
Similarity Learning via Dissimilarity Space in CBIR

Giang P. Nguyen, Marcel Worring, and Arnold W.M. Smeulders
Intelligent Systems Lab Amsterdam, University of Amsterdam

Kruislaan 403, 1098SJ Amsterdam, The Netherlands.

{giangnp,worring,smeulders}@science.uva.nl

ABSTRACT
In this paper, we introduce a new approach to learn dis-
similarity for interactive search in content based image re-
trieval. In literature, dissimilarity is often learned via the
feature space by feature selection, feature weighting or a pa-
rameterized function of the features. Different from existing
techniques, we use relevance feedback to adjust dissimilar-
ity in a dissimilarity space. To create a dissimilarity space,
we use Pekalska’s method [15]. After the user gives feed-
back, we apply active learning with one-class SVM on this
space. Results on a Corel dataset of 10000 images and a
TrecVid collection of 43907 keyframes show that our pro-
posed approach can improve the retrieval performance over
the feature space based approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Search pro-
cess, Relevance feedback]

General Terms
Experimentation, Algorithm

Keywords
Dissimilarity learning, interactive search, visualization

1. INTRODUCTION
Interactive search tasks in content-based image retrieval

(CBIR) are classified into three types namely association
search, target search and category search [22]. Search by
association is a class of searching images where the user
starts the search with no specific aim other than interesting
findings. Target search aims at finding one specific image.
Finally, category search looks for all images belonging to a
specific class. In any of the three tasks, during the search
process, the system aims to find relevant images and discard
irrelevant ones. To do so, a dissimilarity measure is needed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIR’06, October 26–27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-495-2/06/0010 ...$5.00.

to compare and sort images. However, the dissimilarity be-
tween images strongly depends on the search context. The
system’s pre-definition of dissimilarity is based on objective
interpretation of the image content, whereas the user inter-
prets the image in its semantic context. This problem is
known as the semantic gap [22]. Let us give an example,
where we have two sets of pictures, one of “dogs” and the
other of “birds”. In a search task looking for images of the
“animal” category, images in these two sets should be con-
sidered similar. However, if the task is searching images of
“dogs”, the pictures with “birds” are not relevant. Only the
user knows exactly what she is searching for and the systems
needs to learn the dissimilarity based on the user’s relevance
feedback.

In literature, many different methods have been developed
to learn dissimilarity measures from relevance feedback. For
an overview see [19, 29]. To provide feedback, a manipula-
tion space with which the users can interact is essential. This
space, must show a selection of images to the user in a way
suited for interaction. The user may interact in the space by
labelling images as relevant and/or irrelevant, by giving dis-
similarity scores, or moving relevant images close to one an-
other and so on. When feedback is given, the dissimilarity is
commonly learned via the feature space [1, 11, 9]. Using fea-
ture space has two disadvantages. First, to effectively learn
the dissimilarity, a lot of generic features should be defined
or a small set of specific features. A large set of generic
features, provides the possibility to find a feature combi-
nation suited for describing the dissimilarities among the
images using a form of feature weighting. However, a large
set of features leads to a high computational load, especially
when the dimension of the feature space goes to thousands
of features. For interactive search, immediate response is
important, the computational expense should be restricted.
A small selection of specific features usually works for a nar-
row domain only. Second, the individual features have no
meaning to the user so the feature space can not be mapped
to manipulation in an intuitive manner. Hence, for efficient
and intuitive search in broad domains a different method is
needed.

Let us reconsider the above example. It is difficult to
define effective features to assign the two images to the “an-
imal” group. However, if the user points out that the images
searched for are similar to the example picture of a “dog”
and an example of a“bird” we might group them based on
the observation that they are close to either one of them.
Defining concepts on the basis of examples is also far more
intuitive for the user, hence it can be used in manipulation

107

space directly. In our approach, rather than considering the
feature space, we will focus on the dissimilarity space, where
images are represented by their relations to other images.

A similar approach has been applied in [2]. In this ref-
erence, the authors also consider dissimilarity space as a
replacement of the feature space. They create dissimilarity
spaces following the technique of Duin and Pekalska [5, 15].
They first select a set of images, named prototypes. The dis-
similarity space is created such that images are represented
in their relative dissimilarities to the prototypes. They then
explore the optimal way of fusing these spaces, which they
call multi-modal dissimilarity spaces. However, no specific
comparison of this approach to the learning on feature space
has been given as well as examining factors related to the
performance of the dissimilarity space based approach.

In this paper, we not only present the learning on dissim-
ilarity space, but also explicitly experiment on the perfor-
mance of our approach over existing methods. The paper is
organized as follows. In section 2, we will describe in more
detail existing research in learning dissimilarity. Next, in
section 3, we present our approach with active learning on
the dissimilarity. Results of the system with two different
image collections are shown in section 4. Finally, conclusions
are presented in section 6.

