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1. INTRODUCTION 

The determination of the length of a discrete contour is frequently required in 
image analysis. Many methods have been proposed [1-6]. It is the purpose of this 
paper to review these methods within a proper framework, to evaluate them and to 
give recommendations for use on computational, practical, and theoretical grounds. 

Discrete measurement of properties of continuous curves is a nontrivial task. 
Some preliminary observations can be made concerning the basics of measurement 
methods. 

First and foremost, it should be realized that the length measurement of a discrete 
contour is essentially an estimation problem. The interest is not in the length of the 
digital contour but in the length of the original, predigitized line. We therefore 
conceive of the set of discrete data points as a digitized line rather than a digital 
line. A digitized line is the digitization of a particular continuous original, whereas a 
digital line is a subset of the pixels in the two-dimensional grid. The difference 
between digital and digitized may seem very subtle and irrelevant but in fact it 
causes a considerable difference in the accuracy of the length measurement, as will 
appear in the paper. In the digitization, the exact original, continuous line is lost. 
The only thing left is a discrete approximation of it. As the exact copy of the 
continuous line is lost, the length of the original line can only be estimated rather 
than exactly known. In this paper, we will review to which degree known length 
measurement methods succeed in providing an accurate estimate for the length of 
the original line. 

To illustrate the difference between digital and digitized lines somewhat more, 
consider a discrete line the way it is usually drawn, as in Fig. lb. The discrete 
l ine--which is in fact a set of grid points!--is indicated by a broken line intercon- 
necting the pixels of the diScrete line. In digital image analysis, this broken line is 
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FIG. 1. (a) The 8-connected chaincode scheme; (b) a line in the standard situation. 

not an actually existing entity but only a way to indicate which pixels belong to the 
discrete line. Still, the length of this broken line is an old and widely spread method 
to find the length of a discrete line in image processing [1]. But, as the broken line is 
not the original one, it is not truly relevant in finding a length measure for the 
predigitized original. In this paper other, more accurate, length estimates will be 
evaluated, some of which are computationally equally efficient as the above method 
by Freeman [1]. Also, resampling the broken line taking 5 samples in each straight 
connection and 7 in each diagonal connection, as was proposed in [17] to reduce the 
anisotropy of the grid, is not a proper way to conceive of a digitized figure. 

Another important point to realize is that it is impossible to reconstruct the 
continuous contour from the discrete data. This means that many possible contours 
correspond to a specific discrete realization, all with different lengths. Some of these 
contours are very curvy. To develop practical length estimators, some reasonable 
assumption about the original contour has to be made. The simplest assumption is 
that it consists of piecewise straight parts, and to gauge the estimators accordingly. 
Therefore, in this paper we will develop and evaluate length estimators for ideal 
straight strings, the discrete images of continuous straight line segments. Deviations 
from the ideal case, such as noisy straight lines, will be only marginally be 
considered here. Dealing with noise is a problem-specific task, which should proceed 
from the estimation treated in this paper. We will, however, investigate ideal 
nonstraight curves, particularly chains of circular arcs. Third, the estimated length 
should by some criterion correspond to the original length. The criterion by which 
this match is to be judged should be chosen sensibly: on the one hand, it should be 
mathematically tractable; on the other hand, it should correspond to something that 
is meaningful in practice. We will use the mean square error (MSE) as a criterion to 
evaluate the estimators. 

The recommendations of this paper are based on theoretical and practical 
considerations. Experiments to determine the best estimators for use in practice are 
described in Sections 6 (straight line segments) and 7.3 (circular arcs). These 
sections can be read fairly independently of the rest of the paper. They will appeal 
to a general reader who is just interested in a good estimator suited to his or her 
application. Readers with more conceptual interest in length estimators should read 
the whole paper, which is organized as follows. Section 2 contains some necessary 
preliminaries, reducing the various ways in which ideal straight strings may occur to 
a standard situation for the subsequent treatment. Section 3 describes the basic 
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framework for straight line length estimation and gives a procedure to find optimal 
estimators. This provides the setting for the rest of the paper. Section 4 is on 
"characterizations," describing the string information essentially used in an estima- 
tor. The optimal estimators for various often-used characterizations are given. 
Section 5 describes the estimators of greatest practical use: the simple estimators. 
These estimators are not optimal, but often used because of their computational 
simplicity. Section 5.6 compares the estimators on straight line length estimation 
and gives recommendations for use on practical and theoretical grounds. Section 6 
discusses an alternative approach, of fitting in least squares sense a line through the 
data points and taking the length of the best fit as the result. Section 7 discusses the 
validity and applicability for nonstraight curves, especially circular arcs. Section 8 
concludes the paper with recommendations. 

2. PRELIMINARIES 

Digitization of a continuous object contour leads to a set of discrete contour 
points. These points are standardly denoted by a chaincode string (Fig. 1). In the 
case of digitization of an ideal straight continuous contour, this string has special 
properties: it satisfies the linearity conditions as given in [7] and [8]. Let us call such 
a string a straight string. 

In the following, we will restrict ourselves to a standard situation with the 
commonly used 8-connected Freeman chaincode strings on the usual square grid of 
discrete points. Such an 8-connected chaincode string consists of two types of 
elements; we will call the elements aligned along the grid the even chaincode 
elements, and the diagonal elements the odd chaincode elements. 

Other connectivities on regular grids (such as the 6-connected hexagonal grid, or 
the 4-connected square grid) can be transformed into this standard situation by an 
affine transformation [5, 9], so the restriction to the standard situation implies no 
loss of generality. A different connectivity is not conceptually different from the 
8-connected square grid: the only effect is that coefficients occurring in estimators 
are different in value. For many estimators, this has already been described 
elsewhere [3, 5, 9]. 

The discrete line segments will be supposed to be derived from continuous 
straight line segments by object boundary quantization (OBQ) [1]. Again, this is a 
convenience rather than a restriction: for straight lines, the other form of digi- 
tization, grid intersection quantization (GIQ) [4] can be reduced to it (see e.g., [10]). 

