‘ Chapter 6: Integrity and Security

B Domain Constraints
B Referential Integrity
B Assertions

B Triggers

‘ Domain Constraints

B Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the database do
not result in a loss of data consistency.

B Domain constraints are the most elementary form of integrity
constraint.




~ Domain Constraints (Cont.)
\/

B The check clause in SQL-92 permits domains to be restricted:

* Use check clause to ensure that an hourly-wage domain allows only
values greater than a specified value.

create domain hourly-wage numeric(5,2)
constraint value-test check(value > = 4.00)

* The domain has a constraint that ensures that the hourly-wage is
greater than 4.00

* The clause constraint value-test is optional; useful to indicate which
constraint an update violated.

B Can have complex conditions in domain check

* create domain AccountType char(10)
constraint account-type-test
check (value in (‘Checking’, ‘Saving’))

* check (branch-name in (select branch-name from branch))
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~ Referential Integrity
\/

B Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another
relation.

* Example: If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

B Formal Definition

* Let ry(R;) and ry(R,) be relations with primary keys Ky and Ky
respectively.

* The subset o of R, is a foreign key referencing K in relation ry, if for
every 1ty in r, there must be a tuple ¢, in ry such that t,[Kq] = t[c].

* Referential integrity constraint also called subset dependency since its
can be written as

[T, (o) < Ty (rq)

Database System Concepts 6.4 ©Silberschatz,




‘ Referential Integrity in the E-R Model

m Consider relationship set R between entity sets £; and E,. The
relational schema for R includes the primary keys K of E; and
K, of Ej.

Then K; and K, form foreign keys on the relational schemas for
E, and E, respectively.

Checking Referential Integrity on
Database Modification

B The following tests must be made in order to preserve the
following referential integrity constraint:

I, (rp) = Mk (ry)
m Insert. If atuple t, is inserted into r,, the system must

ensure that there is a tuple #, in r; such that ,[K] = t,[o].
That is




‘/ Database Modification (Cont.)

B Update. There are two cases:

* If atuple t, is updated in relation r, and the update modifies
values for foreign key o, then a test similar to the insert case is
made. Let t,’ denote the new value of tuple £,. The system
must ensure that

‘ Referential Integrity in SQL

B Primary and candidate keys and foreign keys can be specified as
part of the SQL create table statement:

* The primary key clause of the create table statement includes a
list of the attributes that comprise the primary key.

* The unique key clause of the create table statement includes a list




‘Referential Integrity in SQL - Example

create table customer
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

‘Referential Integrity in SQL — Example (Cont.)

create table account
(account-number  char(10),
branch-name char(15),
balance integer,
primary key (account-number),




- Cascading Actions in SQL
\/

create table account

foreign key(branch-name) references branch
on delete cascade
on update cascade
-)

B Due to the on delete cascade clauses, if a delete of a tuple in
branch results in referential-integrity constraint violation, the
delete “cascades” to the account relation, deleting the tuple that
refers to the branch that was deleted.

B Cascading updates are similar.
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~ Cascading Actions in SQL (Cont.)

~

B If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each
dependency, a deletion or update at one end of the chain can
propagate across the entire chain.

B If a cascading update to delete causes a constraint violation that
cannot be handled by a further cascading operation, the system
aborts the transaction. As a result, all the changes caused by
the transaction and its cascading actions are undone.

B Referential integrity is only checked at the end of a transaction

* Intermediate steps are allowed to violate referential integrity
provided later steps remove the violation

* Otherwise it would be impossible to create some database states,
e.g. insert two tuples whose foreign keys point to each other (e
spouse attribute of relation marriedperson)
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‘ Referential Integrity in SQL (Cont.)

B Alternative to cascading:
* on delete set null
* on delete set default

B Null values in foreign key attributes complicate SQL referential
integrity semantics, and are best prevented using not null

‘ Assertions

B An assertion is a predicate expressing a condition that we wish
the database always to satisfy.

