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This paper sets out to study the effect of digitization on curva-
ture. It is put forward that digital curvature is an estimate with
accuracy and precision. A theoretical analysis of the curvature
estimation problem identifies the possible sources of errors in digital
curvature estimation. In the literature, five essentially different
classes of methods are found. From theoretical analysis of the
methods, as well as by random experiments on generated arcs, we
establish that almost all existing methods suffer from a severe
directional inaccuracy and/or poor precision. Errors depend on
the method, orientation, and scale, ranging from 1% to over
1000%. We present a practical solution with a residual error be-
tween 1% and 60%, also giving recommendations for the required

resolution of the image. © 1993 Academic Press, Inc.

1. INTRODUCTION

The accurate and precise estimation of curve properties
plays an important role in the interpretation of digital
binary data such as maps, engineering drawings, and the
like. The accurate measurement of length was discussed
in (4, 3].

Curvature also is a key notion in the recognition of
objects from digital pictures. Specifically maxima, min-
ima, and zero crossings of curvature carry important
shape clues. Applications of these specific events of the
curvature function are found for example in robotics [2]
and remote sensing [11]. In those applications, curvature
is used as a qualitative measure. Used as a quantitative
measure, the curvature squared has an important interpre-
tation in the energy it takes to bend an elastic object into
its shape. As a consequence, the estimated curvature can
be related directly to the physical forces acting upon the
object to get it into or keep it in the shape it has. This
interpretation of curvature is used in the recognition of
cells [25] and in the analysis of heart walls [6].

Digital curvature is computed from a discrete set of
points, either representing a digital line or the discrete
boundary of some digital object. In fact, this discrete set of

* This work was supported by the Dutch Ministry of Economic Affairs
through SPIN Grants “3D computer Vision™ and “3D Image Analysis.”

points is a representation of some continuous predigitized
object. In this paper the interest is not in the curvature
of the digital curve, but in the curvature of the predigitized
object. In the digitization, exact information on the contin-
uous object is lost and therefore curvature cannot be cal-
culated exactly, but it can only be estimated. In fact, there
is a lower bound on the error in measurement that can
be achieved [16, 22]. In this paper we analyze methods
on the basis of their ability to estimate properly the predig-
itized curvature. The ability of a method is defined by the
accuracy and precision of estimation. These notions are
quantitatively captured by the bias and deviation under
repeated placement of the continuous object on a random
position with respect to the digitization grid.

In the literature on the differential geometry of curves
[ 18], three equivalent formulations of curvature are found.
They are respectively based on the orientation of the
tangent, the second derivative of the curve considered as
a path, or on the local touching circle. Methods in litera-
ture on digital curvature measurement are based on either
of the three formulations. In [1, 2, 6, 12, 13, 25] digital
curvature is based on the orientation of the tangent, [9-11]
use a path-based scheme, and {20] fits a circular arc. As
a consequence, the methods differ widely in the approach
they take to curvature estimation. For the continuous
case, the three formulations are equivalent, but not so in
the digital case. In this paper we show that their behavior
and results vary largely; early results on this subject were
presented in [23]. It should be noted that the methods in
(1,2,9-11, 13] were designed for shape description, rather
than estimation. The results in this paper suggest improve-
ments to these methods, which make estimation results
more robust and improves on the shape description as
well.

All methods for digital curvature to be considered in
this paper are local. At every point of the discrete curve
any of the methods uses a limited window of fixed size
in the computation. From the points in the window a local
curvature estimate is made. The choice of a fixed window
size implies that curvature features should have compati-
ble levels of detail. For curves with details of different
sizes an adaptive window size can be used [19]. Alterna-
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DIGITAL CURVATURE ESTIMATION

tively, the curvature can be calculated at multiple scales
simultaneously and studied in scale-space [2, 9, 11]. In
contrast to local methods, curvature estimation can also
be attacked using global methods, for example by splines
[14] in conjunction with generalized cross validation [3].
For the curves on a discrete grid considered here, the
method is similar (fixing the scale parameter, see {21]) to
the methods in [9, 11].

Global methods which are applied to the grey value
image data directly are based on the use of snakes [7] or
Fourier parameterized contours [17, 24]. Both methods
are based on parameterized boundary templates, yielding
curvature directly from the template parameters. These
methods are unfit to estimate curvature from binary data
and difficult to compare otherwise with the above meth-
ods. In this paper only local methods will be considered
in further depth.

The framework for curvature estimation and criteria to
evaluate curvature estimation are presented in Sections
2.1and 2.2. A theoretical analysis of the impact of digitiza-
tion on curvature is presented in Section 2.3. Description
of the curvature estimation methods and an evaluation
on the basis of theoretical considerations is given in Sec-
tion 2.4. In Section 3 experimental data is presented to
verify the theoretical statements. Recommendations for
proper curvature estimation procedures will be presented
in the concluding section.

2. CURVATURE ESTIMATION FROM DIGITAL DATA

2.1. Definition of Curvature

Consider a continuous object X with boundary dX. Let
x(s) = (x(s), y(s))T be the length parameterized path fol-
lowing 9.X in a counterclockwise fashion. Definitions of
curvature can be found in text books on differential geom-
etry, see for example [18].

By definition the curvature « of a curve or path x is
given by the directional change of the tangent t of x.

DeriNITION 1 (Orientation-based continuous cur-

vature).
Kk(s) = 0'(s)
0(s) = £(t, x*-axis).
Formulated in this way, the sign of «(s) indicates

whether the curve locally at s is convex (x(s) > 0), or
concave (k(s) < 0).

Alternatively one can express the curvature in the norm
of the second derivative of path x.

DEFINITION 2 (Path-based continuous curvature).

+[Ix"()]
= x" 9

(contour locally convex)

(contour locally concave).

367

For an arbitrary (nonpathlength) variable 1, Definition
2 is reformulated into the following equation giving the
correct magnitude of curvature as well as the correct sign:

X (u)y"(u) — x"(u)y' (1)
"Wy + y' 0?7

(1)

x(u) =

A third definition is derived from the osculating circle
touching at x in s, defined as the limiting circle through
x(s — As), x(s), and x(s + As), when As — 0. Let r(s)
be the radius of the osculating circle in x(s) then:

DEeFINITION 3 (Osculating circle based continuous cur-
vature).