3. FRAMEWORK FOR LENGTH ESTIMATION 

The usual procedure in digital length measurement is to characterize a string by a 
number of integer parameters. An example of this characterization is the commonly 
used "number  of even chaincode elements" (he )  and "number of odd chaincode 
elements" (n o). This "tuple" of parameters (n e, n o) can then be used in the familiar 
Freeman length formula: L~ - n e + v ~ n  o [1]. Note that of all information present 
in the chaincode string, only the values of n e and n o are used in the length formula. 
We will call such a tuple of extracted parameters a characterization.  It will appear 
that the characterization is a key notion in the assessment of the quality of 
estimators. In the next sections we will be considering different characterizations, 
their computational complexity, and the quality of estimator which can be based on 
each particular characterization. 
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In general, many continuous straight line segments lead to strings with the same 
tuple-- the  exact set depends on the type of characterization used. Since the tuple is 
the only information used in the length estimator, the estimated length will be the 
same for all of these continuous line segments. Originally, before digitization, the 
lengths of all these segments were certainly not identical, however. This means that 
a length value L ( t )  attributed to a particular tuple t is only exact for a small 
fraction of the set R( t )  of all line segments that lead to this tuple t; for other line 
segments of this set R(t ) ,  an error is made in the length measurement. One should 
clearly realize that these errors are fundamentally unavoidable! They cannot be 
reduced to zero, because information is lost in the digitization: slightly different 
continuous lines have become indistinguishable. Good estimators can minimize the 
errors--according to some criterion--but they can never eliminate them. 

Let us call the set of all line segments leading to the same tuple t the region of t, 
denoted R( t ) .  This region is most easily visualized in the parameter space of 
straight line segments, which will now be introduced. 

An infinite continuous line is given by the familiar equation 

y = ax  + e. (1) 

The restriction--for mathematical convenience--to strings which consist of codes 0 
a n d / o r  1 implies a restriction of a to the range 0 _< a _< 1. Digitization leads to a 
series of discrete points, together forming the discrete line. Axes of the Cartesian 
(x, y)-coordinate system are chosen such that the discrete points forming the 
discrete line segment under study lie in the columns x = 0 to x = n. The origin is 
chosen in a grid point such that 0 _< e < 1. 

A part of the continuous straight contour is thus given by three parameters: e, a, 
and n. Considering all segments with fixed n, the segment is represented as a point 
(e, a) in (intercept, slope)-space, called (e, a)-space for short. Conversely, a point in 
(x, y)-space is represented, through Eq. (1), by a line in (e, a)-space (Fig. 2). 

The region R ( t )  of tuple t is the set of continuous line segments that have t as 
their characterizing tuple. This region is represented in (e, a)-space by a set of 
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FIG. 2. The duality of points and lines in the (x, y)-space and (e, a)-space. 
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points, which will also be called R(t) (this causes no confusion). Now, as we have 
reasoned above, the length of the continuous line segment in such a region is not 
constant. For  a string of n elements, the total length of the part of the continuous 
contour  enclosed between the columns x -- 0 and x = n is 

(2) 

This is the "ground truth" for a continuous segment with parametrization (e, a) for 
each n. Note  that the correct lengths indeed vary over the region R(t), since they 
are dependent on ~. Note that the length does not depend on e. 

By the definition of a characterization, the estimator L(t) serves as the length 
attributed to all strings with characterization t. This length estimate can be 
compared, in MSE sense, to the original lengths of all continuous line segments 
leading to t. This comparison allows relative assessment of different estimators, but 
also formulation of optimal estimators, as follows. 

The continuous segments leading to a particular tuple t are all found in the region 
R(t). A good length estimate corresponding to the tuple t represents this range of 
values over R(t) in some way. For the minimal MSE criterion, the optimal 
estimator is the average value of f ( a ;  n) over R(t), the so-called BLUEstimator [6]: 

L,LUEr = f fR(t/(~176 (3) 

Here p(e, a) is the probability density function of the lines in (e, ee)-space (see [6]): 

p(e, a) = v~-(1 + a2) -3/2. (4) 

Note that eq. (3) defines a different estimate for each tuple. The BLUEstimator 
can be proved to be optimal for a given type of characterization in the sense that it 
is the only linear estimator that minimizes the MSE. Hence also its name: BLUE 
means best linear unbiased estimator (see, e.g., [11]). In the next section formulas for 
the BLUEstimator corresponding to various characterizations are considered. 

Another estimator that will be seen to be of value is the MPO-estimator, defined 
as the length for the most probable original value of a in the region R(t). If this 
value is aM(t ), then the formula for the MPO-estimator is 

L .o(t) = nr + (5) 

This estimator is the lowest order term in the Taylor expansion of LBLUE(t), under 
quite weak restrictions on the shape of R(t) [9]. It is usually simpler to compute 
than LBLUE(t ). Therefore it is also considered. 

As a measure of the error for the length estimator L we will use a quantity 
dubbed RDEV(L,  n). It is the root mean square difference between original length 
and estimated length, averaged over all strings of n elements, and divided by n: 

l ( ~  f f R (L(t)-f(a;n))Zp(e,a)dede~) 1/2. (6) R D E V ( L ( t ) ,  n) = n ~t) 
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The division by n makes the measure scale-invariant, and allows interpretation as 
the relative deviation (hence RDEu in the length estimation of all line segments 
with a projected length of unity and slopes varying between 0 and 1, when the 
sampling density is n 2 points per square unit. 

4. C H A R A C T E R I Z A T I O N S ,  R E G I O N S ,  A N D  O P T I M A L  ESTIMATORS 

A characterization of a string is a tuple of parameters extracted from it, to be 
used in the computation of estimators. In this section various characterizations 
often used in length measurement are defined, their regions R ( t )  given, and the 
corresponding BLUE- and MPO-estimators computed. 

4.1. (n)-Character izat ion 

In the most primitive of characterizations, a chaincode string is simply char- 
acterized by counting the number of chaincode elements n. The region correspond- 
ing to the "tuple" (n) consists of all line segments passing through n columns of the 
grid and a slope a roughly between 0 and 1. See Fig. 3a. 

The MPO-estimator of the length is the value of f ( a ;  n )  = n f ( 1  + a 2) at the 
most probable value of a, which is a = 0 [9]: 

L M p o ( n  ) = n.  (7) 

The BLUEstimator is, by Eq. (3), the average length of lines in the regions for this 
characterization. For large n, this can be computed to be 

JoJo 

The relative error RDEV for a chaincode string of n elements can be computed by 
Eq. (6) and is found to be asymptotically constant. For the MPO-estimator, the 
constant value is 0.1581, for the BLUEstimator 0.1129. Thus even with infinite 
sampling density the (n)-characterization based length estimators are never more 
accurate than 11%. 

