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This paper describes an image analysis tech- 
nique for the counting of nuclei in mitosis in 
tissue sections. Five experienced pathologists 
scored mitoses in photographs of preselected 
areas of tissue sections of the breast. Objects 
consistently labelled as mitotic cells by all 
five pathologists were considered “mitoses” 
in the analysis. In  total, there were 45 mitotic 
nuclei, 68 possible mitotic nuclei and 1,172 
nonmitotic nuclei. 

The image analysis procedure was designed 
to give priority to a low false negative rate, 
i.e., misclassification of mitoses. The proce- 
dure consists of three steps: 

1. Segmentation of the image. 
2. Reduction of the number of nonmitotic 

nuclei by using feature values based on the 
brightness histogram of the objects. 

3. Fully automatic classification of the re- 
maining objects using contour features. 

The objects remaining after the first two 
steps were visualized in a composite display 
for interactive evaluation: 10% of the mitotic 
nuclei were missed, and 85% of the nonmi- 
totic nuclei were eliminated. The result of the 
fully automatic procedure described in this 
paper is rather disappointing and gave a loss 
of 37% of the mitoses while 5% of the nonmi- 
totic nuclei remained. 
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In the sixties, when digital image processing entered 
the biomedical area, single cells were among the first 
topics to be studied. Due to  the increased data acquisi- 
tion and processing capabilities, entire cytological spec- 
imens are now ready to be analyzed. At the present time 
systems are operational for the screening of cervical 
smears (8,23,27) selection of well-spread metaphases in 
the field of cytogenetics (6), and automated analysis of 
blood smears (13,14). 

In these screening systems, the use of single cell spec- 
imens in a monolayer suspension still is essential. Mon- 
olayers are obviously not present in a major part of 
diagnostic practice: tissue section analysis. As a result 
of this complication, the literature on the analysis of 
tissue sections is quite limited. The main issues have 
been the nuclear architecture of the epithelium of uri- 
nary bladder (4,25), intercorrelation of nuclear chroma- 
tin features in breast cancer (221, and the texture of the 
chromatin pattern of nuclei in endometrial hyperplasia 
and carcinoma (7). 

Apart from the presence of multilayers of cells, several 
factors complicate the quantitative analysis of tissue 
sections. 

1. Tangential cutting artefacts: The tangential cut- 
ting implies that image properties of single cells are not 

directly available, but can only be determined from a 
population of cells in a statistical sense using stereolog- 
ical methods (2,211. These artefacts may prohibit seg- 
mentation of single cells in the digital image. 

2. Variability in image intensity: The uncontrolled 
variability of the tissue section thickness implies that 
attention should be paid to grey value normalisation 
(15). 

This paper describes an image analysis technique for 
assessing mitotic activity in tissue sections. The number 
of mitotic nuclei (hereafter referred to as “mitoses”) per 
unit area in tissue sections is an important feature in 
various grading systems of breast cancer (3) and also is 
important in the prognosis of breast cancer, ovarian 
cancer, and other tumors (1,16,19). The practical appli- 
cation in diagnostic pathology, however, is not very pop- 
ular for two reasons. First, the accurate counting of 
mitoses is tedious and time-consuming work. Second, 
the reproducibility between different observers in a rou- 
tine setting is not perfect (3). For example, the correla- 
tion between the first and second assessment by the 
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same observer of the total number of mitoses is approx- 
imately .90 (3). 

MATERIALS AND METHODS 
Tissue Processing and Image Selection 

Tissue sections of breast cancer were used for this pilot 
study. Standard tissue fixation (4% buffered formalin, 
for approximately 24 h), dehydration in alcohol of in- 
creasing strength, and embedding in paraplast were 
performed. With this procedure, a majority of quantita- 
tive image features remain stable (24). Sections 4pm 
thick, were prepared and stained with hematoxylin- 
eosin, because of the necessity of visual inspection. From 
the image processing point of view a stochiometric stain 
is to be preferred. Photographs were made at  ~ 1 , 0 0 0  
film magnification ~ 1 0 0  objective, n.a. = 1.25 with 
green light, oil immersion, field diameter 200 pm using 
Kodak Panatomic-X (32 ASA) film. Standard grey 
wedges (kindly provided by Mr. M. Bisschoff, Carl Zeiss, 
Oberkochen, Germany) were included to confirm stand- 
ard illumination conditions. 