B An assertion in SQL takes the form
create assertion <assertion-name> check <predicate>

B When an assertion is made, the system tests it for validity, and




‘ Assertion Example

B The sum of all loan amounts for each branch must be less than
the sum of all account balances at the branch.

create assertion sum-constraint check
(not exists (select * from branch
where (select sum(amount) from loan

‘ Assertion Example

B Every loan has at least one borrower who maintains an account with
a minimum balance or $1000.00

create assertion balance-constraint check
(not exists (
select * from /oan




‘ Triggers

B A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

B To design a trigger mechanism, we must:
* Specify the conditions under which the trigger is to be executed.

‘ Trigger Example

B Suppose that instead of allowing negative account balances, the
bank deals with overdrafts by

* setting the account balance to zero
* creating a loan in the amount of the overdraft




£ Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number =
depositor.account-number);
insert into /oan values
(n.row.account-number, nrow.branch-name,
— nrow.balance);
update account set balance = 0
where account.account-number = nrow.account-
end

Database System Concepts 6.19

L  Triggering Events and Actions in SQL
\/

B Triggering event can be insert, delete or update
B Triggers on update can be restricted to specific attributes
* E.g. create trigger overdraft-trigger after update of balance on account

B Values of attributes before and after an update can be referenced
* referencing old row as : for deletes and updates
* referencing new row as : for inserts and updates

B Triggers can be activated before an event, which can serve as extra
constraints. E.g. convert blanks to null.

create trigger setnull-trigger before update on r
referencing new row as nrow
for each row

when nrow.phone-number = * ¢

set nrow.phone-number = null
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‘ Statement Level Triggers

B Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a single
transaction

* Use foreach statement instead of for each row

* Use referencing old table or referencing new table to refer

‘ External World Actions

B We sometimes require external world actions, such as re-ordering
an item whose quantity in a warehouse has become small, or
turning on an alarm light, to be triggered on a database update

B Triggers cannot be used to directly implement external-world
actions, BUT
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‘ External World Actions (Cont.)

create trigger reorder-trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row

when nrow.level < = (select level
from minlevel

where minlevel.item = orow.item)

‘ Triggers in MS-SQLServer Syntax

create trigger overdraft-trigger on account
for update

as

if nrow.balance < 0
begin

insert into borrower

omer-name
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‘ When Not To Use Triggers

B Triggers were used earlier for tasks such as
“ maintaining summary data (e.g. total salary of each department)

* Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process
that applies the changes over to a replica

‘ Security

B Security - protection from malicious attempts to steal or modify data.
* Database system level

v Authentication and authorization mechanisms to allow specific users
access only to required data

v We concentrate on authorization in the rest of this chapter
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‘ Security (Cont.)

* Physical level

v Physical access to computers allows destruction of data by
intruders; traditional lock-and-key security is needed

v Computers must also be protected from floods, fire, etc.

‘ Authorization

Forms of authorization on parts of the database:

B Insert authorization - allows insertion of new data, but not

B Read authorization - allows reading, but not modification of data.
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‘ Authorization (Cont.)

Forms of authorization to modify the database schema:
B Index authorization - allows creation and deletion of indices.
B Resources authorization - allows creation of new relations.

‘ Authorization and Views

B Users can be given authorization on views, without being given
any authorization on the relations used in the view definition

B Ability of views to hide data serves both to simplify usage of the
system and to enhance security by allowing users access only to
data they need for their job
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‘ View Example

B Suppose a bank clerk needs to know the names of the
customers of each branch, but is not authorized to see specific
loan information.

* Approach: Deny direct access to the loan relation, but grant access
to the view cust-loan, which consists only of the names of

‘ View Example (Cont.)

B The clerk is authorized to see the result of the query:

select *
from cust-loan

B When the query processor translates the result into a query on
the actual relations in the database, we obtain a query on
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‘ Authorization on Views

B Creation of view does not require resources authorization since
no real relation is being created

B The creator of a view gets only those privileges that provide no
additional authorization beyond that he already had.