Note that Eq. (7) is also the length estimate one obtains when one simply counts 
the number of pixels on an 8-connected contour. This estimate is consistently too 
low. The argument above shows that multiplication by 1.1107 (for straight line 
segments!) reduces the error, since it makes the estimator asymptotically unbiased. 
The error then remaining is the variance, which is 11%. This is a gain of 4% over the 
biased estimate. 

4.2. (n e, n o)-Characterizat ion 

A commonly used string characterization in image analysis is the number of even 
and odd chaincode elements, denoted by n e and no, respectively. This is thus an 
(n e, n o)-characterization. An alternative but equivalent characterization is by n and 
n o �9 

The regions of this characterization in (e, c0-space are sketched in Fig. 3b. The 
one region we had for the (n)-characterization is now subdivided into n + 1 regions, 
since each discrete end point of a line in column n leads to a different value of n o 

(where 0 < n o < n).  
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FIG. 3. The regions corresponding to various characterizations in (e, a)-space for n = 6, with the 
tuples indicated (in d not all are indicated for the sake of clarity). From [6]. 
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The MPO-estimator for the length is the value of f ( a )  = n~(1 + a 2) at the most 
probable value of a. This is the value where the e-dimension of a region is largest, 
which is a = n o/n, 

LMPo(n, no) = t ( n  2 + n2) .  (9) 

The BLUEstimator is the average over a region. This can be computed to be [9] 

= atan - 
n 

(m) 
2 m__ atan + - -  atan 

n n 

where we denoted n o by m, for convenience. 

(1o) 

In the (n e ,  no)'characterization, the MPO-estimator is the first term in the Taylor 
expansion of the BLUEstimator. Therefore the asymptotic behavior is identical to 
that of LBLUE. Since Eq. (10) is more complicated than Eq. (9) and since we are 
looking for estimators that are simple to compute, we will only treat LMPo(n, no). 

The asymptotic order of tile MPO-estimator can be computed to be [9] 

RDEV(LMPo(n, no), n) = 1/6n for large n. (11) 

This is directly related to the fact that the a-extent of the regions in (e, a)-space is 
of the order O(n-X). 

Note that the MPO-estimator in Eq. (9) is just the Euclidean distance between the 
end points of the discrete line segment. One would intuitively be inclined to think 
that this is the most accurate length estimator possible. However, the tuple (n, no) 
does not characterize a straight string completely and therefore not all information 
present in the string is used for the computation of the length. And indeed, more 
accurate length estimators can be found. 

4.3. (n e, n o, n c)-Characterization 

In [5] an extra parameter for the characterization of 8-connected strings was 
introduced, called the "corner count." It is an extension of the corner count 
introduced by [3] for 4-connected strings. The corner count nc of a string is defined 
as the number of occurrences of consecutive unequal chaincode elements in the 
string. In [5] it is shown that the improvement over the use of only (ne, no) as 
characterizing tuple is that apart from the discrete points in the columns x = 0 and 
x = n also the points in the columns x = 1 and x = (n - 1) contribute to the 
characterization. 
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The regions of this characterization are sketched in Fig. 3c. There are now 5n - 4 
regions, of various shapes. The average extent in the a-dimension appears to be still 
of order O ( n - 1 ) .  

Since the shape of the regions is fairly irregular, calculation of the MPO- and 
BLUEstimators is more complicated. The BLUEstimators can be found in [5]. The 
expressions for the MPO-estimators are fairly complicated and not given here. The 
asymptotic order of RDEV experimentally appears to be O(n-1).  The importance 
of this characterization lies not so much in the MPO- and BLUEstimators (the order 
of convergence is the same as for the simpler (n e, n o)-characterization) but rather in 
the simple estimators: L ( n  e, n o, nc) = an e + bn o + cn~., which will be treated in 
Section 5.3. 

4.4. (n, q, p, s)-Characterization 

In [10] a quadruple of parameters was introduced, characterizing a straight string 
C faithfully: (n, q, p, s). In words, the meaning of the tuple of parameters is: n is 
the number of string elements, p / q  is the simplest irreducible fraction that can be 
the slope of a line generating C (related to a in Eq. (1)), and s is a phase shift 
(related to e). As for the characterizations treated before, each string leads to one 
realization of the tuple of parameters. But only for the (n, q, p, s)-characterization, 
the converse is also true. In fact, from the tuple (n, q, p, s) the string C can be 
reconstructed; for the ith element % 

l t sl J 
Formulas to derive (n, q, p, s), given C, are given in the reference. 

Since the string can be reconstructed from the tuple, all discrete points must 
contribute to the characterization. There is no extra loss of information after the 
digitization: the (n, q, p, s)-characterization can be viewed to be just a rewriting of 
the information present in the string C in a more convenient form. For  this reason, 
the (n, q, p, s)-characterization is called a faithful characterization. There is no 
characterization that preserves more information than a faithful characterization, 
for the obvious reason that it preserves all information. 

The regions of this characterization are the finest division in (e, ~)-space that is 
still possible after digitization. These fundamental regions are called "domains" and 
are analyzed in [9-11]. They are depicted for n = 6 in Fig. 3d. The study of these 
domains and their mathematical properties is of great theoretical importance in the 
search for the ultimate accuracy that can be reached. It can be shown [9] that there 
are asymptotically n3/~r 2 of these regions (hence there are n3/~r 2 discrete straight 
line segments of n elements). 

This is an increase in the number of regions of 2 orders compared to the (ne, no)- 
or the (ne,  no, n~.)-characterization: considerably more strings have become 
distinguishable on the basis of this ultimate, faithful, characterization. 

Evaluation of the BLUEstimator for this characterization leads to complicated 
expressions, to be found in [6] and not quoted here. The MPO-estimator is 

L M p o ( n , q , p , s )  = n  1 + , (13) 
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p / q  being the most probable value of a in the region R(n, q, p, s) [10]. It can be 
shown that the asymptotic RDEV of this estimator is of the order O(n -3/2) [9]. 
Surprisingly, this is better than the estimate "Euclidean distance between the end 
points," which is LMPo(ne, no) with an RDEV of O(n-1)! 

