, 
again using Proposition 3, we get 

O O 

x • (Hs(S)) ~ =~ 3m • Ms(S) : x f[ B(m, l /a )  
o 

:=~ 3rn • Me(S) : m f[ B(x, 1/a) 

=~ Me(S) ¢. B(x, i / a ) .  

It follows that either B(x, l / a )  C Ms(S) or 
B(x, 1/a) n M~(S) ~ O. Assume B(x, 1/a) c 
Me(S), and let s • S. Using relation (2) of 
Proposition 1, we get 

B(x, l / a )  C Me(S) C B(x, 1/a). 

Because a closed disc can never be properly 
contained in a disc of the same radius, this 
cannot be correct and thus the assumption is 
not valid. As a consequence, 

M~(S) n B(x, l / a )  ~ O 

=~ B m •  OB(m, l /a )  : m • Ms(S) 

3m : S C_ B(x, l / a )  

Ax  • OB(m, l / a )  

3m : (S U x) C_ B(m, l / a )  

A x • OB(m, 1/a) 

=~ 3m • C~(S) : x • OB(m, l / a )  

• E.(S u O. 

Because x ¢~ S, it follows that 

Gs(S U x) ~ Gs(S) 

and hence that 
o 

x C S e .  

Combined with (8), this leads to the conclusion 

O O 

Ss = He(S). 

Note that because the edges of the a-hull have 
curvature a, in general the boundary of the a- 
interior is not the same as the a-boundary of the 
point set that has straight edges. Equivalence 
is reached only when either all elements of S 
are isolated in the a-graph or the edges of the 
a-hull are straight, i.e., the a-interior of S is 
the common convex hull (a = 0). 

To prove that the a-interior of the point set 
is increasing with increasing a, we use some 
concepts from mathematical morphology. From 
that theory (for an introduction see [5], [8], [14]) 
we will use the closing operation. In fact, the 
following property states that the a-hull can be 
written as the closing of S with a common non- 
generalized disc for a < 0 or with the comple- 
ment of a common disc for a > 0. To abbreviate 
notation we use Bs to denote the generalized 
disc of radius 1/a centered at the origin. 

PROPOSITION 7. 
O 

H e ( X )  = X • B - e .  

Proof. First, we rewrite the operator Me in 
terms of a morphological dilation: 

Me(X) = n~exB(x, 1/a) 
o 

= (U~exB(x, - l / a ) )  ~ 
o 

= (X @ B_e) c. 

Now, using Proposition 3, we get 

O O 

He(X) = ((X @ B_~) ~ @ B_e) ~ 
o 

= (X e B-s )  e B -e  
o 

= X o B _ e .  

We use this relation to prove that the a- 
hull is increasing with increasing a (as was also 
observed in [4] but, was left unproved). The 
further consequences of this relation will be 
discussed in section 6. 

THEOREM 3. 
o o 

a < a '  =~ Se C_ Se'. 
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This theorem is proved by considering two 
generalized discs Be, and Ba, with a' _< a. It 
will turn out that applying the closing operation 
to Be, and using structuring element Be will 
yield Be,. Combining this fact with a standard 
result from mathematical morphology relating 
closings in this situation proves the theorem. 

Proof. A well-known property from mathemati- 
cal morphology is 

Y'  o Y  = Y '  ~ X o Y '  C X o Y  C_ X 

C_ X • Y ___ X • Y'. (9) 

To apply this property in the context of gener- 
alized discs, we first have to prove 

a '  < a ==> Ba, o B~ = B,,. 

We have three cases to consider, namely, a '  < 
a_<0,  o ? < 0 < a ,  a n d 0 _ < a ' _ < a .  In all cases 
it is easy to verify the following proposition: 

Be, ® B,~ = BO/a,_V,~ ). 

Note that for a '  _< a < 0 the generalized discs 
B~, and B~ have negative radius but Ba' (3 B~ 
has positive radius. Using this way of writing 
the erosion, we have 

B~, o Be = (Ba, 69 Be) @ Be 

= Bo/e,- l /e  ) @ Be 

= B a , , .  

Now, using Propositions 6 and 7 and applying 
(9) using generalized discs, we get 

O o o 

a _< a'  =* B-a, o B-a  = B-a, 
O o 

=~ S , B-~ C S , B-~, 

:=~ He(S )  C_ Ha'( S) 
o c, S 

=~ Ha(S) C Ho~( ) 
o 0 

~SeC_Sa'. 