2. BACKGROUND AND RELATED WORK
In this section, we introduce some essential notation and

give an overview of existing literature on learning dissimi-
larity.

2.1 Essential notations
Given a collection of images I = {I1, I2, ..., In}, a r- di-

mensional feature space F is defined in which each image
Ii ∈ I is represented by a feature vector �Fi of length r.
Dissimilarities between every pair of images Ii and Ij are

stored in a matrix S = {S(Ii, Ij)}i=1,n;j=1,n. Let �W =
{w1, w2, . . . , wr} denote a set of r values weighting the differ-

ent elements of F . Finally, let �ζ denote a set of parameters
steering the dissimilarity function.

Now when the user is interacting with the system he has a
goal which can be defined as a set of desired images I+ ⊂ I
to be found. Given this goal, learning of dissimilarity can
be viewed as an iterative process where the systems learns
to identify the set I+ from feedback given by the user.

2.2 Methods for learning dissimilarity
In most existing methods, learning is done via the feature

space either by feature selection [1, 11], feature weighting
[9, 28], or using a parameter based function of features [20,
7].

In general, for existing methods, learning the dissimilarity
in iteration t + 1 from analyzing the feedback from the user
in iteration t can be formulated as follows:

St+1(Ii, Ij) = f(�Fi, �Fj | �W t, �ζt), (1)

where �W 0 and �ζ0 are set to default values.
Not all features are equally important. Hence, in the fea-

ture weighting approach weights are set for each feature.
Feature selection is a special case of feature weighting, where
the weights of the eliminated features are set to 0. As the
update changes �W only, Eq.1 can be rewritten as:

St+1(Ii, Ij) = f(�Fi, �Fj | �W t
). (2)

In [28], the authors concentrate on exploring the distribu-
tion of the datas set. A subspace of the feature space is
found, and a quadratic similarity functions is learnt. From
there, the dissimilarity matrix between images is updated.
A similar approach is presented in [1], where the authors
propose a weighted Minkowski similarity that continuously
learns the weight of each feature based on positive and neg-
ative examples. The dissimilarity matrix is adjusted on the
basis of the new set of weights. In [11], the similarity is also
recalculated by selecting a subspace. Updating is based on
the configuration of images on the screen resulting from the
user’s manipulation of the position of images on the screen.
The system re-estimates the layout of the images, such that
the similarity function gets closer to the user’s desire. A
similar approach but with dynamic selection of the feature
subspace is done in [9]. In this reference, starting with a
number of features, a dynamic function is proposed where
at each step the optimal number of features is found. From
there, the weighted and non-weighted perceptual dynamic
function is built based on the Minkowski distance. In [6],
the authors propose a system which allows the user to score
the similarity between given pairs of images. The system
then predicts the similarity coefficient from the user feed-
back and learns the similarity of the others. Within the
same school of thought, work has been reported in [3, 8, 21,
25]. In general, this approach requires a large set of fea-
tures in order to select an efficient subset best representing
the semantic similarity between images. However, the selec-
tion of large number of features has a major disadvantage
for interactive search because of its computational expense,
especially with complicated dissimilarity functions.

Another class of methods is formed by the parameter
based approaches. In these approaches, the matrix in the
feature space does not change during learning, but rather a
parameterized function of the features is adjusted to fit the
user’s feedback. Eq.1 is reformulated as:

St+1(Ii, Ij) = f(�Fi, �Fj |�ζt), (3)

For example, in [20], the authors introduce an interface
where the user adjusts the similarity between images in the
manipulation space by moving them around. New positions
of images displayed are used as relevance feedback. Using
Fuzzy Feature Contrast and Tversky’s similarity measure,

the authors define a similarity function where �ζ contains
around 100 different parameters. Based on user feedback,
the system then adjusts the set of parameters in the dissimi-
larity function such that the dissimilarity decreases between
images which according to the user are close. In [7], given
a set of images as query examples, a restricted similarity
measure is formulated which recalculates dissimilarity be-
tween all images and queries depending on their positions
compared to the classification boundary. The boundary is
characterized by a parameter set. Given a set of positive and
negative examples, SVM and AdaBoost are used to learn a
classification boundary. The top ranked images are then
labelled as positive and negative examples to repeat the re-
finement of dissimilarity.

The parameter based approaches do not require a large
set of features. However, to effectively learn the dissimilar-
ity matrix either the features should be well chosen or the
system should have a wide range of parameters.

