‘ Chapter 7: Relational Database Design

First Normal Form
Pitfalls in Relational Database Design
Functional Dependencies

Decomposition

‘ First Normal Form

B Domain is atomic if its elements are considered to be indivisible
units

“* Examples of non-atomic domains:
v Set of names, composite attributes

v ldentification numbers like CS101 that can be broken up into

‘ First Normal Form (Contd.)

B Atomicity is actually a property of how the elements of the
domain are used.

* E.g. Strings would normally be considered indivisible

* Suppose that students are given roll numbers which are strings of
the form CS0012 or EE1127

‘/ Pitfalls in Relational Database Design

B Relational database design requires that we find a
“good” collection of relation schemas. A bad design
may lead to

* Repetition of Information.

‘ Example

B Consider the relation schema:
Lending-schema = (branch-name, branch-city, assets,
customer-name, loan-number, amount)

customer-
branch-name | branch-city assets | name amount
Downtown | Brooklyn 9000000 | Jones 1000
Redwood Palo Alto 2100000 | Smith 2000
Perryridge Horseneck | 1700000 1500
Downtown | Brookl 9000000 1500

‘ Decomposition

B Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number,

‘Example of Non Lossless-Join Decomposition

B Decomposition of R = (A, B)
R,=(A) R,=(B)

Qoal — Devise a Theory for the Following

B Decide whether a particular relation R is in “good” form.

B In the case that a relation R is not in “good” form, decompose it
into a set of relations {R,, R,, ..., R,} such that

% each relation is in good form

‘ Functional Dependencies

B Constraints on the set of legal relations.

B Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.

B A functional dependency is a

generalization of the notion of a

‘ Functional Dependencies (Cont.)

B Let R be a relation schema
ocR and Bc R
B The functional dependency

o—>f
holds on R if and only if for any legal relations R), whenever any
two tuples t, and t, of r agree on the attributes o, they also agree

‘ Functional Dependencies (Cont.)

B Kis a superkey for relation schema R if and only if K— R
B Kis a candidate key for R if and only if
* K— R, and
* fornooc K, a— R
B Functional dependencies allow us to express constraints that

‘ Use of Functional Dependencies

B We use functional dependencies to:

* test relations to see if they are legal under a given set of functional
dependencies.

v If a relation ris legal under a set F of functional dependencies, we
say that r satisfies F.

‘ Functional Dependencies (Cont.)

B A functional dependency is trivial if it is satisfied by all instances
of a relation

* E.g.
v customer-name, loan-number — customer-name
v customer-name — customer-name

Closure of a Set of Functional
Dependencies

B Given a set F set of functional dependencies, there are certain
other functional dependencies that are logically implied by F.

* E.g. If A>Band B— C, thenwe caninferthat A —» C

B The set of all functional dependencies logically implied by Fis the
closure of F.

‘/ Example

B R=(ABC GH,I
F={ A—>B
A—>C
CG—->H
CG— |
B — H}

B some members of F*

‘ Procedure for Computing F*

B To compute the closure of a set of functional dependencies F:

Fr=F
repeat

Closure of Functional Dependencies
(Cont.)

B We can further simplify manual computation of F+ by using
the following additional rules.

* If a — Bholds and oo — y holds, then oo — £y holds (union)

* If a — By holds, then o — £ holds and o. — y holds

‘ Closure of Attribute Sets

B Given a set of attributes o, define the closure of oo under F
(denoted by o) as the set of attributes that are functionally
determined by o under F:

oa—Bisin F+ » Bcot

‘ Example of Attribute Set Closure

B R=(ABCGH,I

B F={A>B
A->C
CG—->H
CG— |
B— H}

10

‘ Uses of Attribute Closure

There are several uses of the attribute closure algorithm:
B Testing for superkey:

* To test if a is a superkey, we compute o and check if o contains
all attributes of R.

B Testing functional dependencies

‘ Canonical Cover

B Sets of functional dependencies may have redundant
dependencies that can be inferred from the others

* Eg: A— Cisredundantin: {A—>B, B—>C, A—C}
* Parts of a functional dependency may be redundant
v Eg.onRHS: {A—B, B—>C, A— CD} can be simplified to

11

‘ Extraneous Attributes

B Consider a set F of functional dependencies and the functional
dependency o — B in F.