Some reflection shows why this is so. According to Eq. (3), a good length estimate 
can be based on a estimate of the slope. Now, as slope estimate, p / q  is more 
accurate than n o/n. The value of p / q  is based on the whole string, and mainly 
determined by the central section. Addition of extra points at the ends hardly, if at 
all, influences its value. The value no/n, on the contrary, is very sensitive to the 
position of the end points, which necessarily change by discrete grid steps. There- 
fore n o/n is less accurate as a slope estimator than p/q ,  and consequently 
LMpo(ne, no) is less accurate than LMPo(n, q, p, s). 

5. SIMPLE LENGTH ESTIMATORS 

Though for each characterization the optimal estimator is BLUE, and a good 
approximation to the optimal estimator is MPO, reasonable approximations are 
obtained by estimators that are linear in the characterizing parameters. These 
estimators are well known in literature [1-5] and popular because of their computa- 
tional simplicity. We will analyze them for straight line length measurement in this 
section. Comparison with the more sophisticated estimators of Section 4 is detained 
until section 5.6. 

5.1. (n)-Characterization 

A simple estimator for the n-characterization has, by definition, the form 

L ( n )  = an. (14) 

The natural (but suboptimal) choice a = 1 yields an "estimator" that simply counts 
the number of chaincodes as the length 

Lo(n ) = n. (15) 

This estimator is identical to LMpo(n ), treated in Section 4.1. It is biased over the 
ensemble of long straight line segments, with an asymptotic RDEV of 16%. 
Rescaling to make the estimator unbiased for the measurement of the length of all 
strings consisting of n elements yields the estimator 

L l ( n )  = 1.UO7n. (16) 

This is LBLUE(n ) of Eq. (3). The asymptotic RDEV now equals 11%. 
It is revealing to see what the "circles" corresponding to this length measure are, 

i.e., points at equal L 0- or La-distance of a fixed point. Asymptotically, they are 
squares, see Fig. 4a. For L 0, the square lies completely outside the Euclidean circle 
with the same "radius," for L o estimates lengths consistently too short. For Lt,  the 
square is in a "best-fit" with the circle. 
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FIG. 4. The "circles" of the simple length estimators: (a) (n)-characterization: L 0 and L1; (b) 
(n,,, n,,)-characterization: L(i, L F and LK; (c) (n e, no, n,.)-characterization: L c. 

5.2. (n e '  n o)-Characterization 

For  the (n e, n o)-characterization, the simple estimators are 

L ( n e ,  no) = an e + bn o. (17) 

The first to use a formula of this kind was Freeman [1]. His is not an estimator in 
the proper  sense, since it does not give an estimate of the length of the digital arc. 
The Freeman formula is obtained simply by counting even chaincode elements as 
having length 1 and odd chaincode elements as having length v~:  

LF(ne,  no) = nr + v ~ n  o = 1.000n e + 1.414n o. (I8) 

Considered as an estimator for the length of the original continuous curve before 
digitization, this formula gives biased results: the length it gives is consistently too 
long. For  this reason, the asymptotic RDEV is high: 6.6%. 

As a measure for the length of an 8-connected chaincode string, the Lv-est imator  
has been used for a long time and still is in common use. Nevertheless, the 
incorrectness of this approach was already pointed out in Kulpa [2] and, indepen- 
dently, by Groen and Verbeek [4]. They remarked that one should not compute the 
length of the digital arc, but of the original, continuous arc. This is an important  
point, essential to the development of optimal length measurement methods. 

Starting f rom the same formula Eq. (17), [2] computes the coefficients a and b so 
as to minimize the expected error for measurement of the length of long line 
segments (n ~ ~ ) .  This yields 

L K ( n e ,  no) = 0.948n e + 1.343n o. (19) 

Now, the asymptotic RDEV decreases to 2.6%, a considerable improvement. 
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A look at the "circles" corresponding to these estimators shows what actually 
happens, see Fig. 4b. A "circle" of a length estimator L is the set of all continuous 
points with the same L-distance to the origin. Both the "circle" of the L F- and of 
the LK-measure is an octagon. Such a "circle" can be compared to the circle of the 
Euclidean distance measure. If this is done for "circles" of the same "radius," then 
the LF-circle lies entirely inside the corresponding Euclidean circle, whereas the 
L K-circle lies in a best-fit position. One can immediately see that this best-fit 
position of LK-"circles" can be achieved by a rescaling of the Lv-"circles," i.e., 
multiplication of the Lv-measured "radius" by a properly chosen value. And 
indeed, comparing Eq. (18) and Eq. (19) we see that 

Lr~(ne ,  no)  = 0.948Lv(n~, no) .  (20) 

A calculation similar to that of Kulpa was independently performed by Groen 
and Verbeek [4]. They computed the expected lengths of an isolated even chaincode 
element and an isolated odd chaincode element, finding 1.059 and 1.183, respec- 
tively. A length estimator can be constructed from this: 

LG(I'Ie, ?1. o) = 1.059n e + 1.183n o. (21) 

Note that the coefficients differ considerably from those of L K ( n e ,  no)! The 
estimator L o  is unbiased for strings with n = 1, for longer strings it is biased. The 
asymptotic RDEV for n --* m (which is quite different from the n = 1 for which the 
estimator is optimized!) equals 8%, which is considerably higher than that of L K. 
Nevertheless, Lo  is the proper estimator to use for chaincode strings for which the 
elements may be considered completely uncorrelated. In practice, this is seldom 
encountered. 

What can be learned from the comparison of L K with L o  is that an estimator is 
only optimally applicable for the range of n for which it was designed. In fact, for 
each n there is a specific optimal value for the coefficients a and b [5]. Typical 
accuracies for these estimators are errors of approximately 5%. 