108

3. OUR APPROACH
In this section, we present our approach in learning dis-

similarity in the dissimilarity space based on user’s relevance
feedback. Using the same type of notation as in eq.1 our
method can be described as:

St+1(Ii, Ij) = f(St(Ii, Ij)), with S0(Ii, Ij) = f(�Fi, �Fj).
(4)

Figure 1: Schematic overview of the proposed ap-
proach.

An overview of our proposed approach is in figure 1. First,
a dissimilarity matrix is obtained by comparing feature vec-
tors in the feature space F . A projection from the high
dimensional space is used to create a manipulation space
M (to be discussed in section 3.2). Images are presented
in M to the user for interaction and feedback. A set of
images, named the prototype set IP is selected. When suffi-
cient prototypes have found, a dissimilarity space DP is then
created in section 3.1. The learning process is then started.
The manipulation space M is now a projection of DP . The
learning phase is presented in section 3.3. At each iteration,
a set of most informative images is returned. The user then
labels positive images for another round of feedback. The
learning phase is finished when the user stops the search.

3.1 Prototype-based dissimilarity space
To create a dissimilarity space, we employ the method

proposed by Pekalska [15]. In the reference, the goal is data
classification with no user interaction or relevance feedback,
we extend it to interactive search.

The first step is to select a set of p images IP ⊂ I, called
the prototypes:

IP = {IP1 , IP2 , . . . , IPp} (5)

The role of the prototypes is to create a dissimilarity
space where relevant and irrelevant images are well sepa-
rated. Hence, careful selection of prototypes is important.
The mapping from dissimilarity matrix to dissimilarity space
by selection of prototypes is equivalent to choosing a set of
columns (or rows) in the dissimilarity matrix. DP denotes
the dissimilarity space, and Φ the mapping from a dissimi-
larity matrix S to DP :

Φ : S IP�−→ DP . (6)

This means that for each image Ii, we have a p-dimensional
vector

Di =
{
S(Ii, IP1), S(Ii, IP2), . . . , S(Ii, IPp)

}
(7)

Therefore, dissimilarities between all images in I to IP
are represented by a matrix with size n × p. The collection
I then builds up a p-dimensional dissimilarity space DP ,
named as prototype-based dissimilarity space:

DP =

⎡
⎢⎢⎢⎣

S(I1, IP1), S(I1, IP2), . . . , S(I1, IPp)
S(I2, IP1), S(I2, IP2), . . . , S(I2, IPp)

...
...

S(In, IP1), S(In, IP2), . . . , S(In, IPp)

⎤
⎥⎥⎥⎦ (8)

An illustration of creating a dissimilarity space is shown
in figure 2.

Figure 2: An example to illustrate the creation of a
dissimilarity space. In this example, for simplicity,
images are represented in a 2D feature space F =
{F1,F2}, with dissimilarities among them obtained
by the Euclidean distance between feature vectors.
Two images are selected as prototypes. Based on
distances between all images to the prototypes IP1

and IP2 , we create a 2D dissimilarity space.

In DP the similarity SP(Ii, Ij) of two images is defined by
the Euclidean distance between Di and Dj .

For selecting prototypes, it is argued in [16] that system-
atic selection of prototypes such as k-means gives a better
representation for of dissimilarity space than random selec-
tion. We, therefore, apply k-means for clustering the collec-
tion to find a set of prototypes IP such that the mapping Φ
preserves the information in the similarity matrix S as good
as possible. In interactive search, we are not able to select a
set of prototypes as we do not know which images the user
will search for. In practice, there are cases where the user
starts the search with relevant and/or irrelevant images. In
general this set of images is not a good set of prototypes.
For CBIR, a browsing strategy is needed for finding a good
set of prototypes. For that goal, we group the collection into
a number of clusters. In the browsing, a set of images, where
each image is selected from a cluster as a representative, is
displayed to the user. If the user marks an image is relevant,
it will be collected as a prototype. The browsing process is
finished when enough prototypes found.

3.2 The manipulation space
To provide relevance feedback a 2-dimensional manipu-

lation space M is needed in which the user interacts with
the images. Ideally, there is a direct relation between the
similarities defined in the high dimensional space, being it

109

feature space or dissimilarity space, and the manipulation
space.

A projection from the high dimensional space to a 2-
dimensional manipulation space is needed. Similarity based
visualization, [11, 18, 12, 17] which aims to preserve the dis-
similarities between every pair of images in the manipulation
space is highly appropriate for this task.

Let xi denote the position of image Ii in manipulation
space. Furthermore, let SM(Ii, Ij) be the Euclidean dis-
tance between the images in manipulation space M. In
similarity based visualization, to faithfully represent the dis-
similarity space, SM should reflect the similarity SP in dis-
similarity space. We define:

Ψ : S �→ M (9)

With S a matrix containing dissimilarities. In [12], we
have compared four different projection techniques Ψ. From
the reference, the projection method giving the best per-
formance in terms of preserving original relations is called
ISOSNE, a combination of isometric mapping (ISOMAP)
and stochastic neighbor embedding (SNE). ISOSNE is cho-
sen as our Ψ.