* Attribute A is extraneous in aif Ae o
and F logically implies (F— {o. — B}) U {(az — A) — B}.

 Attribute A is extraneous in Bif Ae B
and the set of functional dependencies
(F —{a— B}) U {o —>(B — A)} logically implies F.

‘ Testing if an Attribute is Extraneous

B Consider a set F of functional dependencies and the functional
dependency o — B in F.

* To test if attribute A € o is extraneous in o
v compute (A — {o})* using the dependencies in F
v check that (A — {a})* contains o; if it does, A is extraneous

12

‘ Canonical Cover

B A canonical cover for Fis a set of dependencies F,such that
* Flogically implies all dependencies in F, and
* F_logically implies all dependencies in F, and
* No functional dependency in F contains an extraneous attribute, and
* Each left side of functional dependency in F_ is unique.

txample of Computing a Canonical Cover

B R=(A B C)

F={A— BC
B—C
A—>B
AB — C}

B Combine A— BCand A— Binto A— BC

13

‘ Goals of Normalization

Decide whether a particular relation R is in “good” form.

In the case that a relation R is not in “good” form, decompose it
into a set of relations {R,, R,, ..., R,} such that

* each relation is in good form

[]

Decomposition

B Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number,
branch-name, amount)
| All attributes of an original schema (R) must appear in the

14

‘ Example of Lossy-Join Decomposition

B Lossy-join decompositions result in information loss.

B Example: Decomposition of R = (A, B)
R,=(A) R,=(B)

‘ Normalization Using Functional Dependencies

B When we decompose a relation schema R with a set of
functional dependencies Finto R;, R,,.., R, we want

* Lossless-join decomposition: Otherwise decomposition would result in
information loss.

* No redundancy: The relations R, preferably should be in either Boyce-

15

‘/ Example

®m R=(A B, C)
F={A— B, B C)

m R=(AB) R=(BC
* Lossless-join decomposition:

‘ Testing for Dependency Preservation

B To check if a dependency a—f is preserved in a decomposition of
Rinto Ry, Ry, ..., R, we apply the following simplified test (with
attribute closure done w.r.t. F)

* result=q.
while (changes to result) do
for each R, in the decomposition

16

‘ Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional
dependencies if for all functional dependencies in F* of the form
o — B, where oo € Rand S c R, at least one of the following holds:

‘/ Example

B R=(A B C)
F={A—>B
B— C}
Key = {A}

17

‘ Testing for BCNF

B To check if a non-trivial dependency o —f causes a violation of BCNF
1. compute ot (the attribute closure of o), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

B Simplified test: To check if a relation schema R with a given set of

functional dependencies F is in BCNF, it suffices to check only the
dependencies in the given set F for violation of BCNF, rather than

‘ BCNF Decomposition Algorithm

result = {R};
done := false;
compute F#;
while (not done) do
if (there is a schema R; in result that is not in BCNF)
then begin
let o — S be a nontrivial functional

18

‘ Example of BCNF Decomposition

B R = (branch-name, branch-city, assets,
customer-name, loan-number, amount)
F = {branch-name — assets branch-city
loan-number — amount branch-name}
Key = {loan-number, customer-name}

B Decomposition

‘ Testing Decomposition for BCNF

B To check if a relation R;in a decomposition of R is in BCNF,

* Either test R, for BCNF with respect to the restriction of F to R; (that
is, all FDs in F* that contain only attributes from R))

“* or use the original set of dependencies F that hold on R, but with the
following test:

19

‘ BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is
dependency preserving

B R=(KL)
F={JK—L

‘ Third Normal Form: Motivation

B There are some situations where
* BCNF is not dependency preserving, and
* efficient checking for FD violation on updates is important
B Solution: define a weaker normal form, called Third Normal Form.

20

‘ Third Normal Form

B A relation schema Ris in third normal form (3NF) if for all:
o— gin F*
at least one of the following holds:
* o — is trivial (i.e., fe)

‘ 3NF (Cont.)

B Example

* R=(J, K L)
F={UK—> L LK

* Two candidate keys: JKand JL

* Risin 3NF

21

‘ Testing for 3NF

B Optimization: Need to check only FDs in F, need not check all
FDs in F*.