(contour locally convex)

(contour locally concave).

The three definitions are illustrated in Fig. 1.

2.2. Digitization Errors

When the continuous object X is digitized on a regular
grid with gridconstant # a discrete object X* results. We
employ the following commonly used digitization opera-
tor D:

D(X) = {(x,v) € %¥|(x/h, y/h) € X}. )

For the moment, without loss of generality, the grid-
constant # is set to one. The role of A4 in curvature mea-
surement is studied in Section 2.5. The boundary 4X* is
the set of all points of X* that have a four-connected
neighbor in the complement of X*. The contour x(/) =
(x(i), y(i))Ly. .. n-1 is the eight-connected path following

yt
x(s)
o X ->
FIG. 1. This figure illustrates the three different definitions of curva-

ture: 1. The derivative of tangent orientation 8; 2. The norm of the
second derivative x"(s); 3. The inverse of the radius r of the osculating
circle.
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8X* in a counterclockwise fashion. From the discrete
contour, an estimate & of the (local) curvature of the
predigitized curve is made. As curvature is translation
and rotation invariant in the sense that it is not dependent
on the ordering of the translation, the rotation, and the
curvature calculation step, there are two degrees of free-
dom in the placement of the object X on the grid. How-
ever, the resulting discrete contour is not invariant under
translation and rotation of the continuous object. Thus,
digital curvature is not only dependent on the predigitized
curvature, but also on the position and orientation of the
object. As the grid is nonisotropic, we are particularly
interested in the orientation dependency. Therefore, the
measurement error is studied as an average over all possi-
ble positions of the object.

Any continuous curve can locally be approximated as
a circular arc with radius equal to the inverse of local
curvature (see Definition 3). Therefore, to establish mea-
surement errors, digitized circular arcs of M digital points
are considered with varying position and orientation. This
can conveniently be achieved by placing discs B(c, r) of
fixed radius on a random position ¢; with respect to the
grid. For every point x(i) in the digital contour of the
disc placed at position ¢, a local window of size M is
considered. From the points in this window, curvature
is estimated. The random position is governed by the
probability density function p(c). To establish correspon-
dence between the results at different positions ¢ and to
study the anisotropy of the grid, the contour x and the
curvature estimate k are specified in terms of 8, the predig-
itized tangent orientation.

Thus, our measure of the quality of each of the methods
is the curvature measurement error E,(8) which is an
average over all random positions, specified as a fraction
of the squared true value «,.

DEFINITION 4 (Curvature error). Given k = k,,

S capP()R(M(B)) — ko) dc

En(0) = = X 100%.

=1 8]

K
E,, is composed of two parts. The curvature bias, B,,,

expresses the accuracy in analogy with the bias known
from measurements in physics.

DEeFINITION § (Curvature bias).

S P (O(R(H(0)) — Kp)dc »

By () = = 00%.

Ko

The bias in the result is either a consequence of the
digitization on the grid or it is due to causes not effected by
the digitization. In the latter case, the results of curvature
estimation can often be improved by a bias correction.

WORRING AND SMEULDERS

The second component of the curvature error is the
curvature deviation S,,, quantifying the precision of a
curvature estimation method. The deviation expresses
how the pixel digitization propagates into the estimation
of curvature. It is given by

DeFiNnITION 6 (Curvature deviation).

\/ J, PO RXM(B)) ~ &(8))de
) =

Ko

Su(d

x 100%,

where k denotes the estimated curvature averaged over
different positions.

The bias and the deviation relate to the curvature error
as

Ey(0) = B},(0) + S3,(6). 3)

2.3. Digital Discs

In this paragraph we study the effect of digitization on
curvature. Let x.,(/) be the discrete path resulting from
digitizing a disc B(c, r) on a grid, where i indexes the
different points. First we consider the appropriate param-
eterization of this digital circular path. Appropriate means
that the digital path can be found by taking discrete steps
in the parameter i, followed by truncation of the resulting
(continuous) coordinate values. If digitization would be
isotropic, the parameterization of a digital circular path
of N points would be based on a polar coordinate system:

¢+ rcos(;ﬂ)
X N
X, () = . (4)

. 2w
"+ rsin{ =
Cy ISIH(N)

However, this parameterization is not correct for the digit-
ization of a disc on a regular grid, as for a regular grid
the actual change in orientation varies for different points
on the discrete contour.

To find the proper regular parameterization, consider
the digitization following Eq. (2) of a disc of arbitrary
radius centered at origin. Let x, be an arbitrary point of
x(i) in the first octant. Considering all neighbors of x, on
the grid, it is found that neighbors connected to x, by a
Freemancode 2 or 3 are the only pixels that could possibly
follow x, in the eight-connected contour of the disc (see
Fig. 2). In the eighth octant, 1 and 2 are the only codes
found. The Freemancodes 1, 2, and 3 have in common
that the associated change in y-value is one. This constant
difference of y-coordinates has important consequences
for the parameterization of the digital disc and also for
the subsequent curvature estimation. Taking an arbitrary
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v 1

v Vil
Vi vii

FIG. 2. A continuous disc and its digitization are shown. The contour

is represented using Freemancodes. For the part of the boundary shown,
the difference in y-coordinate for successive pixels is always equal to
one. This result holds for any (continuous) radius of the disc.

starting point, the appropriate parameterization in the
eighth and first octant is y(i) = i and x(i) = Vr~ — i,
The digital curve in those octants can be found by taking
the floor of the continuous value x(i).

As the y-coordinate has constant difference in octants
VIII, I and IV, V, and the x-coordinate in the remaining
four, the parameterization is different for every pair of
octants. For the octants VIII, I, I, and 11 the parameter-
ization is given explicitly, the remaining octants are pa-
rameterized in similar way:

x. (i) =
o+ Vri=i?