ISOSNE contains two main steps (see [12] for more de-
tails). A graph-based distance between images is first com-
puted using k nearest neighbors. For each image Ii, the
algorithm creates links to its k nearest neighbors based on
Euclidean distance. Based on the graph, distances between
images are redefined. If an image Ij is not in the k nearest
neighbor list of Ii, i.e. there is no direct link between them,
their distance will be computed via the intermediate links.
Dijkstra’s algorithm is employed to compute the shortest
path between Ii and Ij . The second step is to project re-
lations obtained from the graph based distance to the 2D
manipulation space. To preserve the relations, the algo-
rithm optimizes a cost function C measuring the difference
between the probability distribution in M and the distribu-
tion in the original space, denoted as PM and PO, respec-
tively. Based on Kullback-Leibler distance, C is computed
as:

C =
∑

i

∑
j

PO
ij log

PO
ij

PM
ij

(10)

where the probability distributions are calculated as follows:

P
(.)
ij =

exp(−S2
(.)(Ii, Ij))∑

l�=i exp(−S2
(.)(Ii, Il))

(11)

with S(.)(Ii, Ij) denoting similarity in the high dimensional
original space, or a Euclidean distance in 2D M between
image Ii and Ij .

To find the optimal placement of images in manipulation
space, they are first initialized at random positions. These
positions are then adjusted after each gradient descent iter-
ation such that it reduces the cost function C. When C is
optimized, with positions found, distances between images
SM are the ones optimally preserving the original relation
in collection.

3.3 Active learning on dissimilarity space
At this point, the initial dissimilarity space is in place.

The user has selected the set of prototypes IP treated as
query examples to start the search process. The search task
is to find other relevant images using these examples.

Different learning strategies can be employed [29]. We
select active learning with support vector machines (SVM)
for its capability of boosting retrieval results [26, 29, 14]. In
interactive search, there is an unbalance between the size of
the category searched for and the size of the collection. We
therefore follow [10, 4, 13] and use one-class SVM.

The prototypes IPi are used as positive examples. From
there, the one-class SVM defines a boundary B covering as
much as possible the positive examples. Let us denote:
B+ the set of images inside B predicted relevant to the
search.
B− the set of images outside B predicted as irrelevant to the
search.
IB the set of images closest to B according to distance func-
tion dB(.).

For SVM dB(.) is computed as a decision function that
decides the probability of an image belonging to the relevant
or irrelevant class.

In the next iterations, to improve the search, the system
aims at refining B. The refinement is such that it eliminates
irrelevant images from B+ and adds new relevant images to
B−. To do so, IB is chosen as set It

D to display as images
in this set are the most uncertain and the user feedback on
those yields the most information. This is known as “close-
to-boundary” feedback approach [26, 14]. The user will label
relevant images if they exist. Unlabelled images are treated
as irrelevant and removed from the collection. Let

IBt
+

= It
D ∩ I+. (12)

IBt
−

= It
D\Bt

+ (13)

When new feedback is given the SVM is recomputed on
the new set of positive examples to update the boundary:

Bt+1
+ = (Bt

+ ∪ IBt
+
)\IBt

−
(14)

The process is repeated until the user stops the search.

4. EXPERIMENTS

4.1 Setup

4.1.1 Overview of experiments
We now present experiments to show the performance of

our proposed approach.
The first experiment considers the creation of the dissim-

ilarity space. As described in section 3.1, to create DP we
need to determine the prototype set IP and the dissimilarity
between images and prototypes S(Ii, IPi). At the beginning
of the search, two spaces are available, namely the feature
space F and its projected space, the manipulation space M.

To create a dissimilarity space both spaces can be used.
Therefore, we have two options for creating a dissimilarity
space:

Φ1 : SF
IP�−→ Dr

P (15)

Φ2 : SM=Ψ(SF)
IP�−→ D2

P (16)

where Dr
P is the dissimilarity space based on r- dimensional

prototypes, and D2
P the dissimilarity space based on 2- di-

mensional prototypes. This experiment leads to the choice
of the proper dissimilarity space DP .

110

In the second experiment, the main goal is to compare
the search performance on the selected dissimilarity space
against the feature space. For a fair comparison, the start-
ing points are the same for both approaches. This means
that they use the same set of prototypes as initial positive
examples. With the selected dissimilarity space, the pro-
posed approach is implemented. We want to see whether
the performance of active learning on dissimilarity space is
better than the performance of active learning applied to
feature space directly.