B Use attribute closure to check, for each dependency o — B, if o
is a superkey.

‘ 3NF Decomposition Algorithm

Let F, be a canonical cover for F;
i:=0;
for each functional dependency oo — gin F,do
if none of the schemas R, 1 </ <icontains o f
then begin
i=i+1;

22

‘ 3NF Decomposition Algorithm (Cont.)

B Above algorithm ensures:

* each relation schema R; is in 3NF
* decomposition is dependency preserving and lossless-join

* Proof of correctness is at end of this file (click here)

‘/ Example

B Relation schema:

Banker-info-schema = (branch-name, customer-name,
banker-name, office-number)

23

‘ Applying 3NF to Banker-info-schema

B The for loop in the algorithm causes us to include the
following schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name,
office-number)

‘ Comparison of BCNF and 3NF

B ltis always possible to decompose a relation into relations in
3NF and

* the decomposition is lossless

* the dependencies are preserved

24

‘ Comparison of BCNF and 3NF (Cont.)

B Example of problems due to redundancy in 3NF

* R=(JK L)
F={UK—L, LK}

‘ Design Goals

B Goal for a relational database design is:
* BCNF.
* Lossless join.
* Dependency preservation.

B [f we cannot achieve this, we accept one of

25

~

Database System Concepts 7.51

Testing for FDs Across Relations

~

If decomposition is not dependency preserving, we can have an
extra materialized view for each dependency o —f in F, that is
not preserved in the decomposition

The materialized view is defined as a projection on o 3 of the join
of the relations in the decomposition

Many newer database systems support materialized views and
database system maintains the view when the relations are
updated.

* No extra coding effort for programmer.
The FD becomes a candidate key on the materialized view.
Space overhead: for storing the materialized view

Time overhead: Need to keep materialized view up to date when
relations are updated

Database System Concepts 7.52 ©Silberschatz,

~

Multivalued Dependencies

There are database schemas in BCNF that do not seem to be
sufficiently normalized

Consider a database

classes(course, teacher, book)
such that (¢,t,b) € classes means that tis qualified to teach c,
and b is a required textbook for ¢

The database is supposed to list for each course the set of
teachers any one of which can be the course’s instructor, and the
set of books, all of which are required for the course (no matter
who teaches it).

26

‘ | course | teacher | book |
database Avi DB Concepts
database Avi Ullman
database Hank DB Concepts
database Hank Ullman
database Sudarshan DB Concepts
database Sudarshan Ullman
operating systems | Avi OS Concepts
operating systems | Avi Shaw
operating systems | Jim OS Concepts
operating systems | Jim Shaw

‘ B Therefore, it is better to decompose classes into:

| course | teacher |
database Avi
database Hank
database Sudarshan

operating systems Avi
operating systems Jim

course book

database DB Concepts
database Ullman
operating systems OS Concepts
operating systems Shaw

‘ Multivalued Dependencies (MVDs)

B Let R be a relation schema and let o c Rand B c R.
The multivalued dependency

o—--f

holds on R if in any legal relation r(R), for all pairs for
tuples t; and t, in rsuch that t,[a] = t,[a], there exist

‘/ MVD (Cont.)

B Tabular representation of o »— f

28

‘/ Example

B Let R be a relation schema with a set of attributes that are
partitioned into 3 nonempty subsets.

Y, Z W
B We say that Y »— Z (Y multidetermines 2)

‘ Example (Cont.)

B [n our example:

course »— teacher
course -— book

29

‘ Use of Multivalued Dependencies

B We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a
given set of functional and multivalued dependencies

‘ Theory of MVDs

B From the definition of multivalued dependency, we can derive the
following rule:

* If oo — B, then o0 »— B

That is, every functional dependency is also a multivalued
dependency

30

‘ Fourth Normal Form

B A relation schema Ris in 4NF with respect to a set D of
functional and multivalued dependencies if for all multivalued
dependencies in D* of the form oo »— B, where oo € Rand B c R,
at least one of the following hold:

‘Restriction of Multivalued Dependencies

B The restriction of D to R; is the set D; consisting of
* All functional dependencies in D* that include only attributes of R;
* All multivalued dependencies of the form

31

‘ 4NF Decomposition Algorithm

result: = {R};

done := false;

compute D*;

Let D, denote the restriction of D* to R;

while (not done

‘/ Example

u R=(A! B) C’ G! H, ,)
F={A—>—> B
B —»— HI

CG—-—-H}
B Ris not in 4NF since A »— B and A is not a superkey for R

32

‘ Further Normal Forms

B join dependencies generalize multivalued dependencies

* lead to project-join normal form (PJNF) (also called fifth normal
form)

‘ Overall Database Design Process

B We have assumed schema R is given

% R could have been generated when converting E-R diagram to a set of
tables.