' (—L\/551<£ 2)

o, +i 2 2
c, +rV2—i (r\/i . 3’.\/5)

= =1 <+

e, + Vet = (r V2 - iy 2 2

(5)

Note that the parameterization is derived for a disc
centered at the origin. If the disc is placed on a random
position with respect to the grid, the parameterization is
still correct. However, both x and y have to be truncated.
Further, at i = (r/2)V2, one has to decide whether the
parameterization for the first or second octant is valid,
based on the values of ¢ and r.

This regular parameterization of a digital disc provides
us with a powerful tool to find possible sources of curva-
ture estimation errors. Note that without truncation, both
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parameterizations yield the same (correct) curvature
values.

Consider the norm of the tangent vector. In the isotropic
parameterization (Eq. (4)) the tangent has constant size.
However, in the regular parameterization the norm of
the tangent varies as illustrated in Fig. 3. Two important
observations can be made from the figure. First, as the
norm varies between | and \/E any method based on the
assumption of unit tangent norm will result in a bias of
41%. Second, the first derivative of the norm shows a
discontinuity. This difference in tangent size is also re-
flected in the length between discrete points of the contour
X. As the contour is eight-connected, the distance between
successive pixels is either 1 or V2. In the main directions
of the grid the distance will be dominantly 1, where in
the diagonal directions the distance is mostly V2. For
random lines of varying orientation this is extensively
studied in [4]. 1t is found that the average distance apix
between two discrete grid points on a random line is not
1.000, but

d,;, = 1.107. (6)

Although this value is based on random straight lines, it
is shown in the reference that it holds for discrete curved
arcs as well.

Now, we consider the x- and y-coordinates of the pa-
rameterization. We have particular interest for the coordi-
nates at i = rV2/2 at the edge of octants 1 and 11. Taking
the limit of the first and second derivatives of the x-coordi-
nate to approach #V2/2 from the two different sides leads
to:

x;’T(r/V’f)(i) = -1, Xienad = =1
b 1 _2V§ ” .
Xipeval) = PR Xiyenva) = 0.

tangent norm
T

0.8

0.6

04

0.2t

—_———

I 1 v
octant->

VI

FIG. 3. This figure shows the norm of the tangent vector for the
regular parameterization. The norm function is not constant and does
not have a continuous derivative.
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first derivative

e —— —— —

VIII II III v
octant->

FIG. 4. This figure shows the first derivative of the x-coordinate
(solid line) and the y-coordinate (dashed line) of the regular parameter-
ization. Note that for large parts, one of the coordinates has a constant
derivative.

It follows that the curve has a continuous first derivative,
but its second derivative has a discontinuity of size 2
\V/2/r. In Fig. 4 and Fig. § the first and second derivatives
of the parameterization are shown. The second-order dis-
continuity introduces high frequencies in the Fourier
transform of the coordinates. Therefore, any low pass
filtering of the coordinates in order to reduce noise, alters
the shape of the curve. The difference between the Fourier
transform of the isotropic parameterization and the regu-
lar parameterization is prominently present as for the iso-
tropic parameterization the Fourier transform of a coordi-
nate yields two, low frequency. §-pulses only.

Another source of error, which is not directly depen-
dent on the parameterization, is the fact that circular arcs
of limited size are considered rather than circles. This

second derivative

0 — — = — = — L 1
-1/c} P —f— ~
/ \
/ \
/ \
-2/r 1
[ } \
| \
y \
vIIT I T 11T v
octant->
FIG. 5. This figure shows the derivative of the x-coordinate (solid

line) and the y-coordinate (dashed line) of the regular parameterization.
For both coordinates a discontinuity in the second derivative is found.
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error is studied using the isotropic parameterization. Let
x(6) be the circular arc of radius r with § € [, — «, 6, +
«). Further, let Ax, denote the extent of x in the direction of
the tangent t. Similarly, let Ax, denote the extent in the
direction of the normal n (the vector perpendicular to the
tangent). Assuming A6 < 7/2 we have

AX.) _ 2sina
(Axn w | —cosa’ ™

Example values are

Ax,) B (Ax,) B (Axt) _
(Axn s 10, AX, /14 =48, Axy ) 2

1t follows that for small arcs, in the direction of the normal,
digitization errors have a large impact on the measurement
result. For example, in the case of & = #/8 and r = 40
the pixel size is 3.3% of Ax, and 33% of Ax,. The latter
might lead to considerable errors. For the coordinates x
and y it follows that if the tangent is oriented along a
horizontal (vertical) line of the grid (8, = 0 mod 7/2),
digitization has a large impact on the precision of esti-
mated properties of the y-coordinate (x-coordinate). If,
on the other hand, the tangent is directed along a diagonal
line (8, = w/4 mod m/2), the impact on both coordinates
1s equal.

2.4. Methods for Estimating Curvature

In the literature on curvature estimation several meth-
ods are presented for deriving the curvature of a digital
curve. Some of them are explicitly designed to measure
the curvature quantitatively, others are being used for
their qualitative values. We consider them here for the
purpose of measurement. The methods are based on either
one of the three curvature definitions given above. The
definitions are equivalent in the continuous case but not
so in the digital case. We use the three definitions to divide
the methods in three categories.

Before we get to a description of the actual methods,
we study the effect of truncating the Gaussian kernel on
the measurement values.

2.4.1. The Truncated Gaussian Kernel

The Gaussian kernel is a popular filter used in smooth-
ing. To be used as a digital filter, the Gaussian kernel is
truncated to some finite size 2k + 1. Thus, the discrete
Gaussian kernel is given by

1

a\V 2w

Gd(i)=< e-””‘f:),_ . m=[kal. (8)
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Differentiating kernels based on the Gaussian kernel are
defined in similar way.

Although it seems a minor detail, it is shown in this
paper that it is important to consider the truncation of the
kernel as a source of error in the curvature estimation.
Authors rarely state the value of k used in their method.
An exception is found in [9]. For an arbitrary filter F,
depending on scale parameter o, we define the truncation
error g,.(F, k) as

[0+ LTI
I IF, 0]

e, (F, k) = x 100%. (9)

For F, = G.and F, = G this leads to

e (G k) = e X2 x 100%,
" — k (1 -2
e (G" k) = 5 x 100%.