Description of the Material Used 
An implicit complicating factor in the study of mitotic 

figures is the lack of absolute agreement among pathol- 
ogists as to which objects constitute a mitosis. The incon- 
sistency may be due to the inherent difficulty in defining 
the begin-and-end phase of a mitosis or be due to contra- 
dictory judgement on the same object. To reduce the 
inconsistency due to the definition of a mitosis, we con- 
sider as the endstage the moment when the nuclei of 
the two daughter cells are seen separately. As we could 
not rely on a data base selected by a single pathologist, 
images of cells were shown (Fig. 1) to a panel of five 
experienced, independent pathologists, who were asked 
to indicate mitoses, and objects which might, to their 
judgement, possibly be a mitosis (hereafter referred to 
as a “possible”). For ease of display these images were 
shown on photographs of preselected areas in the tissue. 
They were asked to be rather conservative in the label- 
ling of an object as a mitosis. Thus, if they had any 
doubt, the object was labelled as a “possible.” The re- 
sults of this panel opinion are summarized in Table 1. 

Objects consistently labelled by all five pathologists as 
either mitosis or cell not in division were considered, in 
the further analysis to be “mitosis” or “nonmitosis,” 
respectively. All other objects were labelled as “possi- 
bles.” In total, there were 45 mitoses, 68 possibles, and 
1,172 nonmitoses including epithelial, inflammatory, 
and fibrocytic cell nuclei. 

Due to the preselection, the images used were en- 
riched with mitoses and tissue elements resembling mi- 
toses. The percentage of mitoses in the photographs is 
about 3.5%, whereas in tissue sections of breast cancer 
this percentage is in the range of 0.1%-1.5% (J.P.A. 
Baak, unpublished results). 

Instrumentation and Image Acquisition 
The images were processed and evaluated in a large 

image processing and measurement system including 

the DIP (Delft Image Processor) pipelined image proces- 
sor (10). The system is programmable through a com- 
mand string interpreter encompassing some 250 
operations on binary and grey-scale images and a vari- 
ety of image measurements. Numerical data resulting 
from feature value measurements can be stored in a 
data base. A statistical package, ISPAHAN (12), is used 
for interactive evaluation and classification. 

The black-and-white photographic negatives were 
scanned by a flying spot scanner and reduced to 5 bits 
(32 levels), with a 256 x 256 pixel field of scan. The pixel- 
to-pixel distance ccorresponded to 0.25pm at the s eci 

compiled. Half of the images were put aside to be used 
as an independent test set for the evaluation of the 
developed image processing procedure. 

Image Processing 
The image processing procedure was designed to give 

priority to a low false negative rate-that is, very few 
mitoses should be missed. At the same time the false 
positive rate should be reduced to a low percentage as 
well. The reduction of nonmitoses and final classifica- 
tion of the remaining objects was implemented by means 
of the following steps: 

1. Normalisation: In spite of the standard conditions 
during the treatment of the film, one can expect small 
differences in the exposure level of the photographic 
negatives. Therefore, prior to the image processing, the 
“minimum” grey level in the image, defined by skipping 
the first 10 low grey values, was subtracted from the 
image in order to normalize all the images. 

2. Global thresholding: In the first image processing 
step the image was segmented with a global grey level 
threshold (heuristially set at 8 grey levels over the min- 
imum) to localize objects. Pixels with a grey level greater 
(brighter) than the threshold were background pixels; 
the others were defined as object pixels. The selected 
part of the image consisted of mitoses and other ele- 
ments such as artefacts, pycnotic nuclei, inflammatory 
cells, and nuclear fragments. 

3. Elimination of small objects: Half of these frag- 
ments were removed by application of a threefold ero- 
sion operation (21) which eliminated objects having an 
enscribed circle with a diameter smaller than 1.5pm. 

4. Local thresholding: Subsequently, the objects were 
thresholded a second time, now locally, to approximate 
their contours more accurately. This was of importance 
for the calculation of the feature values derived from the 
contour later on. The image was again thresholded glob- 
ally, now at a grey level slightly less than the grey level 
of the background. To be sure that an entire object is 
included in this local area, the area was dilated by three 
steps. The histogram of brightness within this new local 
area was then calculated and smoothed with a one- 
dimensional linear filter with coefficients 1,2,1. 