5.4. (n e, n o, n c)-Characterization 

For the (n e, n o, n,.)-characterization, the simple estimators have the form 

L ( n e ,  no,  nc)  = an e + bn o + cn c. (22) 

The question arises what a good choice for a, b, and c is. An inkling of their values 
can be obtained by a reasoning similar to the one leading to Eq. (18), considering 
the length of the digital arc. For 8-connected grids, the corner count n c counts the 
number of "knight 's  moves," consecutive odd-even or even-odd sequences in the 
string. The length that is attributed to such sequences--in a reasoning congruent to 
that from Freeman for Eq. (19)--is 7~. Every even and odd code element in such a 
knight's move has already been counted in n e and n o, respectively. So, counting 
properly, one has 

L F C ( n  e, F/O, He) ~- H e -~ ~f2F/O -}- �89 --  ~ -  _ ] )F /c  

= 1.000n e + 1.414n o - 0.089n c. (23) 
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This estimator is biased and gives lengths that are consistently too long. In [5], the 
optimal coefficients for an estimator of the form of Eq. (23) were evaluated by 
computer  experiments, minimizing the MSE between the estimate L c and the 
Euclidean length, for all straight strings with n = 1000. The resulting estimator is 

Lc(ne,  no, no) = 0.980n e + 1.406n ~ - 0.091n c. (24) 

This will be called the corner count estimator. The coefficients are indeed close to 
those derived by the naive approach outlined above. The corner count estimator is 
unbiased over the ensemble of long straight strings. The asymptotic RDEV equals 
0.8%, which is remarkably accurate! 

Again, a look at the "circles" of this estimator reveals why this is so. For a line 
y = ax, the corner count increases if a increases from 0 to �89 and decreases in the 
interval �89 to 1. The "circle" is now an irregular hexadecagon (16-gon), with vertices 
at a = 0, a = �89 a = 1, and so on, symmetrically (see Fig. 4c). For Lvc, the 
hexadecagon lies entirely inside the Euclidean circle with the same "radius." For 
L o the hexadecagon is in a "best-fit" and becomes very close to the Euclidean 
circle. This explains the small value for the error. 

5.4. (n, q, p, s)-Characterization 

Linearization of the formula n~(1 + (p/q)2)  to An + Bq + Cp - Ds is not 

considered useful. Therefore, there is no simple (n, q, p, s)-based estimator. 

5.5 Asymptotic Analysis of the Simple Estimators," Borgefors Distances 

It is possible to analyze all simple estimators simultaneously, by noting that all 
are in fact contained in Eq. (22). For L 0 and t l ,  a = b and c = 0; for LF, L K and 
L o, c = 0; L c is the unrestricted case. The complete analysis can be found in [9]. 
Let us here treat the case c = 0, the simple estimators for the (n e, no)-characteri- 
zation, in some detail. 

For  the two-parameter characterization, the estimator depends only on the 
parameters a and b. Each simple estimator is therefore represented as a point in 
(a ,  b)-space. Computation of the asymptotic ith moment Gi(a, b; n) for n ~ 
(integrated over all lines with strings of consisting of n elements 0 a n d / o r  1) yields 

Gi(a,b;  n ) =  nfol{a + ( b -  a)a - ~/ (1 -  0/2) }ivy-(1 + 0/2)-3/2 d0/. (25) 

Setting Gl(a, b; n) equal to 0 gives the (a, b)-values of all asymptotically unbiased 
estimators. This is a line in (a,  b)-space, with equation 

av~- + b = 4 v ~ ( 1  + v~-) (26) 

Computat ion of the MSE, which is G2(a, b; n), yields a biquadratic form in a and 
b. Curves of constant MSE are thus ellipses in (a,  b)-space, aligned along the line of 
unbiased estimators. This is indicated in Fig. 5. The points (a,  b) representing the 
estimators Lo, L 1, L F, L K, and L G are all indicated. 
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b=a~/2 2 ~  =a 
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0 i 
0 0  1 o 2 0  

a 

FIG. 5. (a, b)-space, the parameter space of the simple estimators for the (n) and (ne, ne)-charac- 
terization. The ellipses are curves of constant asymptotic MSE, the drawn line is the line of asympto- 
tically unbiased estimators. 

All rescalings of an estimator are represented in (a ,  b)-space by a line connecting 
the estimator to the origin. Making an estimator unbiased implies intersecting this 
line with the line of unbiased estimators. It is seen that L K is L v rescaled, in 
agreement with Eq. (20). The center of all ellipses represents the asymptotically 
most  accurate simple (n e, n o)-based estimator, which is L i~ (n e, n o)- 1 

If  one performs the same kind of computation for the case c 4~ 0, a triquadratic 
form in a, b, and c is found. Minimization yields exactly the coefficients of the 
corner count estimator (see [9]), found in [5] by a simulation. 

In a recent paper  on distance transformations [13], Borgefors describes distance 
measures similar in form to Eq. (22), but with rational coefficients a, b, and c. 
These estimators can be analysed in exactly the same way [9]. 

5.6. Non-asymptotic Analysis," A Trade-off Theorem 

To obtain an insight into the behavior of the length estimators for the nona- 
symptotic case, a computer experiment was performed. The experiment was orga- 
nized as follows. For each estimator L and for all straight strings C consisting of n 
elements, RDEV is computed as the weighted sum of the expected squared dif- 
ference over the domain of C between the length estimate and the ground truth 

n ~ l -  + a 2 ) ,  in agreement with Eq. (6). All quantities in Eq. (6) can be computed 
using the formulas developed in [9, 10]; thus the experiment is numerical rather than 
stochastic. 

Figure 6 presents a plot of RDEV(L,  n) as a function of n, and Table 1 the 
numerical results. It  is observed that the ordering of estimators on the basis of their 
asymptot ic  behavior vindicates the calculations quoted in the previous sections. 

Striking about Fig. 6 (but already explained in Section 5) is that the simple 
estimators reach a limit accuracy. The purport  of this should be clearly realized. It  
means that if a line of fixed length is measured by taking increasing finer grids, then 
the length estimates do not become more accurate! In other words, there are 

1Almost, but not quite, since in Eq. (25) optimization is done for all line segments leading to strings 
with the same number of elements, whereas L K is computed by averaging over line segments with the 
same continuous length. See [9] for this point for gourmets. The ensuing difference in coefficients is small: 
0.1%. 
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FIG. 6. Comparison of all length estimators for straight lines. See also Table 1. The "Euclidean 
length estimator" LMpo(ne,  no) virtually concides with LBLUE(ne, no). 