In this paper we take m as the smallest integer larger
than 3o following [9]. The truncation errors in this case
are o(G’, 3) = 1.1% and £,(G", 3) = 2.7%.

The truncation error by itself is a measure of the devia-
tion of the filter from its ideal shape; it is not a measure
of the performance of the filter in measurement. To illus-
trate the point, consider convolution of a linear function
f(x) = ax + b with a differentiating Gaussian kernel to
estimate the first derivative in the point x = 0. Using
continuous convolution and a nontruncated Gaussian ker-
nel (denoted by k = =) we have

fU0) = f(0)* G0,y = a.

Let B,,..(f'. k) denote the bias in the estimated derivative
f’ when using a truncated kernel! of size 2k + 1, relative
to the true value a:

a—fi
“—C{;‘—) X 100%.

B!runc(f,’ k) = (IO)

In Table 1 the values of ¢, and B, are given for sample
values of k. Note, these results were obtained using con-
tinuous convolution and are therefore not dependent on
the position of the curve or its digitization yet. The table
demonstrates that a statement on the truncation error of
the kernel does not reveal the estimation error it causes.

2.4.2.

Digital estimation methods for curvature based on the
orientation based definition (Definition 1) can be found in
(1, 2, 6, 12, 13, 25]. In practice, an estimation of the

Methods Based on Orientation
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TABLE 1
The Truncation Error £, (Eq. (9)) Due to Truncation of the
Gaussian Kernel to a Filter of Size 2k + 1 Points

k £,G" K B ([ )
1 60.7% 81.1%
2 13.5% 26.1%
3 L1% 2.9%
4 0.0% 0.0%

Note. This indicates the deviation of the kernel from its ideal shape.
Further. it gives the actual error in the estimation of the first derivative
of a linear function according to Eq. (10).

orientation is made and from there the differential needed
in Definition 1 is found.

Rosenfeld [13] and Young [25] use the direction of the
Freeman contour chain code as the estimate of orienta-
tion, recognizing in each point eight different pixels as
neighbors. Young then computes curvature by repeated
uniform filtering of the differential of the Freeman codes.
Rosenfeld follows a different procedure, but it can be
reformulated into the previous one.

Asada [2] uses greyvalue gradient information rather
than the tangent to estimate the orientation of the contour,
also recognizing a limited set of different orientations.
From the orientation, curvature is estimated by Gaussian
differential filtering. The Gaussian differential kernel has
a superior frequency response over the previously men-
tioned ones. Therefore, we investigate the principle of
this method of differential filtering only. As we limit our-
selves to geometrical information, we will not follow the
orientation estimation step used in his procedure. The
orientation of the Freeman contour chain code is used
instead.

Let * denote discrete convolution; then the above meth-
ods [2, 13, 25] summarized as Method I for the estimation
of curvature.

DEFINITION 7 (Method I: Chain code).

k() = 6()* G,
.. afyi+ 1) - y(i,))
=t [ EAVELEEESNTA S I
6() = tan <x(i T = x0)
To gain insight into the curvature estimation properties
of the method, we apply Definition 7 to the parameteriza-
tion given in Eq. (5), leading to the analytic description
of the orientation function used in the method,

A i
B(i)ztan“( )
VP2 -G+ 1Y - VP77

Curvature k(i) is the analytical derivative of this expres-
sion with respect to i, yielding a fairly complicated func-
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tion. The relative error B,,;,(i, r) in the curvature estima-
tion derived from the analytical model of the chain code
method is given by

Bchain(i! r) = E‘::(i(Q X 100%, K = l/r (11)

Interesting values of f are i = Qand i = V212 - 1,
corresponding to the main direction and the diagonal di-
rection of the grid, respectively. Example values are

Bchain(o’ 10) = 03%,
Bauin(rV2/2 = 1, 10) = 33.6%,
Bchain(o’ 1000) = 0.0%

Bopain(rV2/2 — 1, 1000) = 41.3%.

The example values of the analytical model clearly show
the influence of the anisotropy of the grid on the final
result. In the main directions of the grid, curvature ap-
proximation is not effected by the use of chain codes.
However, in the diagonal directions, for large r, the error
gets close to /2, resulting from the incorrect assumption
that the tangent has constant size. Note that the error is
only an upper bound as in practice the directions are
restricted to take one out of eight values. Apart from the
fact that tangent size is different for different orientations,
the average length between two discrete pixels (Eq. (6))
is not taken into account either. Using the equation, it
follows that a relative bias B, results.

B, = 10.7%. (12)

pix
One could try to avoid the problem of length differences
in the eight-connected contour by using a four-connected
contour instead. However, the orientation estimation be-
comes very poor in this case and therefore the use of
four-connected chain codes is not considered here.

Another consequence of the varying distance between
pixels is that the effective sampling distance on the orien-
tation function 8 varies along the contour, whereas the
use of linear filtering techniques requires an equidistant
sampling. Duncan [6] observed that this difference in ef-
fective sampling distance can be reduced by resampling
of the discrete contour [15]. Thus, a new contour
Xpes (1) = (Xpes (D) Yres(D))7T is defined with n equidistant sam-
ples on the continuous polygon connecting the points of
x. We choose to resample the curve using n = N, enabling
a fair comparison of its performance to other methods.
After resampling the method of Definition 7 can still be
applied, lifting the restriction on the number of different
estimated orientations.

We make one addition to the method. Using Eq. (6),
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we apply a multiplicative bias correction to correct for
the bias B, as given in Eq. (12). This leads to the following
curvature estimation method.

DerFiNiTiON 8 (Method I1: Resampling).

A()_ém*G;
“ul = 07

A — -1 yreﬁ(i + ]) - ),res(i))
#() = tan <'xres(i P A

Method II can be seen as a variant of Method I cor-
rected, to some degree, for the anisotropic effects of the
grid. Small anisotropic effects pertain, however.