4.1.2 Image collections
We select two different image collections to implement the

experiments. The first one is the well-known Corel collec-
tion. We select a set of 10000 images. This set contains 100
non-overlapping categories defined by Corel, the size of each
category is 100 images.

The second collection is obtained from the TrecVid 2005
benchmark [23]. This set contains 43907 images, which are
extracted from news video archives. We define 29 different
categories such as boat, basketball, car, chair to classify the
collection. Different from the Corel collection, one image in
this collection can belong to different categories. The num-
ber of images in each category varies from tens to thousands.
In the evaluation of the system performance, those informa-
tion of the search categories are used as ground truth.

4.1.3 Features
For these two image collections, we extract the contex-

ture feature introduced in [27]. The contexture feature is
a combination of texture and color invariance of images.
This feature is evaluated in the reference that it effectively
learns the categorization in different image collections. The
authors define 15 proto-concepts such as water, sky, snow.
Note that these proto-concepts are in low level compared to
higher level of the 29 categories. They learn probability val-
ues that each image contains those proto-concepts. This
contexture features are computed for different parameter
settings which are scales σ of Gaussian filter in computing
the textures, and the size of regions where they compute the
features. In particular, for the two collections in our exper-
iment, 8 different parameter settings are used (σ = 1, σ = 3
and different region sizes with ratios of 1

2
and 1

6
of the x

and y dimensions of the image). Therefore, for each image,
we extract a feature vector containing of 15 × 8 values. We
then have a feature space of 120 dimensions. To obtain the
manipulation space, ISOSNE is applied to project the fea-
ture space to 2D space. The Euclidean distance is used for
comparing two feature vectors.

4.1.4 Evaluation criteria
For comparison, we define a baseline which is used to see

whether it is indeed worth the trouble to go for the more
difficult approaches presented. The system displays a set of
images and relevant images are selected if they presents in
the displayed set. To compute the baseline, we calculate the
number of relevant images possibly found at iteration t + 1.
We have:

nt+1 = nt +
n+ − nt

n − nt
∗ nD (17)

where n is the size of the collection, n+ is number of images
in I+, and nD is number of displayed images.

For the Corel collection, we have n = 10000, nD = 100,
and the value n+ = 100 for each category. From this equa-
tion, for example, at the first iteration, on average the user
can find one relevant image. For the TrecVid2005 collec-
tion, the category sizes are varied. Therefore, the baseline
for each category is different. We average over all categories
to obtain the final baseline.

For evaluating the performance of the system, we report
recall values R of the top ranked 100 images I100:

R =
‖I100 ⋂ I+‖

‖I+‖ . (18)

where ‖.‖ denotes the size of a set. From there, we calculate
the relative improvement measuring the improvement of a
method over the baseline. Assume, a method X at iteration
t yields a recall value Rt

X , the baseline at the same iteration
returns a recall Rt

B . The relative improvement is given as:

φt(X, B) =
Rt

X − Rt
B

Rt
B

∗ 100 (19)

4.2 Experiment on creation of dissimilarity
space

To create the projection of the 120 dimensional feature
space F to M, the 2D manipulation space, we apply ISOSNE.
We compute two dissimilarity spaces D120

P and D2
P . To do

so, first the prototype set IP is selected. We test with two
sets of prototypes in the creation of DP with p = 5 or p = 10.

On each dissimilarity space, prototypes IPi are used as
initial positive examples. One-class SVM is applied to de-
fine the boundary B covering these examples. The set of
images close-to-boundary IB is returned for another round
of feedback. We use the evaluation criteria in section 4.1.4
at each iteration, producing a ranked list based on distances
to boundary. Recall values are reported with the top 100
images.

Figure 3 and 4 show the performance on D120
P and D2

P with
5 or with 10 prototypes for Corel and TrecVid collection.
Based on equation 19, for both collections, the performance
of learning on dissimilarity space is on average 60% relative
improvement over the baseline.

Because of the projection of I from 120 dimensions to
2 dimensions for creating the manipulation space, relations
between images cannot be kept perfectly even though the
projection is optimal in keeping these relations. If the rela-
tion is not preserved on M, performance of the D2

P will get
worse when compared to D120

P . However, it is interesting
to observe from the results that the search performance on
D2

P is always better than on D120
P whether having 5 or 10

prototypes. These results show that the ISOSNE performs
very well in preserving relations between images. Moreover,
because of ISOSNE extracts the structure of the collection
by first computing the graph-based distance, it takes an ad-
vantage over the direct distance computation on the feature
space. In other words, dissimilarity between images in the
feature space is computed by directly comparing two feature
vectors, whereas in the manipulation space, as a results of
ISOSNE, dissimilarity is obtained by preserving a graph-
based distance on the feature space. That explains why the
performance of learning on D2

P is better than learning on
D120

P .