If there were not two clearly distinct peaks present in 
this histogram, it was assumed that the local area did 
not contain a mitosis. By application of this “peak-to- 
peak criterion” this object was removed from further 

men level. A data base of 107 images of 64 x 64pm x -  was 
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FIG. 1. Four hematoxylin-easin-stained images of breast cancer with, 
in the centre, objects labelled by a panel of five pathologists. Image a) 
contains a mitosis consistently labelled by the five panel members. bf 
Four out of five label mitosis, one pathologist was in doubt. c) Two 

pathologists label mitosis, two were in doubt, one concluded no mitosis. 
d) Inflammatory cells. Note the large variety in overall staining inten- 
sity level. Magnification ~ 6 4 0 .  
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Table 1 

The a Priori Assignment by a Panel of Five Pathologists 

Absoiute agreement 4 out of 5 agreement 

Mitoses 45 55 
Possibles 68 33 
Nonmitoses 1,172 1,197 

processing. The local histogram of dark objects, like 
mitoses, in a bright focal environment yields a local 
histogram in which the two peaks are present. The local 
threshold is set at the minimum between these two 
peaks. 

5. Local histogram features: The following three fea- 
tures were then calculated from the local histogram and 
used to further reduce the number of objects: the area 
(AREA), the average grey value (AGV), and a measure 
for the homogeneity of the object (HOM). The value of 
the homogeneity was calculated by dividing the number 
OF pixeIs under the local threshold by the number of 
pixeIs under the second global threshold. 

6. Reduction using local histogram features: Reduc- 
tion of the number of objects was achieved by setting 
the following limits to the feature values: if an object 
was either too small (AREA < L5pm2) or too large 
(AREA > 90pm2) or was too bright (AGV > 8) or had 
too much internal contrast (HOM < 0.4) then the object 
was removed. In that case the object presumably was 
not a mitotic nucleus. The remaining objects were all 
gathered in a composite image and displayed for visual 
control and interactive evaluation (Fig. 2). 

7. Contour features: For these objects two other fea- 
tures were cakulated as well: average Roberts gradient 

FIG. 2. Monitor display of composite image of automatically selected 
objects, suitable far interactive evaluation. 

(20) along the contour of the objects in a 5 x 5 window 
and the bending energy (5,26) which is a measure for 
the roughness of the contour. 

8. Fully automatic classification: In the learning 
phase of the statistical classification only two classes of 
objects were considered: The class of mitoses and the 
class of nonmitoses. For fully automatic classification, 
the complete data-set, including the half previously put 
aside, was used. This complete data-set was subjected to 
the processing steps 1-7. The objects remaining after 
these steps were divided into two equal groups; first one 
group was used as a learning set and the other as a test 
set and then the two roles were reversed (11). A linear 
discriminant function (12) was used for classification. In 
the test phase the objects labelled by the panel as “pos- 
s ible~” were classified as well. The classification matrix 
thus contains three a priori classes and two a posteriori 
classes. 

RESULTS 
The result of the analysis after each image proessing 

step is shown in Table 2. 
After segmentation with the global grey-value thresh- 

old the number of non-mitoses was reduced by a half, 
while the number of mitoses did not decrease. The re- 
duction by three erosion steps again removed half of the 
remaining non-mitoses while again none of the mitoses 
was removed. Thus after these two steps 25% of the 
initial nonmitoses remained. Subsequently, an  addi- 
tional 2.5% of the nonmitoses were removed by applica- 
tion of the “peak-to-peak criterion.” 

At this point the objects were eliminated by subse- 
quent application of a window on the feature values 
area, homogeneity, and the average grey value. This 
step eliminated 40% of the remaining nonmitoses and 
10% of the mitoses, giving a total elimination of 85% of 
the nonmitoses and 10% of the mitoses. 

With a Fisher linear discriminant function (9) the 
remaining objects were classified into two classes. This 
classification can be represented in a confusion matrix 
(Table 3). 

When the results of the image processing and the 
classification were combined we obtained the resuIts 
given in Table 4. 

A Receiver Operating Characteristic (ROC) curve was 
generated with a kernel-based classifier (12); see Figure 
3. This curve is given for the entire classification proce- 
dure. Presently, the best result of a fully automatic 
procedure has been a loss (false negative) of 37% of the 
mitoses while 5% of the nonmitoses remain (fake 
positive). 

DISCUSSION 
The objective of this pilot study is to investigate the 

possibility of scoring semiautomatically the mitotic ac- 
tivity in tissue sections. The basic approach is to detect 
and count mitoses in a diagnostically interesting area of 
the section. 