* R could have been a single relation containing all attributes that are of
interest (called universal relation).

33

‘ ER Model and Normalization

B When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not need
further normalization.

B However, in a real (imperfect) design there can be FDs from non-key
attributes of an entity to other attributes of the entity

‘ Universal Relation Approach

B Dangling tuples — Tuples that “disappear” in computing a join.
* Letr, (Ry), 1, (Ry),, I (R,) be a set of relations
* A tuple r of the relation r; is a dangling tuple if r is not in the relation:
e HLX ... X1
B The relation r; x r, X ...} r,is called a universal relation since it

34

‘ Universal Relation Approach

B Dangling tuples may occur in practical database applications.
B They represent incomplete information

B E.g. may want to break up information about loans into:
(branch-name, loan-number)

loan-number, amount

‘ Universal Relation Approach (Contd.)

B A particular decomposition defines a restricted form of
incomplete information that is acceptable in our database.
* Above decomposition requires at least one of customer-name,

branch-name or amount in order to enter a loan number without
using null values

35

~

Database System Concepts 7.7

Denormalization for Performance
\/

B May want to use non-normalized schema for performance

B E.g. displaying customer-name along with account-number and
balance requires join of account with depositor

B Alternative 1: Use denormalized relation containing attributes of
account as well as depositor with all above attributes

* faster lookup
* Extra space and extra execution time for updates
* extra coding work for programmer and possibility of error in extra code

B Alternative 2: use a materialized view defined as
account X depositor

* Benefits and drawbacks same as above, except no extra codlng work
for programmer and avoids possible errors

~

Database System Concepts 7.72 ©Silberschatz,

Other Design Issues
\/

B Some aspects of database design are not caught by
normalization

B Examples of bad database design, to be avoided:

Instead of earnings(company-id, year, amount), use

* earnings-2000, earnings-2001, earnings-2002, etc., all on the
schema (company-id, earnings).

v Above are in BCNF, but make querying across years difficult and
needs new table each year

 company-year(company-id, earnings-2000, earnings-2001,
earnings-2002)

v Also in BCNF, but also makes querying across years difficult and
requires new attribute each year.

v Is an example of a crosstab, where values for one attribute
become column names

v Used in spreadsheets, and in data analysis tools

36

‘ Correctness of 3NF Decomposition
Algorithm

B 3NF decomposition algorithm is dependency preserving (since
there is a relation for every FD in F,)

B Decomposition is lossless join
* A candidate ke is in one of the relations R.in decomposition

37

‘ Correctness of 3NF Decomposition
Algorithm (Contd.)

Claim: if a relation R;is in the decomposition generated by the
above algorithm, then R; satisfies 3NF.

B Let R, be generated from the dependency o —f

Correctness of 3NF Decomposition
(Contd.)

m Case 1:If Bin B:
* If yis a superkey, the 2nd condition of 3NF is satisfied
* Otherwise oo must contain some attribute not in y

* Since Y — B is in F* it must be derivable from F, by using attribute

Correctness of 3NF Decomposition
(Contd.)

M Case 2: Bisina.

* Since o is a candidate key, the third alternative in the definition of
3NF is trivially satisfied.

* In fact, we cannot show that y is a superkey.