In this section it was proved that the interior 
of a point set as associated with the a-graph is 
increasing with respect to a in the sense that for 
a _< a' the interior at scale a is always contained 
in the interior at scale a'. An illustration of the 
theorem is found in figure 2. 

4.4 Consistency 

We assumed that the finite point set S was the 
result of an irregular sampling of some con- 
nected object X. Now, when sampling is in- 
finitely dense on X, the a-boundary of S should 
approach the boundary of X, where the latter is 
the classical definition of boundary. The notion 
of a-extreme set can also be considered for the 
connected point set X. This a-extreme set can 
be found by intersecting the boundary of X with 
its a-hull. 

PROPOSITION 8. 

E e ( X )  = o x  n o H a ( x ) .  

In this proof we first exclude elements in the 
interior of the a-hull, because it turns out that 
they can never be elements of the a-extreme '.set. 
Then we consider an element at the boundary 
of the a-hull, proving that it is an element of 
the o~-extreme set. 

Proof. First, consider an element in the interior 
of the a-hull. Using the equivalence of M~ and 
G'a (Proposition 2) and Proposition 3, we have 

O o 

x e H a ( X )  ~ vc ~ M . ( X )  : ~ e B(c, 1/~)  

W e C e ( X )  : z ¢ OB(c, 1 /a )  

x ~ E . ( X ) .  

So points in the interior are never a-extreme in 
S. Second, consider an element in the boundary 
of the c~-hull 

x E OHa(X)  ~ 3e E M s ( X )  : x E OB(c, l / a )  

=~ 3~ e c a ( x )  : ~ e OB(~, l/a) 
~ ~ E ~ ( X ) .  

Combining this with the fact that X C_ H e ( X )  
and the fact that E a ( X )  C_ X (Definition 5), 
we conclude 

~ ~ E ~ ( X )  ~ x e X 

^ z C OHm(X) 

¢==~x E OX 

A x E OH,~(X) 

¢==, • ~ O x  n OHm(X). 
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Now we prove the compatibility of the defini- 
tion of the a-boundary of a finite point set, with 
the classical boundary definition of a connected 
point set. That is, we prove that for an increas- 
ingly dense sampling of a connected set, the 
a-graph approaches the boundary of the con- 
nected set. It turns out that to get consistency 
a should be infinitely small. 

THEOREM 4. 

lim G~(X) = OX. 
Oz~--O0 

Proof. Taking the a-hull in the limit case of a 
going to minus infinity and using Proposition 8, 
we get 

lim H ~ ( X )  = O X  ~ E,~(X) = # X .  
Ol~--O0 

But then 
lim G , ( X )  = OX. 

Ol~--O0 

5 Application 

As an example application, we show the use 
of the a-graph in the recognition of industrial 
objects. Such recognition is multiscale in the 
following sense. At low resolution the global 
size and orientation of the object are important. 
Those two aspects are given in a natural way 
by the a-graph with positive a. At a higher 
resolution (with negative a) the holes and finer 
shape details, such as concavities, are revealed. 
As a gets smaller, the a-graph breaks up into 
the principal components of the object. At the 
extreme end of the scale these components are 
the individual points. For all scales the set of 
a-extremes is minimal for that specific scale, 
resulting in the highest possible data reduction. 

To demonstrate the performance, we selected 
an image of one of the objects used in a testbed 
for automated assembly (see figure 7). 

The image was thresholded by using an au- 
tomatic thresholding algorithm, resulting in a 
binary image. The binary image was sampled 
at reduced resolution (see figure 8(a)). In this 

Fig. 7. Original image of an object used in a testbed for 
automated assembly. 

case we used a regular grid, but this is not es- 
sential for the method. From there the a-graph 
was computed for different values of a. The 
ones showing details of interest were selected 
for display in this paper (see figure 8). 

Note that in figure 8(a) the image is available 
in full detail as a collection of individual points. 
With increasing a the smallest holes disappear 
first; disappearace is related to the size of the 
hole with respect to the radius of the gener- 
alized disc. The larger holes also disappear, 
and for a = 0 the convex hull is reached (fig- 
ure 8(e)). Finally, for positive a (figure 8(f)) a 
small number of boundary points are identified, 
still yielding enough information to estimate the 
global position and orientation of the object. 