In Methods I and II smoothing of the digital data is
performed when estimating the derivative of orientation.
An alternative method is followed by Anderson [1] and
in the methods surveyed by O’Gorman [12}, where
smoothing is achieved in the estimation of orientation.
Curvature is calculated as the angular difference between
two straight lines fitted to the data in the neighborhood
of the point under consideration. Linefitting in [12] is
achieved by connecting two points of the curve, which
are a fixed number of points apart. Methods differ only
in the position of the two straight lines with respect to
one another. Extreme cases are straight line segments
having one endpoint in common and segments that are
shifted one point only.

None of the methods connecting two points is robust
as a one-pixel shift in one of the endpoints causes a large
change in orientation and, hence, in the estimate of curva-
ture. A better procedure is followed in [1], where linefit-
ting is based on minimization in a window of size M =
2m + 1 of squared distances to the line. Small changes
to the position of one of the points on the curve has a
small influence on the estimated orientation. Therefore,
the latter method will be considered in this paper as a
representative of all linefit-based methods. In the ref-
erence, the change in orientation is computed using effi-
cient matrix calculations. For the purpose of comparison,
it is convenient to rewrite the change of orientation as a
convolution of estimated orientation with the differentiat-
ing kernel {+ 1, —1}. Curvature is calculated by dividing
the change of orientation by the distance between the
centers of the two windows. Let /; denote a line with
orientation #; then the linefit methods can be summarized
as

DEFINITION 9 (Method III: Linefit).

5 _ @i+l 1}
k() = dix(i + 1), x(i))

6(i) = arg mein{z w(jidx( - j), 19)2)}
j=-m

w(j) = Go(J),
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where d(-, ‘) denotes the Euclidean distance. For a fair
comparison with the other methods we introduce the
weighting function w. This is a minor deviation from the
original method as in the reference uniform weighting is
used.

As orientation estimation is based on a larger number
of points, it will be more accurate than orientation estima-
tion in Method I or II. However, the differentiating filter
used in the procedure has poor frequency characteristics
as it amplifies high frequency noise considerably.

To find the effect of the filtering step on curvature esti-
mation, assume the linefit procedure yields an estimated
orientation corrupted with independent zero mean noise
with standard deviation o*. The standard deviation of the
noise in the estimate of the derivative is o* V2. As the
true derivative value may be small, the effect of small
amounts of noise might be of considerable influence on
the quality of estimation. As an example, consider the
curvature estimation of a disc with radius r = 25. If the
standard deviation in estimated orientation is only 1°, its
deviation is 61.7% of the curvature value.

Another source of inaccuracy is the fact that the esti-
mated derivative is divided by the length between discrete
pixels. The distance between pixels is restricted to either
lor V2, a poor estimate of the predigitized arclength.

2.4.3. Methods Based on Paths

Lowe [9] and Mokhtarian [11] start from Definition 2.
The authors obtain smooth derivative estimates of the x-
and y-coordinate sequences by convolution with differen-
tiated Gaussian kernels. As the parameter i in general is
not a pathlength variable, Eq. (1) is used to compute
curvature. The method by Medioni [10] is also based on
Definition 2, but derivatives are found by fitting splines
through the data points. It is easy to prove, by considering
the different steps taken in the procedure, that the spline-
fitting procedure again boils down to linear filtering of the
coordinate sequences. Reformulated in this way, one can
compare the frequency response of the method in [10] to
the methods in [9, 11]. It turns out that a Gaussian kernel
can be found (by tuning o) with nearly identical frequency
response. So, summarizing the three methods gives

DEFiNITION 10 (Method 1V: Path).
@Oy'H - "0y
&) + &' (D))"
') = x(D) * G (3),
') = x()* G,
y@) = y@)y* G ),
) = x() * G).

k(i) =

As regards the effectiveness of Method 1V to measure
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curvature, it is noted that low pass filtering of the coordi-
nates is used. In Section 2.3 it is found that due to the
nonisotropic nature of the grid, low pass filtering yields
inaccurate results as the second-order derivatives of the
curve show a discontinuity.

As concerns the truncation of the Gaussian kernel it is
important to consider the shape of the second derivative.
Large parts of the derivative are zero. Therefore, if the
truncated part of the kernel falls into the part where the
derivative is nonzero, its impact on the total estimation
result might actually be very large. Much larger than the
errors following from Eq. (9).

It is also argued that, for small arcs, one of the coordi-
natee is significantly affected by the digitization if the
tangent is in the main direction of the grid. Weighted
average of this coordinate will therefore be very impre-
cise, resulting in unreliable curvature estimates.

The path-based methods have the unique property that
the curve corresponding to the estimated curvature func-
tion k can be calculated directly by convolution of the
coordinates of the curve by a Gaussian kernel. The param-
eter of the kernel should be chosen equal to the parameter
used in the differential filtering. As observed in [9], such
Gaussian smoothing of the path coordinates causes a
shrinking effect on the curve. That is, locally the
smoothed curve tends to move towards the local center
of curvature. In the reference this movement of the curve
is corrected for. The equations in the reference can be
rewritten to give the relative bias B, in curvature esti-
mation on a disc as a function of the ratio p = o/r:

Baink(p) = (772 = 1) X 100%. (13)

Example values are

Bink(0.08) = 0.3%
B ink(0.16) = 1.3%
B ink(0.32) = 5.3%
Bohin(0.64) = 22.7%.

It follows that only for large values of the ratio o/r is the
error significant. Bias correction for the shrinking effect
is not applied in this paper.

2.4.4. Methods Based on the Osculating Circle

Definition 3 leads to fitting a circular arc with radius r
and center ¢ on the local contour data [8, 20]. The differ-
ence in the two references lies in the choice of the criterion
to optimize. The criterion in [8] is based on length,
whereas the criterion in [20] is based on area. The latter
is preferred as the area-based criterion leads to closed
form solutions for the center and the radius of the disc.
Although not used for that purpose in the reference, the
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radius r can be used for the computation of curvature.
The method is given by

DeriNITION 11 (Method V: Arcfit).

+ ;EIB (contour locally convex)
ky(i) =

A

(contour locally concave)

(é,7) = arg min{ > w()Hr? - |xG—j) - (,I:)):}

(c.r) j

j=-m
w(j)=G,(j).

As before we introduce a weighting function w to allow
for comparison. It should be noted that the arcfit method
has the unique property, among all the methods consid-
ered, that it will not only give the radius of curvature,
but it also yields &, an estimate of the local center of
curvature.