TABLE 1 

A Comparison of Length Estimators for All Straight Strings Consisting of n Elements 

1 2 5 10 20 50 100 oc 

Lo(n ) 0.310 0.231 0.186 0.172 0.165 0.161 0.159 0.1581 
Ll(n ) 0.252 0.183 0.141 0.127 0.120 0.116 0.1143 0.1129 
Lo(n e, no) 0.217 0.141 0.103 0.091 0.085 0.082 0.0800 0.803 
LF(n,,  , no) 0.223 0.117 0.0755 0.0682 0.0669 0.0664 0.0664 0.0664 
L K ( n , , , n o )  0.232 0.114 0.0534 0.0371 0.0307 0.0278 0.0270 0.0263 
Lc(n,., n o, n~) 0.228 0.103 0.0398 0.0208 0.0125 0.00879 0.00804 0.0077 
LMPo(n,,, no) 0.217 0.0937 0.0354 0.0172 0.00848 0.00337 0.00174 
LBLuE(ne, no) 0.223 0.0966 0.0356 0.0173 0.00849 0.00337 0.00170 
LBLUE(n,,,n,,,n,) 0.217 0.104 0.0329 0.0141 0.00644 0.00248 0.00124 
LMPo(n,q ,p ,s  ) 0.217 0.103 0.0337 0.0127 0.00476 0.00127 0.00045 
LBLuE(n,q,p,s  ) 0.196 0.0937 0.0291 0.0107 0.00379 0.00097 0.00034 

Note: The column 
deviations (RDEV), 
Section 5.6. 

marked oe contains predicted values. The values indicated are relative 
compared to the continuous value. The experiment is described in 

accuracies that can never be achieved by certain estimators, no matter how high the 
sampling density is chosen. In those cases, improvement in accuracy cannot be 
reached by simply "oversampling"; rather, it should be achieved by using a more 
sophisticated estimator! 

As was seen in Fig. 4 the explanation for the asymptotic tapering is that the 
"circles" of the simple estimators are squares, octagons, or hexadecagons. For each 
particular estimator, the polygon has a fixed shape, and this polygon can only 
approximate the Euclidean circle to a certain extent. Generally, the more elements 
the characterizing tuple has, the better the approximation is. It should be noted that 
the "corner count estimator" does a remarkably good job; its limit accuracy is 0.8%, 
and its error is within a factor of two of the best achievable accuracy for straight 
strings of up to about 10 elements. So, of all simple estimators, we recommend the 
corner count estimator explicitly for daily use. 

For the more advanced MPO- and BLUEstimators, the asymptotic behavior also 
depends on the characterization employed. For the (n)-characterization the RDEV 
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becomes constant, for the (n e, no)- and (ne, no, nc)-characterization RDEV is of 
the order O(n-i). The (n, q, p, s)-based estimators deserve special attention since 
they are the theoretically best possible. Their asymptotic behavior is of a different 
order, namely 0(n-3/2). The behavior of RDEV for the BLUEstimator is RDEV = 
0.34n -3/2, where the factor 0.34 was determined experimentally. Since it is the 
theoretically optimal length estimator, this can be reformulated in the form of a 
"sampling vs. error trade-off theorem." 

TRADE-OFF THEOREM. For length measurement of straight strings, the sampling 
density d (per unit length) is related to the best achievable estimation error percentage 
pby 

d >__ 10.7p -2/3. (27) 

Equality is reached with the length estimator LBLUE(n, q, p, S) only. 

A proof that the exponent is - 2 / 3  can be found in [9]; the factor 10.7 is based 
on the experimental value 0.34 quoted above. 

Equation (27) implies that for a desired average error of 1%, a sampling density of 
d = 11 pixels per unit length suffices when the optical length estimator is used. By 
way of comparison, the corner count estimator requires a sampling density of 40 to 
reach the same accuracy (Fig. 6). For the commonly used L r and for L K the 
accuracy of 1% is beyond reach, even with infinite sampling density! 

6. NONIDEAL STRAIGHT LINES 

Up to this point, we have limited the analysis to ideal straight lines. In dealing 
with noisy straight lines, the removal of the noise should precede the length 
estimation procedures as described above and can be treated separately. The 
removal of noise depends on the noise characteristics, and therefore is a too 
problem-specific task to be discussed here. 

An exception is made for the least squares fitting of a line through the pixels of a 
digital line. An approximation of the requested line of the original line can then be 
found by taking the length of the best fit. Fitting a line through the pixels of the 
digital line is a completely different approach from the one in Sections 4 and 5. As is 
well known, fitting a line through a set of points assumes a linear relationship 
between the two independent variables and noise added to the data. In the case 
considered here, the noise is due to the quantization only. As the points of a digital 
straight line lie in a regular structure "around" the original line and knowledge 
about this structure is not exploited in the least square fitting of a line, the method 
cannot be as accurate as the BLUEstimation technique. In the BLUE technique, 
mentioned in Section 5.4, the structure of the set of all pixels was taken into account 
to determine the smallest possible set of original lines in the search for the length of 
this ensemble. 

To make a rough estimate of the asymptotic accuracy which can be expected from 
the approach of the least squares fit, it is deducted from [9] that the spread in the 
contour points around the best fitting line is of the order 1/n. In other words, the 
quantization noise has a spread of O(n-1), and one may expect that the length 
approximation based on the fit has an accuracy of this order of magnitude. And 
indeed, an experiment, similar to the one described in Section 5.6, shows that the 
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FIG. 7. Comparison of 3 estimators: The Euclidean distance between the ends of the digitized line, 
the length of the least squares fit to the data points, and the optimal BLUEstimator. 

relative difference between the truth and the length obtained from the fit is of the 
order O(n t), see Fig. 7. The least squares fit shows almost the same asymptotic 
behavior as the Euclidean distance between beginning and endpoint of the digital 
curve, being less accurate than the estimates based on the (n, q, p, s)-characteriza- 
tion. 

For  the ideal, nonnoisy lines, the least squares fit cannot be recommended, as the 
Euclidean distance of the endpoints is as good, but computationally more efficient. 
For  noisy straight lines, Fig. 7 shows the lower bound of the accuracy one can 
obtain with a least squares fit. 

7. IDEAL NONSTRAIGHT LINES 

In Section 4 increasingly accurate techniques were considered for the estimation 
of the length of straight lines only. The general trend that can be seen from the 
results in Section 6 is that the better estimation techniques are based on more 
extended characterizations of the string. In effect the better estimators make 
progressively more use of the fact that one knows that the string is derived from a 
continuous straight line. The ultimate in this is the faithful (n, q, p, s)-characteri- 
zation, from which the straight string can even be reconstructed (Eq. (11)); this 
leads to the optimal estimators. 

