‘ Chapter 6: Integrity and Security

B Domain Constraints
B Referential Integrity
B Assertions

B Triggers

‘ Domain Constraints

B Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the database do
not result in a loss of data consistency.

B Domain constraints are the most elementary form of integrity
constraint.




~ Domain Constraints (Cont.)
\/

B The check clause in SQL-92 permits domains to be restricted:

* Use check clause to ensure that an hourly-wage domain allows only
values greater than a specified value.

create domain hourly-wage numeric(5,2)
constraint value-test check(value > = 4.00)

* The domain has a constraint that ensures that the hourly-wage is
greater than 4.00

* The clause constraint value-test is optional; useful to indicate which
constraint an update violated.

B Can have complex conditions in domain check

* create domain AccountType char(10)
constraint account-type-test
check (value in (‘Checking’, ‘Saving’))

* check (branch-name in (select branch-name from branch))

Database System Concepts 6.3

~ Referential Integrity
\/

B Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another
relation.

* Example: If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

B Formal Definition

* Let ry(R;) and ry(R,) be relations with primary keys Ky and Ky
respectively.

* The subset o of R, is a foreign key referencing K in relation ry, if for
every 1ty in r, there must be a tuple ¢, in ry such that t,[Kq] = t[c].

* Referential integrity constraint also called subset dependency since its
can be written as

[T, (o) < Ty (rq)

Database System Concepts 6.4 ©Silberschatz,




‘ Referential Integrity in the E-R Model

m Consider relationship set R between entity sets £; and E,. The
relational schema for R includes the primary keys K of E; and
K, of Ej.

Then K; and K, form foreign keys on the relational schemas for
E, and E, respectively.

Checking Referential Integrity on
Database Modification

B The following tests must be made in order to preserve the
following referential integrity constraint:

I, (rp) = Mk (ry)
m Insert. If atuple t, is inserted into r,, the system must

ensure that there is a tuple #, in r; such that ,[K] = t,[o].
That is




‘/ Database Modification (Cont.)

B Update. There are two cases:

* If atuple t, is updated in relation r, and the update modifies
values for foreign key o, then a test similar to the insert case is
made. Let t,’ denote the new value of tuple £,. The system
must ensure that

‘ Referential Integrity in SQL

B Primary and candidate keys and foreign keys can be specified as
part of the SQL create table statement:

* The primary key clause of the create table statement includes a
list of the attributes that comprise the primary key.

* The unique key clause of the create table statement includes a list




‘Referential Integrity in SQL - Example

create table customer
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

‘Referential Integrity in SQL — Example (Cont.)

create table account
(account-number  char(10),
branch-name char(15),
balance integer,
primary key (account-number),




- Cascading Actions in SQL
\/

create table account

foreign key(branch-name) references branch
on delete cascade
on update cascade
-)

B Due to the on delete cascade clauses, if a delete of a tuple in
branch results in referential-integrity constraint violation, the
delete “cascades” to the account relation, deleting the tuple that
refers to the branch that was deleted.

B Cascading updates are similar.

Database System Concepts 6.11

~ Cascading Actions in SQL (Cont.)

~

B If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each
dependency, a deletion or update at one end of the chain can
propagate across the entire chain.

B If a cascading update to delete causes a constraint violation that
cannot be handled by a further cascading operation, the system
aborts the transaction. As a result, all the changes caused by
the transaction and its cascading actions are undone.

B Referential integrity is only checked at the end of a transaction

* Intermediate steps are allowed to violate referential integrity
provided later steps remove the violation

* Otherwise it would be impossible to create some database states,
e.g. insert two tuples whose foreign keys point to each other (e
spouse attribute of relation marriedperson)

Database System Concepts 6.12 ©Silberschatz,




‘ Referential Integrity in SQL (Cont.)

B Alternative to cascading:
* on delete set null
* on delete set default

B Null values in foreign key attributes complicate SQL referential
integrity semantics, and are best prevented using not null

‘ Assertions

B An assertion is a predicate expressing a condition that we wish
the database always to satisfy.

B An assertion in SQL takes the form
create assertion <assertion-name> check <predicate>

B When an assertion is made, the system tests it for validity, and




‘ Assertion Example

B The sum of all loan amounts for each branch must be less than
the sum of all account balances at the branch.

create assertion sum-constraint check
(not exists (select * from branch
where (select sum(amount) from loan

‘ Assertion Example

B Every loan has at least one borrower who maintains an account with
a minimum balance or $1000.00

create assertion balance-constraint check
(not exists (
select * from /oan




‘ Triggers

B A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

B To design a trigger mechanism, we must:
* Specify the conditions under which the trigger is to be executed.