The uncertainty in the a priori assignment of mitoses 
was overcome, in this study, by referring preselected 
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Table 2 
The Percentage of Reduction of Mitoses and Nonmitoses After Each Processing and Classification 

Steps (Possibles are not taken into consideration for the present table) 

Cumulative 
Elimination (%) remaining (%) 

Mitoses Nonmitoses Mitoses Nonmitoses 

Image Analysis 
Preselection 
Global threshold 0 50 100 

Table 3 
Confusion Matrix for the Objects Remaining Afler Processing 

and Classification With the Features Area, Average Grey 
Level, and Homogeneity 

Mitoses Nonmitoses Total 

Absolute agreement 
A priori 

Mitoses 
Possibles 
Nonmitoses 

4 out of 5 agree 

Mitoses 
Possibles 
Nonmitoses 

Total 

A priori 

Total 

28 12 40 
31 22 53 
43 77 120 

102 111 213 

36 14 50 
15 9 24 
51 88 139 

102 111 213 

areas of tissue sections to a panel of five pathologists. In 
this way, a reliable data set of mitoses and nonmitoses 
was composed. 

There are several causes for the large number of “pos- 
sible~’’ resulting from the panel assignments. First, the 
pathologists were asked to be conservative in their la- 
belling of a mitosis. Second, because of the use of black- 
and-white photo prints, neither depth information nor 
color information was available. This is, of course, not a 
normal diagnostic situation. The total number of possi- 
bles (68) decreases to 33 if objects for which four out of 
five pathologists agree are removed from the set of pos- 
sibles and either added to the mitoses or nonmitoses. 
The images used in this pilot study were selected for the 
presence of cells in division and objects which show 
strong resemblance to mitoses to investigate the true 
selective power of the developed procedure. It is likely 
that the use of such a data-base degraded the classifica- 
tion result in this study. 

Although the data-set may seem relatively small the 
following preliminary conclusion may be drawn. In the 
first stage of processing, three quarters of the nonmi- 
toses were removed and all mitoses were retained. This 
is an encouraging result for a preselection system. The 

50 
25 
24 

15 

Three erosion steps 0 50 100 
Minimum peak distance 0 2.5 100 

Classification with 10 40 90 
Further analysis 

features (area, 
homogeneity, 
grey level) 

(see Table 3) 
Further classification 30 60 63 5 

Table 4 
Confusion Matrix for all the Objects With Absolute a Priori 

APreemen.t 

Automatic classification 
Mitoses Nonmitoses Total 

Mitoses 28 17 45 
Possibles 31 37 68 
Nonmitoses 43 1,129 1,172 
Total 102 1,183 1,285 

0 6 ’ 20 ’ do ’ Sb ’ eb ’ lob % FALSE POSITIVE (I) 

0 2 4  6 8 10 % FALSE POSITIVE (n) 
FIG. 3. ROC-curve. On the vertical axis the perentage of the false 

negative classification (loss of mitoses) and on the horizontal axis the 
total percentage of false positive classifications (the number of nonmi- 
toses classified in the whole recognition procedure as mitoses) are 
presented for the number of nonmitoses after the reduction steps (I) 
and for the total number of nonmitoses (11). 

results change to a removal of 85% of the nonmitoses 
losing 10% of the mitoses by the application of simple- 
to-compute object features. 

The display of the remaining objects in a composite 
image makes the quantitative assessment of the mitotic 
activity feasible. Now, as an alternative for automatic 
classification the remaining objects could be eliminated 
interactively giving a considerable work reduction. 
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Analysis of the false negative and false positive clas- 
sifications indicates the following two main causes for 
misclassification. First, the local contrast of some of the 
mitoses was low with respect to the surrounding back- 
ground value. This seems to occur particularly in late 
stages of division. Second, the segmentation procedure 
is inadequate in some cases. In these cases a local 
threshold is not sufficient to retain a contour as per- 
ceived visually. The contour is of prime importance for 
the classification based upon shape features. So far, the 
results obtained with the shape analysis are disappoint- 
ing. Application of an  adaptive contour algorithm e.g., 
(18) or (171, might improve the result. In addition, gain 
might be expected from the use of a higher sampling 
resolution as the characteristic little folds in the shape 
of mitoses are obscured by the size of the present digiti- 
zation grid. The presence of these folds may then be 
established by the bending energy feature (5,261. 

In summary, the study presented here indicates the 
feasibility of an  interactive image processing system for 
the scoring of mitotic activity. In a subsequent study 
more sophisticated processing techniques, such as  deter- 
mination of the integrated optical density and texture 
measures, and specimen decision strategies are planned. 
These techniques will be implemented in a real-time 
system working directly from microscopic slides and thus 
making the photographic step unnecessary. 
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