7.1. The Framework Revisited 

An extension of length measurement to nonstraight strings is obviously the next 
problem to solve. As for straight strings, let us consider the ideal case (no noise) and 
investigate to what extent one may expect to find estimators, approximating reality 
on the basis of the discrete data. To do so, let us recapitulate the steps followed in 
the development of estimators for straight strings, as described in Section 3. 

Step one was a parametrization of the continuous curves under consideration (for 
straight lines, this was (e, a)-space). Such a parametrization is always necessary, for 
it is the only way to describe each of the curves considered mathematically. For 
each point in this parameter space, the "ground truth" - -  the value of the continuous 
p roper ty - - should  be known. After all, it is the reconstruction of the ground truth 
that is the aim of the estimation. Since this ground truth can only be formulated if a 
parametrization is made, it is impossible to find estimators for properties of curves 
that cannot be parametrized. 
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Step two, was the characterization of  the discrete data (for straight lines we used 
( n )-, ( n e, no)-, ( n e, n o, n ~)-, and (n, q, p, s)-characterizations). Being the mathe- 
matical description of the discrete entities considered, this step is necessary before 
estimators can be formulated. If one desires optimal estimators, a faithful char- 
acterization should be made. This may be very difficult: we believe it is already 
impossible for circular arcs. 

Step three was that the digitization process, described in terms of these para- 
metrizations, led to a description of  the regions in the continuous parameter space in 
a mathematically closed form. The regions imply the admissable values and the 
spread of the ground truth, given a specific realization of the discrete data. 
Therefore, for the development of estimators, this step too is essential. 

Step four, calculation, depended on the estimator used. Some estimators, such as 
the MPO-estimators, took a reasonable value of the property in the region as the 
value of the property for the tuple considered. Other estimators, such as the BLUE- 
or simple estimators, required integration over the region. This presupposes the 
existence of a well-behaved probability density function, and hence the convergence 
of integration in the continuous parameter space. 

An example may clarify these issues. Consider the estimation of the perimeter 
length of a circle of radius R with a center point at integer coordinates. The 
parameter space in this problem is the one-dimensional R-space. As a characteriza- 
tion of the corresponding digitization one could use the largest difference D between 
x-values of the discrete points. The regions of this (D)-characterization are the 
intervals ( D / 2  - 1/2) < R < ( D / 2  + 1/2). The ground truth for the perimeter 
length of a circle of radius R is L ( R )  = 2erR. Estimators for this characterization 
and some specified error criterion can obviously be developed easily. It is an 
interesting, nontrivial puzzle to design a faithful characterization for this example 
and to develop corresponding optimal estimators--in fact, we believe that optimal 
estimators cannot be found in closed form. 

As another example, consider an arbitrary circular arc. Such an arc can be 
parametrized by the position of the center and by the radius of the circle, together 
with two angles. Characterizations of the corresponding discrete arc can also be 
given (e.g., an (n ~, n o)-characterization), but it is highly difficult (if at all possible) 
to specify the corresponding regions. This shows the difficulty involved in the 
development of length estimators for even slightly more general curves than straight 
line segments. 

7.2. The Polygonal Approach 

Instead of developing length estimators tailored to higher order curves (such as 
circular arcs) one might consider to use straight line length estimators on such 
curves. Note that this is in fact only allowed for continuous curves that are 
piecewise straight. For arbitrary curves, one could make a polygonal decomposition 
of the string into straight substrings and use the sum of the estimated lengths over 
these straight parts as an estimate for the length of the original contour. It will be 
clear that in the Euclidean case, the length measure thus obtained is consistently too 
small, for the model used in the estimation (piecewise straightness) does not 
correspond to the continuous reality (a curve). 
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There are algorithms known which perform a polygonal decomposition of a 
digitized curve into straight substrings of maximum length. Wu [7] presents an 
algorithm of order F~n 2 (where n i is the number of elements in the ith substring). 
An algorithm of order Y.n~ can also be given [14]. 

The length of the i th substring is estimated by the estimator L on the basis of the 
tuple t~ to be L(t~); the total length is then 

L = E L ( t i ) .  (28) 
i 

Note  that for the simple (ne ,  no)-based estimators, explicit polygonal appro- 
ximation is not necessary. Denoting the number of even and odd codes of the ith 
segment by n e (i) and n o (i), respectively, the total length estimated is 

L = E ( a n e ( i )  + bno(i)). (29) 
i 

Using fixed values for a and b, and noting that E k n e ( k )  = n e and similarly for no, 

this becomes simply 

L = an e + bn o. (30) 

Thus simple, (ne ,  no)-based length estimators can be used for arbitrary strings 
without making a polygonal decomposition. In fact, these estimators consider the 
whole string as if it were a single straight string. Since the estimators were optimized 
to estimate the length of a straight string optimally, one expects an inferior behavior 
for arbitrary strings. An experiment on circular arcs, described in the next subsection, 
unexpectedly reveals that the opposite is the case! 

7.3. Circular Arcs  

The next step in complexity from the polygonal approximation is the approxima- 
tion of general curves by second-order segments, such as circular arcs. In that case, 
one needs estimators for the length of a circular arc, rather than for the length of a 
chord. It was argued in Section 7.1 that it is difficult to find such estimators. One is 
therefore tempted to see how well simple estimators do the job. 

An experiment was organized as follows. A circle with radius R was generated by 
Bresenham's circle generation algorithm [15]. In the string thus obtained, for a given 
n all digital arcs consisting of n consecutive elements were measured by the 
estimator L K, with all points of a quarter circle serving in turn as the start point of 
an arc. Also, for each of these segments, the Euclidean distance L E measured along 
a circular arc of radius R contained within the rays determined by the discrete end 
points of the segments was computed. The average normalized root MSE between 
these two measures 

2 1/2 

4 1t / 
-N i=I \ L E ( i )  

(N  is the number of points of the complete discrete circular string) was computed. 
Figure 8 is a log-log plot of the result as a function of n / R  and R. 
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It is seen that the error becomes zero for n / R  ~- 0.7. The reason why this happens 
is the key to the explanation of the whole figure. Consider Fig. 9 where an arc of 
r r /4  is drawn. From the figure, it follows that for large R, when the circle may be 
considered as continuous, we have 

n / R  = (n  1 + n 2 ) / R  = f2- - ( ( ~ -  - 1)s ina + cos a ) / r  (32) 

and 

Flo / /R  ~- (IT/1 -'1- D ' / 2 ) / / R  ~- ( s i n o t  -.1- ( ~ / 2  - -  1 ) c o s  0~) / /~ /2  - - -  V/2-o ( 3 3 )  