111

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

number of iterations

Corel: comparison result (5 prots) with 100 categories

2D prototype dissSpace
rD prototype dissSpace

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
ca

ll

number of iterations

Corel: comparison result (10 prots) with 100 categories

2D prototype dissSpace
rD prototype dissSpace

(b)

Figure 3: Comparison results on using different dis-
similarity spaces with the Corel collection averaged
over 100 categories. a) Dissimilarity space created
by 5 prototypes. b) Dissimilarity space created by
10 prototypes.

For the selection of a dissimilarity space, we prefer using
D2

P .

4.3 Experiment on direct manipulation of dis-
similarity space vs. indirectly via feature
space

In the interaction mode, there are two ways of updat-
ing dissimilarity matrix, one is via D2

P , the other one is via
feature space F . We compare whether the learning on dis-
similarity space gives a better result than learning via F as
is currently done [1, 11, 9, 28].

We implement the proposed scheme in section 3 with the
dissimilarity space D2

P . Again, one-class SVM is used with
initial positive examples are the prototypes. We report recall
values at the top 100 images.

Results are shown in figure 5 and 6 for the Corel and
TrecVid. The figures show that with small number of pro-
totypes, the dissimilarity space is not able to maintain the

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

re
ca

ll

number of iterations

Trec2005FSD: comparison result (5 prots) with 29 categories

2D prototype dissSpace
rD prototype dissSpace

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

re
ca

ll

number of iterations

Trec2005FSD: comparison result (10 prots) with 29 categories

2D prototype dissSpace
rD prototype dissSpace

(b)

Figure 4: Comparison results on using different dis-
similarity spaces with the TrecVid collection aver-
aged over 29 categories. a) Dissimilarity space cre-
ated by 5 prototypes. b) Dissimilarity space created
by 10 prototypes.

relations between images. Therefore, the improvement of
learning on the dissimilarity space is smaller than learning
via the feature space. With 10 prototypes, the dissimilarity
space covers the image collection better. Hence, on average
it gives a higher improvement.

We should note here that, with smaller number of proto-
types i.e. smaller number of initial positive examples, the
performance of the baseline (Eq. 17) is worse than the one
with higher number of examples. Because of the relative
improvement over the baseline, the values in comparing the
performance with 5 prototypes get higher than with 10 pro-
totypes. From the figures, average performance of learning
via feature space get worse when having more initial exam-
ples. Because the prototype set IP is chosen such that it
distributes over the collection, when p gets higher, this set
better covers the collection. In the feature space, this means
that the more prototypes, the broader the boundary B. This
leads to a higher number of irrelevant images fell inside B.
This is a main disadvantage of using feature space where

112

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

number of iterations

Corel: comparison result (5 prots) with 100 categories

2D prototype dissSpace
feature space
baseline

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
ca

ll

number of iterations

Corel: comparison result (10 prots) with 100 categories

2D prototype dissSpace
feature space
baseline

(b)

Figure 5: Comparison of direct learning on dissimi-
larity spaces and learning via feature space with the
Corel collection averaged over 100 categories. The
results are evaluated by recall. a) dissimilarity space
created by 5 prototypes. b) dissimilarity space cre-
ated by 10 prototypes.

selected features are not capable of capturing semantic cat-
egorization. On dissimilarity space created from IP , the set
of initial examples groups positive images together. There-
fore, the performance of learning on dissimilarity space is
improved.

From this experiment, we conclude that number of pro-
totypes should not be too small. With 10 prototypes, it
is a reasonable for creating the dissimilarity space as well
as reasonable in the interactive search where few positive
examples are provided. The learning performance on the
dissimilarity space is better than updating dissimilarity via
feature space.

5. THE INTERACTIVE SEARCH SYSTEM
In this section, we present an interactive search system

based on the methodology described in the previous sections
(This system is part of the MediaMill search system [24]).

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

re
ca

ll

number of iterations

Trec2005FSD: comparison result (5 prots) with 29 categories

2D prototype dissSpace
feature space
baseline

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

re
ca

ll

number of iterations

Trec2005FSD: comparison result (10 prots) with 29 categories

2D prototype dissSpace
feature space
baseline

(b)

Figure 6: Comparison of direct learning on dissim-
ilarity spaces and learning via feature space with
the TrecVid collection averaged over 29 categories
(second row). The results are evaluated by recall.
a) dissimilarity space created by 5 prototypes. b)
dissimilarity space created by 10 prototypes.