For the purpose of curvature measurement it is im-
portant to note that the arcfit method is meant for fitting
arcs encompassing the full boundary of the disc. Here we
apply the method to arcs of limited size. To make this
observation more precise, we have to consider the actual
steps taken in the method. First note that the method is
invariant under translation and rotation of the discrete
points. The equations in the reference are simplified if
points are translated such that the averages of x(i) and
y(i) in the local window are equal to zero. It is assumed
in the following that this translation is already performed.
Let 3, denote the average of f in the local estimation
window, then the estimated center ¢ 1s given as the solu-
tion of the following matrix equation:

3.

== : 14
s, (14)

with r2()) = x*(Q) + y2(i). The left-hand side matrix is
equal to the matrix used in Method I11. There the direction
of the eigenvector corresponding to the largest eigenvalue
is taken as an estimate of the direction of the tangent.
Consequently, the eigenvector corresponding to the
smallest eigenvalue is an estimate of the normal to the
curve. The eigenvectors can be used to diagonalize the
left-hand side matrix. Let the resulting coordinate system
be given by unit vectors in the direction of t and # and let
(x,, y,) denote the point x with respect to this coordinate
system with similar notation for ¢. Then the solution to
Eq. (14) and the estimate 7 can be written as

1
+ 2,2
2m+12’

:P:) _\ﬁ)
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These equations yield the same result as the equations in
the reference, but rewritten into this form they yield more
insight into the method. It follows that the estimate for one
coordinate of the center is mainly based on information in
the direction of the tangent, where the other coordinate
is based on information in the direction of the normal. As
indicated in Eq. (7), the information in the direction of
the normal might be very inaccurate for small arcs. Errors
in the estimate of the center directly propagate in the
estimated radius and curvature. Therefore, curvature esti-
mates are poor for small arcs.

2.5. Parameter Tuning and Resolution

An issue in practical curvature measurement is the
question what resolution and scale parameter is required
to satisfy a certain present constraint on accuracy or preci-
sion. To that end, we parameterize the notion resolution
in the context of curvature measurement.

Consider the curvature measurement of a continuous
arc of size A6 rad and radius r,. Without loss of generality
the radius r, of the continuous disc is set to one. After
digitization on a regular grid with gridconstant /4 (Eq. 2)),
a disc with discrete radius r results, with r = /4. As we
have a direct relation between r and h, the discrete radius
r is taken as the parameter of resolution.

The discrete arc corresponding to the continuous arc
of size A6 consists of M discrete samples. As the average
distance between points is 1.107 (Eq. (6)), M is related
to A6 and r by

rAe
1.107°

The scale parameter o should be chosen such that the
window of size M = 2m + 1, with m the smallest integer
larger than 3o (Eq. (8), with & = 3), covers the complete
arc of M points. Thus, o and r are related by

rAé@
T x 1.107° (15)
This formula is used to generate Fig. 12 (sec Section 3.7).
This concludes the evaluation of the methods on the
basis of theoretical considerations. In the next section
experiments are performed to verify the theoretical con-
clusions.

3. EXPERIMENTS

In this paragraph, for the various methods, the integrals
By, (Definition 5) and §,, (Definition 6) are approximated
using Monte Carlo experiments. As curvature is transla-
tion invariant, a uniform distribution of the centers ¢, is
assumed. Further, ¢ can be assumed to lie in [ — 31, 3] X
[— 3. 2]. The experiments are performed on discs with the
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FIG. 6. The bias B and deviation S for curvature measurement on a disc with curvature x = 7% (i.e., r = 25) are shown for the method based

on chain codes (I).

following curvature values, representing a typical range

of curvature values to encounter in practical situations:
K =15.75,25.,%5,30,55,10 -

For each r, the scale parameter o for all methods is subse-

quently set to

o =3.0,4.0,5.0,6.0,8.0, 12.0, 16.0.

For each o, windowsize M is based on Eq. (8) with & =
3. The discs are placed on the grid in random position
N = 100 times. Due to the symmetry of the grid, the
results are equal modulo #/2. Furthermore, inside such
an interval of size #/2, results are symmetric around 6 =
w/4. These observations were exploited in the experi-
ments. Therefore, in effect, the computation of B,, and
S, are based on n = 800 circular arcs of size /4. In the
sequel the subscript M will be omitted. For the disc of
radius 25 (k = 1/25) the results are shown in Figs. 6-10
and discussed for all x in the subsequent paragraphs.

3.1. Chain Code

The chain code based method (I) has an orientation
dependent bias. For the radii and scales considered, the

bias is between —22% and 91%. The deviation ranges
between 0.6% and 52%. For the disc of radius r = 25 see
Fig. 6. For small o it is observed that the difference in
bias is larger than the 41% as expected from Eq. (11).
An explanation is found in the fact that in the analysis
orientation is not restricted to take one out of eight differ-
ent values. For r = 25 and o = 3.0, the difference in bias
between 6 = 0 and 6 = 7/4 equals 95%, substantially
exceeding the deviation of 309 maximum. It is concluded
that the estimation error E is dominated by the bias (see
Eq. (3)).

Forlarger o, the error due to length differences between
pixels are smoothed out and therefore not prominently
present. In the limit case of large o (here o = 16.0) a
bias close to the bias B, is found (Eq. (12)).

3.2. Resampling

As expected, the resampled version (method I1) shows
a reduction of the orientation depending error found for
Method I. The bias now ranges from —8.2% to 17%. The
deviation for Method Il is approximately equal to the
deviation of method I (0.4% to 49%). In Method 11, for
r = 25 and o = 16.0 the bias is only — 1%, where the
deviation is even lower than the absolute bias (see Fig.
7). Therefore, it is concluded that the resulting total error
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Eis very small. In fact, the overall performance of Method
11 is superior to all other methods considered.

As indicated earlier, small anisotropic effects remain
after resampling. To study this phenomenon, we gener-
ated discs of different radii and centered at the origin.
From there, we calculated the average distance between
two points on the curve, before and after resampling.
Further, we calculated the deviation from the mean length
for both the original curves and the resampled curves.
This resulted in the results shown in Table 2.