6 Relation to Other Work 

The work presented in this paper extends the 
work of [4]. In [4] the a-hull and a-shape 
(or a-graph) are defined, and from there the 
main results are efficient algorithms for com- 
puting them, including proof of their computa- 
tional optimality. In our paper we emphasize 
the shape-descriptive power of the a-hull and a- 
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(a) a =-~finity (b) a =-1/5 

(c) a = -1/10 (d) ct = -I/22 

(e (f) a = +1/80 

Fig. 8. a-graph of point set S resulting from thresholding and sampling the image of figure 7, for increasing a. The direction 
of the edges is used to define an enclosed region. Note that this region is different from the interior of the point set. Further, 
note that the extreme elements are the elements on the boundary of this enclosed region. For a sufficiently small the a-graph 
is equal to the point set S (a). In (b) the two largest holes in the objects are visible. Only one of these holes remains at a 
larger scale (c). A region containing no holes remains in (d). For a = 0 the enclosed region is equal to the convex hull of 
S, and at this specific scale the region is equal to the interior of the point set. For the positive value of a shown in (0  a 
small set of extreme elements remains. However, these elements yield enough information to permit the global orientation 
and position of the object to be found. 

graph. Several new properties of the a-hull and 
a-graph are derived. We further prove some 
properties that were observed in the reference 

but were left unproved. The results in this pa- 
per identify the o~-graph as a genuine boundary 
definition for finite point sets. 
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In [9] an alternative definition of the bound- 
ary of a finite point set is given. This definition 
is based on a measure of the density of point 
sets. The density measure is used to decom- 
pose the point set S into bounded components. 
These components are not necessarily convex. 
The main drawback of this definition is that the 
boundaries of the components may change if 
points are added to their interior. In our view, 
this contradicts the proper notion of interior 
(stated previously). An additional limitation of 
the method is the lack of a scale parameter 
(which cannot be missed in the shape descrip- 
tion of finite point sets). 

In [6] and [12] a distinction is made between 
the "internal" and "external" shapes of a finite 
point set. It is stated that "the external shape of 
a point set is exhibited by identifying the essential 
extreme points of the set and, among these, join- 
ing essential neighbors" and that "the internal 
shape of a point set is exhibited by identifying 
essential points of the set and, among these, 
joining essential neighbors." In [6] and [12] the 
external shape is described by using the a-shape, 
where the internal shape is described by using 
a so-called fl-shape. This fl-shape is based on 
neighborhoods, with parameter/3 regulating the 
size of the neighborhood. The points x and y are 
called fl-neighbors if their parameterized neigh- 
borhood is empty. The edges in the fl-shape 
can be directed, much the same way as for the 
a-shape, by introducing the half-plane W(x ,  y) 
into the definition of the fl-neighborhood. In 
this way it is possible to make the a-graph a 
special case of the such-defined fl-graph. How- 
ever, because the internal shape depends on the 
definition of an empty neighborhood, it is not 
compatible with the shape of a connected object 
apart from points on the boundary of the point 
set, i.e., the extremes of the point set. There- 
fore only external shape is compatible with the 
shape of connected objects, and it should be re- 
ferred to simply as shape. Internal shape in this 
context is better referred to as spatial analysis 
because the empty space between the points is 
a crucial part of the description. 

It was proved in Proposition 7 that the a-hull 
is equivalent to the closing of X with a disc of 
radius - 1 / a .  Therefore from the duality of the 

closing and the opening, the a-hull is the com- 
plement of the opening of X c with the same 
disc as structuring element. This, in turn, is 
equivalent to the opening scale space as defined 
by Chen and Yan [2] for (a collection of) con- 
nected objects. For objects defined on a regular 
grid they use an approximation of a circular disc 
as structuring element. 

The scale space in [2] is equivalent to the 
a-hull for negative values of a. The case of 
positive a is equivalent to the pseudoconvex 
hull as defined in [16]. So the a-hull can be 
viewed as a generalization of the opening scale 
space, combining it with the pseudoconvex hull 
into a one-parameter family. 

In the identification of the a-hull as being 
the interior of the finite point set (Theorem 3) 
we used the following result from the theory of 
mathematical morphology [14]: 

a' < a ~ X o Boe G X o B,~ 

G X C_X .B,~ G X . B~,,. 