To create the dissimilarity space DP , a set of relevant
images should be selected as prototypes IP . In our system,
the interface is designed supporting the user in browsing and
searching through image collections. On this interface, the
manipulation space M is the central part, where images are
presented to the user as thumbnails. Their positions xi on
screen are dependent on their relations to one another. In
figure 7, the main window shows the manipulation space.
This screen is captured at the first round of the browsing
phase. Images displayed in the figure, are representing the
center points of all clusters. At this stage, positions are
obtained by projecting the feature space SF to M. The
small window on the top-right corner shows the overview of
the Corel collection, so called the overview window. The
green dots represent the images currently displayed on the
main screen. The bottom-right corner window shows the
full size of a current image.

113

Figure 7: A screen shot of the system when browsing
through the Corel collection.

During the interaction, relevant images selected by the
user will be kept in the third window on the right side so
as to recall the user of what has been selected. For selec-
tion of positive examples, the 2D similarity based visualiza-
tion shows the advantage over the grid based display. For
example, instead of selecting one image at a time, in 2D
similarity-based visualization similar images stay close to-
gether, therefore the user can select a group of images at a
time.

When a certain number of positive examples have found,
the system then creates DP . From this point onwards, the
manipulation space M will be a projection of the dissimi-
larity space DP . In the first round of the learning phase,
the SVM learns on DP with IP . After the learning pro-
cess is finished, a set of images closest to boundary IB is
returned and displayed. For a better understanding of what
images are showed to the user, prototypes are also displayed
on the main window. To distinguish from the other images,
the prototypes are given in different color. Positions of dis-
played images with the prototypes gives the user an idea
of what happens. This is illustrated in figure 8a. In the
overview window, the green dots now show the boundary
formed by the current set of images (see figure 8b).

To continue the search, the user selects more positive im-
ages. The ones which are not selected are removed from the
collection. The learning process is repeated until there are
no positive examples left or the user is satisfied with the re-
sult. A “View results” button gives the user a set of images
which is the final learning results (figure 9).

6. CONCLUSION
In this paper, we have proposed a new approach in inter-

actively learning dissimilarity. Different from existing tech-
niques [1, 11, 9, 28], we learn on the dissimilarity space.
This means that instead of collecting a large set of features
or choosing well-defined features, only the relations between
images are used. By doing that, we avoid the computa-
tional problem with large set of features and the difficulty
in selecting effective features in interactive category search.
Representing images in their relations to others can extract
the perceptual meaning of those images, which is difficult to
obtain using feature representations.

Figure 8: (a) A screen shot of images closest to the
border (see (b) the green dots draw the boundary).
For making distinction, on the main view those pro-
totypes are painted in green color, and not be able
to reselect again. Their appearances just to give the
user a clear understanding of what is happening. (b)
An example of boundary defined by image closest to
the boundary (represented by points in green color).
The red points represent for images which have been
displayed or removed from the collection.

We have demonstrated by experiments that learning on
this dissimilarity space DP in general gives a better per-
formance than the learning on feature space F , under the
provision a reasonable number of initial prototypes IP is
being used.

In conclusion, interactive learning on dissimilarity space
DP rather than via feature space F is very promising. The
simplicity in creating dissimilarity space and its performance
is certainly of interest for further more detail research.

Acknowledgments
The work is within the ImIk project (Interactive disclosure of
Multimedia Information and Knowledge) sponsored by IOP
MMI (Man-Machine Interaction). The first author would
like to thank J. van Gemert for providing the contexture
features.

114

Figure 9: (a) A screen shot of images on the main
view when pressing “View results”. (b) An exam-
ple of images with result contains images having the
largest distances to the boundary.

7. REFERENCES
[1] B. Bhanu, J. Peng, and S. Qing. Learning feature relevance

and similarity metrics in image databases. In Proceedings of
the IEEE Workshop on Content - Based Access of Image and
Video Libraries, page 14, 1998.

[2] E. Bruno, N. Loccoz, and S. Maillet. Learning user queries in
multimodal dissimilarity spaces. In Proceedings of the 3rd
International Workshop on Adaptive Multimedia Retrieval,
2005.

[3] A. Carkacioglu and F. Vural. Learning similarity space. In
International Conference on Image Processing, 2002.

[4] Y. Chen, X. Zhou, and T. Huang. One-class SVM for learning
in image retrieval. In International Conference on Image
Processing, volume 1, pages 34–37, 2001.

[5] R. Duin, D. Ridder, and D. Tax. Experiments with a
featureless approach to pattern recognition. Pattern
Recognition Letters, 18:1159–1166, 1997.

[6] I. El-Naqa, Y. Yang, N. Galatsanos, R. Nishikawa, and
M. Wernick. A similarity learning approach to content based
image retrieval: application to digital mammography. IEEE
Transactions on Medical Imaging, 23(10):1233–1244, 2004.