A number of interesting observations can be made from
the table. The average length and the deviation for the
length of the points before resampling seem to be approxi-
mately constant with respect to the radius r. For the re-

TABLE 2
The Mean Distances between Points on the Curve Before and
After Resampling as Well as the Deviation from the Mean

r 10 20 30 40 100 200

Original Mean .18 1.18 118 118 1.17 117
Deviation 0.205 0.205 0.205 0.205 0.204 0.204

Resampled Mean 113 113 L4 1L1s .14  1.14
Deviation 0.058 0.049 0.045 0.041 0.039 0.036

Note. Values are given as a function of the radius r.

The bias B and deviation S are shown for the resampling method (11) for r = 25.

sampled curve, deviation is a slowly decreasing function
of r. In general, the deviation for the resampled curve is
three to six times smaller than for the nonresampled
curve. A considerable improvement, resulting in reliable
curvature estimates.

3.3. Linefit

Over all discs, Method 111, based on line fitting, has a
bias between —27% and 24%. Deviation never gets below
5.8% and is 68% maximum. For r = 25 and small o,
Method 111, shows a small bias (see Fig. 8). It shows
high deviation as expected from the larger errors in the
orientation due to the small number of points considered.
These errors propagate to much larger errors in the final
outcome due to the method of differential filtering used
in Method 111. For larger o, the bias increases and the
deviation remains poor, although orientation estimation
is better.

To substantiate the observations, we performed an ex-
periment by placing the disc of radius » = 25.0 at 100
random positions. From there, we calculated the devia-
tion in estimated orientation, derivative, and curvature.
Results are given in Table 3, relative to true curvature
% . It follows that propagation of the noise is not as bad
as expected from the considerations in Section 2.4.2 for
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independent noise. This indicates that the errors for one
point are correlated with the errors of its neighbors. For
the large kernel with & = 16.0 the deviation in the deriva-
tive is much smaller than the deviation in curvature. This
is a consequence of the poor method of estimation of the
predigitized arclength used.

3.4. Path

For all discs and scales, the path-based method (1V)
shows poor performance as expected from the problems
arising in smoothing a discontinuous function. Bias is

TABLE 3
To Study the Performance of the Linefit Method a Disc of Radius
r = 25 Is Placed at Random Positions on the Grid 100 Times

a 3.0 5.0 16.0
Deviation in Min Max Min Max Min Max
6¢i) 242 84.7 15.7 40.3 1.4 35.5
6'(i) 8.0 433 2.7 12.9 0.9 3.3
10 13.0 45.9 5.8 18.8 1.6 14.3

Note. The deviations in estimated orientation, derivative, and curva-
ture are established. Shown are the minimum and maximum deviations
found, relative to the true curvature k = .

The bias B and deviation § are shown for the linefit method (III) for r = 25.

between 8.6% to 492% and deviation is 16%-378%. For
r = 25and o = 3.0 (see Fig. 9), bias ranges between 74%
and 113%, where the deviation reaches even higher values
(151%-236%). (see Fig. 9). This improves for higher
scales, but for o = 16.0 bias is still 26% to 33%. Standard
deviation for this value of ¢ is approximately 16%. It is
also observed that indeed errors are largest in the main
directions of the grid.

Results are expected to improve for larger kernels (for
fixed o) as the errors due to truncation are reduced (cf.
Section 2.3). To study the effect of the truncation of the
kernel, we consider the disc of radius r = 25 and repeat
the experiments for the path-based method using a kernel
with & = 5 instead of & = 3. The minimum and maximum
bias and deviation for the two cases are shown in
Table 4.

The table indicates that a drastic improvement in perfor-
mance is achieved by using larger kernel sizes (for fixed
o). Infact, as illustrated in Section 2.4.1, truncation errors
for k = 3 are much larger than the truncation error as
given by Eq. (9). The use of larger values of & does not
pose a problem for closed curves as the coordinate func-
tions are periodic. For open curves the larger kernel
causes practical problems at the endpoints. Further, the
use of a large kernel reduces the local character of curva-
ture estimation.
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FIG. 9. The bias B and deviation § are shown for the path based method (IV) for r = 25.

For both kernels o = 16.0 leads to a bias of approxi-
mately 30%. This is close to the error predicted to occur
as a consequence of the shrinking of the curve (B,

12) = 22.7%).

3.5.

Method V, based on arc fitting shows the largest maxi-
mum errors (bias 6.2%-511%, deviation 0.4%-819%).
Those maximum values are found for the disc of radius

Arcfit

TABLE 4
The Differences in Bias B(8) and the Deviation S(6) When
Different Values of « (see Eq. (8)) Are Used for Truncation of the
Kernels in the Path-Based Method

o 3.0 S.0 16.0
Measure Size Min Max Min Max Min  Max
B k=3 73.7  113.1 30.6 508 255 326

k=35 1.5 3.9 -1.5 7.7 287 357
S k=3 1506 2359 753 1040 164 16.7
k=5 6.7 38.8 2.9 9.9 0.9 1.2

Note. Curvature is measured on the disc of radius r = 235.

r = 40 and scale o = 3.0. For all discs the deviation for
small o is large (see, for example, Fig. 10). This especially
holds for small o and large r, a direct consequence of
the observation that for small arcs, information in the
direction of the normal is not reliable (cf. Section 2.4.4).
For most of the cases, the error is largest for § = 0;
however, for the larger discs large errors are found for
an orientation of approximately oo = #/16. It turns out
that for these values of r the quantization error has its
largest impact in those directions. Larger ¢ result in im-
proved deviation, as larger arcs are considered.

The arcfit method also yields the local center of curva-
ture; to illustrate its performance we calculate the average
center position for some radii r and scales o. The average
position is presented as the curve (¢,(6), ¢,(6)) and the
average of #(8) as the curve (7 (8) cos 6, 7(8) sin ). Note
that ideally the average center is a point and the curve
representing the average radius is equal to the original
disc. Results are shown in Fig. 11.