‘ Granting of Privileges

B The passage of authorization from one user to another may be
represented by an authorization graph.

B The nodes of this graph are the users.
B The root of the graph is the database administrator.
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‘ Authorization Grant Graph

B Requirement: All edges in an authorization graph must be part of
some path originating with the database administrator

m If DBA revokes grant from U;:
* Grant must be revoked from U, since U, no longer has authorization

“* Grant must not be revoked from U, since U has another

‘ Security Specification in SQL

B The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>

B <user list> is:
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‘ Privileges in SQL

B select: allows read access to relation,or the ability to query using
the view

* Example: grant users U;, U,, and U, select authorization on the branch
relation:

grant select on branchto U,, U,, U,

‘ Privilege To Grant Privileges

B with grant option: allows a user who is granted a privilege to
pass the privilege on to other users.

* Example:

grant select on branch to U, with grant option
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[ ) Roles

B Roles permit common privileges for a class of users can be
specified just once by creating a corresponding “role”

B Privileges can be granted to or revoked from roles, just like user

B Roles can be assigned to users, and even to other roles
B SQL:1999 supports roles

‘ Revoking Authorization in SQL

B The revoke statement is used to revoke authorization.
revoke<privilege list>
on <relation name or view name> from <user list> [restrict|cascade]
B Example:
revoke select on branch from U,, U,, U, cascade
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‘Revoking Authorization in SQL (Cont.)

B <privilege-list> may be all to revoke all privileges the revokee
may hold.

B [f <revokee-list> includes public all users lose the privilege
except those granted it explicitly.

H If the same privilege was granted twice to the same user by

‘ Limitations of SQL Authorization

B SQL does not support authorization at a tuple level

* E.g. we cannot restrict students to see only (the tuples storing) their
own grades

B All end-users of an application (such as a web application) may
be mapped to a single database user
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‘ Encryption

B Data may be encrypted when database authorization provisions
do not offer sufficient protection.

B Properties of good encryption technique:
* Relatively simple for authorized users to encrypt and decrypt data.
* Encryption scheme depends not on the secrecy of the algorithm but

‘ Encryption (Cont.)

B Data Encryption Standard (DES) substitutes characters and rearranges
their order on the basis of an encryption key which is provided to
authorized users via a secure mechanism. Scheme is no more secure
than the key transmission mechanism since the key has to be shared.

B Advanced Encryption Standard (AES) is a new standard replacing DES,
and is based on the Rijndael algorithm, but is also dependent on shared
secret keys
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‘ Authentication

B Password based authentication is widely used, but is susceptible
to sniffing on a network

B Challenge-response systems avoid transmission of passwords
* DB sends a (randomly generated) challenge string to user

* User encrypts string and returns result.
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‘ Statistical Databases

B Problem: how to ensure privacy of individuals while allowing use
of data for statistical purposes (e.g., finding median income,
average bank balance etc.)

B Solutions:
* System rejects any query that involves fewer than some

‘ An n-ary Relationship Set

E;
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‘ Authorization-Grant Graph

‘Attempt to Defeat Authorization Revocation

DBA

PN

/\
U, Uyw > U,

(a)
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‘ Authorization Graph

‘ Physical Level Security

B Protection of equipment from floods, power failure, etc.
B Protection of disks from theft, erasure, physical damage, etc.

B Protection of network and terminal cables from wiretaps non-
invasive electronic eavesdropping, physical damage, etc.

Solutions:
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‘ Human Level Security

B Protection from stolen passwords, sabotage, etc.

B Primarily a management problem:

‘ Operating System Level Security

B Protection from invalid logins

B File-level access protection (often not very helpful for database
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‘ Network-Level Security

B Each site must ensure that it communicate with trusted sites (not
intruders).

‘ Database-Level Security

B Assume security at network, operating system, human, and
physical levels.

B Database specific issues:
* each user may have authority to read only part of the data and to
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