It follows from Eq. (32) and Eq. (33) that a relation holds between n e = (n  - no)  

and no, independent of a: 

n e + v ~ n  o = 2 ( f 2  - 1)R. (34) 

The LK-measure for the length of the chord of ~r/4 is now, writing the proper value 
~r/8(1 + v~-) for the constant 0.9481 of Eq. (20): 

= ~R L + d ) ( . e  + d . o ) =  (35) 

which is exactly the correct value for the length of the arc of ~r/4! Thus L~: is a 

n 1 

m 1 

% 

FIG. 9. Derivation of Eqs. (32) and (33). 
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consistent estimate for the length of an arc of ~r/4. This explains why the error at 
n / R  = 0.7 is very small. Obviously, at multiples of ~r/4 the same happens. 

For small values of n/R,  one considers small arcs of a large circle. These arcs are 
virtually straight. Computing the error as in Eq. (31) means averaging over lines in 
all positions. One therefore expects an error curve as the curve for the L K-estimator 
in Fig. 6, and this expectation is vindicated, see Fig. 8. Arcs that are not small, but 
still smaller than ~r/4, have restrained (but a-dependent) relations between n~ and 
n o. This reduced variation with a reduces the variance and hence the MSE of Eq. 
(31): the MSE is smaller than that for straight lines. For arcs of ~r/4, the MSE 
becomes 0. With growing arclength, still an error of 0 is made for the part of the arc 
that spans ~r/4. For the remainder, the above sequence of events is repeated. The 
relative error is, through division by the complete arc length LE, much smaller. 

It is thus seen that the simple estimator LK, already reasonably good for straight 
lines (RDEV > 2.6%) is even better for curved arcs. In an arbitrary curve that may 
be considered to be composed of continuous circular arcs, a relatively small error is 
made for each stretch spanning ~r/4. The main contribution to the error is due to 
the straight stretches and highly curved parts in the string. 

8. CONCLUSIONS 

The conclusions of this paper can be arranged with respect to the shape of the 
continuous figures of which the length is to be determined, and the estimators used. 

8.1. Straight Line Segments and Polygons 

If the continuous figure is piecewise straight, one can apply the length estimators 
developed for straight line segments. The properties of these estimators are found in 
the calculations of Sections 4 and 5, and the experiment of Section 5.6. 

The main conclusions are: 

- - T h e  optimal estimator is known, and described in [6], but highly mathemati- 
cally complex and not very suited for common practice. 

- - T h e  trade-off between sampling density d and optimal accuracy (expressed 
as percentage error p)  is given by d > 10.7p -2/3 (see Eq. (27). 

- -There  exists a simple estimator that provides accurate results (accuracy up to 
0.8%), namely the corner count estimator L c of Eq. (24). 

- -There  are better estimators for the length of a discrete straight line segment 
than the Euclidean distance between the end points. Computationally the simplest is 
L~po(n, q, p, s) of Eq. (13). 

Comparing the estimators with respect to the performance and complexity, there 
are a few that can be recommended, replacing some of those in use at present. Some 
of the others are no longer of use since there are other estimators of the same 
complexity that perform better. This is the case for Lo(n), LF(ne, no) , and 
L B L U E ( n  e '  n o, n c) '  Others are of limited use under special circumstances: L~(n ~, n o) 
for strings with little or no correlation between consecutive string elements and 
L BLUE(n, q, p, S) as the theoretically optimal estimator. The recommended selection 
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is: 

Ll(n)-- 

LK(ne, no)-- 

Lc(ne, n o, n ~.)-- 

LMeo(n e, no)-- 

LMPo(n, q, p , s ) - -  

for use in extremely time-critical situations, or in simple 
image analysis. Accuracy up to 11%. Better than Lo(n ). 
for use in time-critical situations, or when no high accu- 
racy is needed. Accuracy up to 2.6%. Better than 
Lc(ne, no) and LF(ne, no). 
the "corner count" estimator. For normal use: simple to 
compute, reasonably high accuracy, up to 0.8%. Com- 
parable to optimal result for straight strings with n _< 10. 
the "Euclidean distance" of beginning and end points. 
Simple to compute but more time-consuming that L c. 
Accuracy 0.17n- 1. 
for use when high accuracy is required, or when high 
sampling density is expensive. Accuracy 0.46n -3/2. 

It should be stressed that this section applies to the length estimation of straight 
strings only. 

8.2. Chains of Circular Arcs 

Some figures are not to be conceived of as polygons, but may be approximated as 
a concatenated series of circular arcs. For such figures, one might develop optimal 
estimators following the techniques outlined in Section 7.1, but this is left for future 
investigations. 

In the experiment of Section 7.3 we used a length estimator developed for straight 
line segments to estimate the contour length. It was seen that the simple L K 
estimator is remarkably accurate, in spite of the fact that it was not designed for this 
situation. Presumably, so is L c. In fact, these estimators are better for the estima- 
tion of the length of an arc than for the estimation of a chord. For arcs of 7r/4, the 
L~:-length is unbiased. These simple estimators have the additional advantage that it 
is not necessary to actually perform the decomposition of the string into substrings, 
representing circular arcs, as was explained in Section 7.2. 

The MPO line length estimators are less suited for figures consisting of circular 
arcs; since they estimate the chord length rather than the arc length, they give a 
biased result with a correspondingly high MSE. 

8.3. General Figures 

In Section 7.1, it is argued that for the general figures length estimators cannot be 
developed. This is interesting, since it means that a general equivalent in the discrete 
world of the continuous notion "length of a contour" cannot be given. For each 
situation, one should carefully define what one means by the length of the discrete 
contour; only then can one estimate it. This situation is reminiscent of the famous 
"coast of Brittany" problem in fractal geometry [16]. 

Thus, for general curves, at the moment of the best thing to do is to approximate 
such curves by straight line segments and circular arcs. For these, the results quoted 
above are applicable. It may be possible to derive a trade-off theorem similar to Eq. 
(27) for arbitrary curves using the two extreme approximations by straight line 
segments and circular arcs. Research on this is being performed. 
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