The scale-space aspects of the a-hull (and thus 
the opening scale space and the pseudoconvex 
hull) use only 

X C_ X . B ~  G X , B , ~ , .  

This shows that the a-hull might, in fact, be 
part of some larger scale space. Note that for 
the finite point set S we have S o B~ = 0; thus 
this aspect of the a-hull is of interest only for 
(a collection of) connected sets. This aspect is 
the subject of further study. 

For a finite point set S the a-hull is less suited 
for shape description than is the a-graph. The 
advantages of the a-graph over the a-hull stem 
from the following two aspects: 

1. Connectedness: For a finite set a point in 
the a-hull is not necessarily connected to its 
a-neighbors. This is an undesired property 
of a shape descriptor. To appreciate this, 
consider two points s, s' and a generalized 
disc with negative radius just larger than half 
the distance between s and s'. All other 
points in S are assumed to be at such a 
distance from s and s' that they cannot be 
a-neighbors of s or s'. We can center a disc 



Shape of an Arbitrary Finite Point Set in 1R 2 167 

at either side of the edge {s, s'} in such a way 
that it has both points on its boundary and 
at the same time contains all other points. 
Thus the directed edges (8, s') and (s', s) 
will be in the a-graph. However, the edges 
can never be part of the intersection of the 
two generalized discs, and therefore they can 
never be part of the a-hull. In fact, in the 
c~-hull only the endpoints s and s ' of the 
edge remain. As a consequence, from the 
a-hull alone it can never be distinguished 
from the case in which there are two isolated 
points. (Calculating the a-hull for connected 
sets does not involve such problems). 

2. Discreteness: The a-graph changes only at a 
finite collection of values of a. The set of all 
values is called the shape spectrum [3]. These 
values can be identified as being related to 
the distances between points in the nearest- 
neighbor graph as well as the elements of 
TR(S), as introduced in subsection 4.1. Let 
a and a I be two different elements in the same 
interval between two successive elements of 
the shape spectrum. The only difference in 
the a-hulls corresponding to a and a ~ is the 
curvature of the edges between directed a- 
neighbors. For the finite set the shape at 
scale a is therefore not essentially different 
from the shape at scale a ~. This again is 
an undesired property for a shape descriptor. 
(For connected sets the shape spectrum may 
consist of dense intervals in IR, and therefore 
the shape is continuously changing.) 

These considerations give us reason to prefer 
the a-graph over the a-hull for determining the 
shape of a finite point set. 

Note that the a-graph also provides a com- 
putationally efficient and consistent alternative 
to the use of an approximated disc when the 
opening scale space is defined for objects on a 
regular grid. 

Another useful property from mathematical 
morphology is the following relation between 
dilation and closing [14]: 

( X , Y ) ® Y  = X ® Y .  

Relating this to the operators M and H yields 

M (X) = 

Thus we have 

H = M M ,  M = M H ,  H = HH,  M H  = H M .  

It follows that the operators H and M form an 
Abelian group isomorphic to {1 , -1}× ,  where 
H is the unit of the group. The consequences 
of this algebraic structure have not been stud- 
ied yet. 

7 Conclusion 

In this section we discuss the suitability of the 
a-graph for shape description of a finite point 
set S on the basis of the demands raised in 
section 1. 

1. Scale: From Theorem 2 it can be concluded 
that the amount of detail expressed as the 
number of vertices of the a-graph decreases 
monotonically with increasing a. The the- 
orem further shows that this one-parameter 
family has the property that any member at 
scale a > a '  can be computed from the mem- 
ber at scale oL. 

2. Minimality: The minimality of the description 
follows directly from Theorem 1, where the 
extreme elements of S are identified as being 
essential for the form of the a- graph. The 
minimality does not hold for the finite set of 
values a E TR(S). This restriction could be 
removed easily by introducing a more elabo- 
rate definition of the a-graph (see [3]). We 
prefer the given definition because the values 
in TR(S) indicate changes in the a-graph and 
are therefore important in the shape descrip- 
tion for varying scales. 

3. Increasing interior: The a-interior has been 
defined for point set S as the region in which 
additional elements can be positioned with- 
out altering the boundary. It is proved in 
proposition 6 that the interior of the o~-hull 
defines this region. Further, it is proved in 
Theorem 3 that for a < a '  the interior at 
scale o~ is always contained in the interior at 
scale a'. 