39

N

Sample lending Relation

—

customer- | loan-
branch-name | branch-city assets name number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge Horseneck | 1700000 | Hayes L-15 1500
Downtown | Brooklyn 9000000 | Jackson L-14 1500
Mianus Horseneck 400000 | Jones L-93 500
Round Hill | Horseneck | 8000000 | Turner L-11 900
Pownal Bennington | 300000 | Williams L-29 1200
North Town | Rye 3700000 | Hayes L-16 1300
Downtown | Brooklyn 9000000 | Johnson L-18 2000
Perryridge | Horseneck | 1700000 | Glenn L-25 2500
Brighton Brooklyn 7100000 | Brooks L-10 2200

Sample Relation r

40

@

The customer Relation

| customer-name | customer-street | customer-city |

Jones
Smith
Hayes
Curry
Lindsay
Turner
Williams
Adams
Johnson
Glenn
Brooks
Green

Main
North
Main
North
Park
Putnam
Nassau
Spring
Alma
Sand Hill
Senator
Walnut

Harrison
Rye
Harrison
Rye
Pittsfield
Stamford
Princeton
Pittsfield
Palo Alto
Woodside
Brooklyn
Stamford

@

The loan Relation

[loan-number | branch-name | amount |

L-17
L-23
L-15
L-14
L-93
L-11
L-29
L-16
L-18
L-25
L-10

Downtown
Redwood
Perryridge
Downtown
Mianus
Round Hill
Pownal
North Town
Downtown
Perryridge
Brighton

1000
2000
1500
1500

500

900
1200
1300
2000
2500
2200

41

[]

The branch Relation

| branch-name | branch-city | assets |

Downtown | Brooklyn

Redwood Palo Alto

Perryridge | Horseneck

Mianus Horseneck

Round Hill | Horseneck

Pownal Bennington

North Town | Rye

Brighton Brooklyn

9000000
2100000
1700000

400000
8000000

300000
3700000
7100000

[]

The Relation branch-customer

branch-name |

branch-city

assets

| customer-name

Downtown
Redwood
Perryridge
Downtown
Mianus
Round Hill
Pownal
North Town
Downtown
Perryridge
Brighton

Brooklyn
Palo Alto
Horseneck
Brooklyn
Horseneck
Horseneck
Bennington
Rye
Brooklyn
Horseneck
Brooklyn

9000000
2100000
1700000
9000000

400000
8000000

300000
3700000
9000000
1700000
7100000

Jones
Smith
Hayes
Jackson
Jones
Turner
Williams
Hayes
Johnson
Glenn
Brooks

42

The Relation customer-loan

| customer-name | loan-number | amount |
Jones L-17 1000
Smith L-23 2000
Hayes L-15 1500
Jackson L-14 1500
Jones L-93 500
Turner L-11 900
Williams L-29 1200
Hayes L-16 1300
Johnson L-18 2000
Glenn L-25 2500
Brooks L-10 2200

The Relation branch-customer >< customer-loan

customer- | loan-

branch-name | branch-city assets name number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Downtown | Brooklyn 9000000 | Jones L-93 500
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge Horseneck | 1700000 | Hayes L-15 1500
Perryridge Horseneck | 1700000 | Hayes L-16 1300
Downtown | Brooklyn 9000000 | Jackson L-14 1500
Mianus Horseneck 400000 | Jones L-17 1000

Mianus Horseneck 400000 | Jones L-93 500
Round Hill | Horseneck | 8000000 | Turner L-11 900
Pownal Bennington | 300000 | Williams L-29 1200
North Town | Rye 3700000 | Hayes L-15 1500
North Town | Rye 3700000 | Hayes L-16 1300

Downtown | Brooklyn 9000000 | Johnson L-18 2000
Perryridge Horseneck | 1700000 | Glenn L-25 2500
Brighton Brooklyn 7100000 | Brooks L-10 2200

43

‘ An Instance of Banker-schema

| customer-name | banker-name | branch-name |

Jones Johnson Perryridge
Smith Johnson Perryridge
Hayes Johnson Perryridge
Jackson Johnson Perryridge
Curry Johnson Perryridge
Turner Johnson Perryridge

‘ Tabular Representation of o -— f

44

‘atlon bec: An Example of Reduncy in a BCNF Relation

| loan-number | customer-name | customer-street | customer-city |

L-23 Smith North Rye
L-23 Smith Main Manchester
L-93 Curry Lake Horseneck

‘ An lllegal be Relation

| loan-number | customer-name | customer-street | customer-city |

L-23 Smith North Rye
L-27 Smith Main Manchester

45

D

Decomposition of /loan-info

branch-name | loan-number
Round Hill L-58

loan-number amount

loan-number | customer-name

L-58 Johnson