[7] G. Guo, A. Jain, W. Ma, and H. Zhang. Learning similarity
measure for natural image retrieval with relevance feedback.
IEEE Transactions on Neural Networks, 13(4):811–820, 2002.

[8] X. He, O. King, W. Ma, M. Li, and H. Zhang. Learning a
semantic space from user’s relevance feedback for image
retrieval. IEEE transactions on Circuits and Systems for
Video Technology, 13(1):39–48, 2003.

[9] B. Li and E. Chang. Discovery of a perceptual distance
function for measuring image similarity. ACM Multimedia
Journal Special Issue on Content-Based Image Retrieval,
8(6):512–522, 2003.

[10] L. Manevitz and M. Yousef. One-class SVMs for document
classification. Journal of Machine Learning Research,
2:139–154, 2004.

[11] B. Moghaddam, Q. Tian, N. Lesh, C. Shen, and T. Huang.
Visualization and user-modeling for browsing personal photo
libraries. International Journal of Computer Vision,
56(1/2):109–130, 2004.

[12] G. Nguyen and M. Worring. Similarity based visualization of
image collections. In In proceedings of 7th International
Workshop on Audio-Visual Content and Information
Visualization in Digital Libraries, 2005.

[13] G. P. Nguyen and M. Worring. Scenario optimization for
interactive category search. In Proceeding of the 7th ACM
SIGMM International Workshop on Multimedia Information
Retrieval, 2005.

[14] H. Nguyen and A. Smeulders. Active learning using
pre-clustering. In In Proceedings of the 21th International
Conference on Machine Learning, 2004.

[15] E. Pekalska and R. Duin. Dissimilarity representations allow
for building good classifiers. Pattern Recognition Letters,
23:943–956, 2002.

[16] E. Pekalska, R. Duin, and P. Paclik. Prototype selection for
dissimilarity-based classifiers. Pattern Recognition,
39(2):189–208, 2006.

[17] K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. Does
organisation by similarity assist image browsing? ACM
Conference on Human Factors in Computing Systems, pages
190 – 197, 2001.

[18] Y. Rubner, C. Tomasi, and L. Guibas. The earth mover’s
distance as a metric for image retrieval. International Journal
of Computer Vision, 40(2):99–121, 2000.

[19] Y. Rui, T. Huang, M. Ortega, and S. Mehrotra. Relevance
feedback: a power tool for interactive content based image
retrieval. IEEE Transactions on Circuits and Systems for
Video Technology, 8(5):644–655, 1998.

[20] S. Santini, A. Gupta, and R. Jain. Emergent semantics
through interaction in image databases. IEEE Transactions
on Knowledge and Data Engineering archive,
13(3):1041–4347, 2001.

[21] S. Santini and R. Jain. Similarity measures. IEEE
Transactions on Pattern analysis and machine intelligence,
21(9):871–883, 1999.

[22] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain.
Content-based image retrieval at the end of early years. IEEE
Transaction on Pattern Analysis and Machine Intelligence.,
22(12):1349–1380, 2000.

[23] C. Snoek, J. van Gemert, J. Geusebroek, B. Huurnink,
D. Koelma, G. Nguyen, O. de Rooij, F. Seinstra, A. Smeulders,
C. Veenman, and M. Worring. The mediamill trecvid 2005
semantic video search engine. In Proceedings of the 3th
TRECVID Workshop, 2005.

[24] C. Snoek, M. Worring, J. van Gemert, J. Geusebroek,
D. Koelma, G. Nguyen, O. de Rooij, , and F. Seinstra.
Mediamill: Exploring news video archives based on learned
semantics. In Proceedings of ACM Multimedia, Best
Technical Demonstration Award, 2005.

[25] D. Squire. Learning a similarity-based distance measure for
image database organization from human partitionings of an
image set. In Proceedings of the 4th IEEE Workshop on
Applications of Computer Vision (WACV’98), page 88, 1998.

[26] S. Tong and E. Chang. Support vector machine active learning
for image retrieval. In ACM Internaltional Conference on
Multimedia, volume 9, pages 107–118, 2001.

[27] J. van Gemert, J. Geusebroek, C. Veenman, C. Snoek, and
A. Smeulders. Robust scene categorization by learning image
statistics in context. In CVPR Workshop on Semantic
Learning Applications in Multimedia (SLAM), 2006.

[28] H. Ye and G. Xu. Similarity measure learning for image
retrieval using feature subspace analysis. In Proceedings of the
Fifth International Conference on Computational
Intelligence and Multimedia Applications., pages 131–136,
2003.

[29] X. Zhou and T. Huang. Relevance feedback in image retrieval:
A comprehensive overview. Multimedia systems, 8:536–544,
2003.

115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