4. Consistency: When the finite point set S orig- 
inates from a sampling of a connected object 
X in IR 2, the c~-boundary of S approaches 
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the boundary of X for o~ going to minus in- 
finity and infinitely dense sampling (Theorem 
4). From Proposition 8 the contour features 
length, orientation, and curvature can be de- 
fined in such a way that their values are con- 
sistent with features defined on the contour 
of X. 

We conclude that the directed oz-graph fulfills 
the four demands. 

Apart from defining a boundary of a finite 
point set, the o~-graph is important for shape 
description at multiple scales. Specifically, the 
identification of all essential ~'s in the shape 
spectrum provides important shape information. 
To illustrate, we can compute a measure of local 
curvature as the change of orientation divided 
by the length of the edges. We can do so 
for every c~ in the shape spectrum and thus 
find the collection of critical curvature values 
associated with S. As an application we showed 
that the o~-graph has potential in the multiscale 
analysis of industrial objects. At all scales the 
o~-graph gives an optimal data reduction. A 
further application of o~-graphs is found in the 
theory of curvature measurement from digitized 
contours [15], where it is used to compute the 
circular separability of two finite point sets. 

Appendix: Notation from Computational Ge- 
ometry 

The o~-graph is based on basic concepts from 
computational geometry (see, for example, [11]). 

The generalized Voronoi polygon V(P, Q) of 
arbitrary finite point sets P and Q in IR 2 is 
given by 

V(P, Q ) - { x l V  p E P, q E Q 

: d(x, p) <_ d(x, q)}, 

where d(x, y) denotes the distance from x to y. 
Let S be a finite point set in IR 2. Then the 

generalized Voronoi polygon is a generalization 
of the closest-point Voronoi polygon associated 
with s E S given by 

v ( 8 ,  8 )  = {~  l Vs' e s : I d(x, 8) < d(x, s')} .  

In an analogous way, the furthest-point 
Voronoi polygon associated with 8 E S is 
given by 

V(S, 8) = {xlVs ' E S : d(x, 8') N d(x, s)}. 

The union over the closest-point Voronoi poly- 
gons of all points in S provides a covering of the 
plane. This covering is called the Closest-point 
Voronoi diagram. The furthest-point Voronoi 
diagram is defined in the same way. 

The region V(p, q) is the half-plane containing 
p and bounded by the perpendicular bisector of 
(p, q). It immediately follows that V(P, Q) can 
be rewritten as 

v(p, Q) = N v(p, q). 
pEP, qEQ 

From this formulation it can be concluded 
that V(P, Q) is a filled (possibly unbounded) 
convex polygon. 

Let s, s' E S. Then the intersection of 
V(s, S) and V(s', S) is restricted to their (pos- 
sibly empty) common boundary, with a similar 
result for the furthest-point Voronoi polygons. 
The points s and 8' are commonly called closest- 
point Voronoi neighbors if the common boundary 
of their Voronoi polygons is nonempty. 

The set of all closest-point Voronoi neighbor 
pairs in S is denoted by Nc(S), where 

No(s) 
- {{8 ,  8'} e s 2 I or(8,  s)  n ov(~', s)  ~ ~). 

Similarly, s and 8' are called furthest-point 
Voronoi neighbors if their Voronoi polygons have 
a nonempty common boundary. The set of all 
furthest-point Voronoi neighbor pairs in S is 
denoted by Ns(S ), where 

N~(S) 
- { { s ,  ~') e S 2 I OV(S, 8) n o r ( s ,  ~') ~ 0}. 

The graph with the elements of S as vertices 
and connecting each two closest-point Voronoi 
neighbors provides a triangulation of Ho(S), 
called the closest-point Delaunay triangulation of 
S, here denoted by DTc(S). If the same nota- 
tional convention as in section 2 are used, it is 
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given by 

f "I)(DT~(S)) = S, 
DT~(S) 

,~(DT~(S)) = N~(S). 

The furthest-point Delaunay triangulation is 
defined in a similar way, but because only ver- 
tices of Ho(S) can be Voronoi neighbors, this 
triangulation of Ho(S), denoted by DT:(S), is 
given by 

f V(DTI(S)) = V(OHo(S)), DTy(S) 
g(DTI(S)) = N:(S). 

Examples of closest- and furthest-point Vor- 
onoi diagrams, together with the corresponding 
Delaunay triangulations, are shown in figure 5. 
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