For r = 40 the large error for # = 7=/16 is observed.
From the figure it follows that this large error in fact is
mainly a consequence of errors in the estimate of the
center in the direction of the normal. By comparison of
the figures forr = 40.0,0 = 3.0and r = 100.0,0 = 7.5
it is concluded that bias is due to the quantization error
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FIG. 10. The bias B and deviation § are shown for the arcfit method (V) for r = 25.

as well, where we adhered to the relationship between r
and o in Eq. (15).

3.6. Experiments on Elliptical Figures

The analysis so far was based on measurement of ob-
jects with constant curvature function. To establish the
robustness against change of curvature, experiments are
performed in much the same way as before, but using
ellipses instead of discs. These ellipses are chosen such
that the maximum and minimum curvature of the corre-
sponding curvature function are equal to 1/10 and 1/40,
respectively. The experiments are done for fixed orienta-
tion of the ellipse and repeated for several orientations.

Results are not shown here. It was found that the quality
of the methods is comparable with the results on the discs.
Considering the average estimated curvature it is found
that Methods I, III, and 1V introduce spurious maxima
and minima of curvature, where in many cases the true
curvature extremes are missed.

3.7.

The relation between resolution and measurement er-
rors is studied on the basis of Section 2.5. For increasing
r and fixed A6, Eq. (15) is used to find corresponding
values for o.

Experiments on Resolution

To show the relation between resolution, on the one
hand, and accuracy and precision, on the other, the bias
and deviation for arcs with radii between 10 and 140 are
computed for Af = /4 and A9 = #/2, respectively. For
the resampling method, the method with best perfor-
mance, errors are shown in Fig. 12. Note that in the
figures the scale of the y-axis has changed with respect
to previous figures.

From the figure and further analysis of the experiments
we conclude that bias is mainly a function of the local
orientation and size of the arc and not of resolution. In
fact for the smaller of the two arcs (A6 = =/4), bias ranges
between — 7% and + 5%, depending on the orientation.
For the larger arc the range is between —3% and — 1%.

In contrast, the precision of the method does improve
with the number of samples. For the smaller arc, many
more samples are needed to reach a similar precision. So,
as a rule of thumb when measuring curvature, resolution
is found from Fig. 12 based on the required precision on
the smallest arc of interest. From there, using Eq. (15)
one computes the appropriate scale parameter o.

4. CONCLUSIONS

Computation of curvature from a digitized curve is a
nontrivial task which should be considered with care. [t
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FIG. 11. This figure illustrates the performance of the arcfit method. In each figure three different curves are presented for some fixed value
of r and a. One curve denotes the average center found as a function of orientation 6. A second curve shows (7 (6) cos 8, 7(#) sin 8), illustrating
the average estimate 7 as function of orientation. The original disc is given as a reference curve. Note that the average center should be one
point (the origin) and the average radius curve should be equal to the original disc.

is important to conceive of the task as an estimation prob-  troduce high frequencies in the Fourier transform of the
lem in which measurements can be made of the error due  coordinates, making smoothing unreliable.
to digitization. We considered methods from literature to measure cur-
Curvature estimation interferes in many ways with the vature from a digital curve. Methods are based on the
spatial sampling of an object using a regular grid. As three different formulations of curvature. We found five
the grid is anisotropic it causes considerable difficulty essentially different methods. Methods I, II, and 1II are
in reliably estimating something essentially circular. A all based on the formulation that curvature equals the
theoretical analysis of the problem revealed that the pa- change of orientation of the tangent. They differ in their
rameterization of the digital curve does not equal the method of orientation estimation and in the subsequent
isotropic parameterization of a continuous circle. This differentiation step. Method 1V is based on the second
has a direct consequence on curvature estimation as it derivative of the curve considered as a path. Finally,
turns out that the digital coordinate sequences have dis- Method V is based on the osculating circle touching the
continuous second derivatives. Those discontinuities in- curve. Methods were evaluated on the basis of theoretical
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In this figure, for the resampling method, the relation is shown between the resolution of the image and the minimum and maximum
bias (a) and deviation (b) over all orientations. Measurements are shown for an arc of size A = w/4 and for an arc of size A8 = 7/2. The radius
r of the digital disc serves as the parameter of resolution. Note that the y-scale is different from previous figures.

and practical considerations. Monte Carlo experiments

were performed to establish the bias and deviation in

to shrinking of the curve. Bias values are 8.6%-492%
curvature estimation.

with deviation 16%-378%. Truncation at 5o is needed
to obtain more reliable curvature estimates. With such
sufficiently large kernels, this method is the method to
use when the aim is to estimate curvature as well as the
smoothed curve. For large o, a correction for the shrink-
ing effect should be applied [9].
Methods based on chain codes (Method 1) [2, 13, 25]
perform poorly as the anisotropy of the grid is not ac-
counted for, resulting in a bias between —22% and 91%
and deviations 0.6%-52%. Correction for this anisotropy
results in resampling of the curve [15] followed by curva-
ture estimation from the resampled chain codes (Method
I1) [6]. This method has the best overall performance. The
remaining bias is between —8.2% and 17% and deviation
ranges from 0.4% to 49%. It is recommended as the

method to be used in practice, with scale parameter o
and resolution based on Fig. 12.

The experiments reveal that almost none of the existing
methods to measure curvature performs well. We found,
under typical circumstances, bias values of —27% to
S511% and deviations between 0.4% and 819%.

Among the methods considered, Method IlI, based on
fitting two straight lines [1, 12], has poor performance.
Bias is —27% to 249, where deviation is 5.8%-68%.

The errors are a direct consequence of the method of
differential filtering and of the arclength estimator used.
Orientation estimation is reliable, however. Curvature es-
timates are improved by using a Gaussian differential ker-
nel and a better arclength estimator [5].

Fitting a circular arc, Method V {20] is only suited for
curvature estimation when arcs are large and of constant
radius. Bias ranges from 6.2% to 511%. Deviations also
reach large values (0.4%-819%).

The performance of the path-based method (1V) [9-11]
is poor, as smoothing is hampered by the discontinuous
derivatives of the coordinate functions. Another source

of inaccuracy is the error due to truncation of the filter
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