‘ Trigger Example

B Suppose that instead of allowing negative account balances, the
bank deals with overdrafts by

* setting the account balance to zero
* creating a loan in the amount of the overdraft




£ Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number =
depositor.account-number);
insert into /oan values
(n.row.account-number, nrow.branch-name,
— nrow.balance);
update account set balance = 0
where account.account-number = nrow.account-
end

Database System Concepts 6.19

L  Triggering Events and Actions in SQL
\/

B Triggering event can be insert, delete or update
B Triggers on update can be restricted to specific attributes
* E.g. create trigger overdraft-trigger after update of balance on account

B Values of attributes before and after an update can be referenced
* referencing old row as : for deletes and updates
* referencing new row as : for inserts and updates

B Triggers can be activated before an event, which can serve as extra
constraints. E.g. convert blanks to null.

create trigger setnull-trigger before update on r
referencing new row as nrow
for each row

when nrow.phone-number = * ¢

set nrow.phone-number = null

Database System Concepts 6.20 ©Silberschatz,

10



‘ Statement Level Triggers

B Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a single
transaction

* Use foreach statement instead of for each row

* Use referencing old table or referencing new table to refer

‘ External World Actions

B We sometimes require external world actions, such as re-ordering
an item whose quantity in a warehouse has become small, or
turning on an alarm light, to be triggered on a database update

B Triggers cannot be used to directly implement external-world
actions, BUT

11



‘ External World Actions (Cont.)

create trigger reorder-trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row

when nrow.level < = (select level
from minlevel

where minlevel.item = orow.item)

‘ Triggers in MS-SQLServer Syntax

create trigger overdraft-trigger on account
for update

as

if nrow.balance < 0
begin

insert into borrower

omer-name

12



‘ When Not To Use Triggers

B Triggers were used earlier for tasks such as
“ maintaining summary data (e.g. total salary of each department)

* Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process
that applies the changes over to a replica

‘ Security

B Security - protection from malicious attempts to steal or modify data.
* Database system level

v Authentication and authorization mechanisms to allow specific users
access only to required data

v We concentrate on authorization in the rest of this chapter

13



‘ Security (Cont.)

* Physical level

v Physical access to computers allows destruction of data by
intruders; traditional lock-and-key security is needed

v Computers must also be protected from floods, fire, etc.

‘ Authorization

Forms of authorization on parts of the database:

B Insert authorization - allows insertion of new data, but not

B Read authorization - allows reading, but not modification of data.

14



‘ Authorization (Cont.)

Forms of authorization to modify the database schema:
B Index authorization - allows creation and deletion of indices.
B Resources authorization - allows creation of new relations.

‘ Authorization and Views

B Users can be given authorization on views, without being given
any authorization on the relations used in the view definition

B Ability of views to hide data serves both to simplify usage of the
system and to enhance security by allowing users access only to
data they need for their job

15



‘ View Example

B Suppose a bank clerk needs to know the names of the
customers of each branch, but is not authorized to see specific
loan information.

* Approach: Deny direct access to the loan relation, but grant access
to the view cust-loan, which consists only of the names of

‘ View Example (Cont.)

B The clerk is authorized to see the result of the query:

select *
from cust-loan

B When the query processor translates the result into a query on
the actual relations in the database, we obtain a query on

16



‘ Authorization on Views

B Creation of view does not require resources authorization since
no real relation is being created

B The creator of a view gets only those privileges that provide no
additional authorization beyond that he already had.

‘ Granting of Privileges

B The passage of authorization from one user to another may be
represented by an authorization graph.

B The nodes of this graph are the users.
B The root of the graph is the database administrator.

17



‘ Authorization Grant Graph

B Requirement: All edges in an authorization graph must be part of
some path originating with the database administrator

m If DBA revokes grant from U;:
* Grant must be revoked from U, since U, no longer has authorization

“* Grant must not be revoked from U, since U has another

‘ Security Specification in SQL

B The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>

B <user list> is:

18



‘ Privileges in SQL

B select: allows read access to relation,or the ability to query using
the view

* Example: grant users U;, U,, and U, select authorization on the branch
relation:

grant select on branchto U,, U,, U,

‘ Privilege To Grant Privileges

B with grant option: allows a user who is granted a privilege to
pass the privilege on to other users.

* Example:

grant select on branch to U, with grant option

19



[ ) Roles

B Roles permit common privileges for a class of users can be
specified just once by creating a corresponding “role”

B Privileges can be granted to or revoked from roles, just like user

B Roles can be assigned to users, and even to other roles
B SQL:1999 supports roles

‘ Revoking Authorization in SQL

B The revoke statement is used to revoke authorization.
revoke<privilege list>
on <relation name or view name> from <user list> [restrict|cascade]
B Example:
revoke select on branch from U,, U,, U, cascade

20



‘Revoking Authorization in SQL (Cont.)

B <privilege-list> may be all to revoke all privileges the revokee
may hold.

B [f <revokee-list> includes public all users lose the privilege
except those granted it explicitly.

H If the same privilege was granted twice to the same user by

‘ Limitations of SQL Authorization

B SQL does not support authorization at a tuple level

* E.g. we cannot restrict students to see only (the tuples storing) their
own grades

B All end-users of an application (such as a web application) may
be mapped to a single database user

21



‘ Encryption

B Data may be encrypted when database authorization provisions
do not offer sufficient protection.

B Properties of good encryption technique:
* Relatively simple for authorized users to encrypt and decrypt data.
* Encryption scheme depends not on the secrecy of the algorithm but

‘ Encryption (Cont.)

B Data Encryption Standard (DES) substitutes characters and rearranges
their order on the basis of an encryption key which is provided to
authorized users via a secure mechanism. Scheme is no more secure
than the key transmission mechanism since the key has to be shared.

B Advanced Encryption Standard (AES) is a new standard replacing DES,
and is based on the Rijndael algorithm, but is also dependent on shared
secret keys

22



‘ Authentication

B Password based authentication is widely used, but is susceptible
to sniffing on a network

B Challenge-response systems avoid transmission of passwords
* DB sends a (randomly generated) challenge string to user

* User encrypts string and returns result.

23



‘ Statistical Databases

B Problem: how to ensure privacy of individuals while allowing use
of data for statistical purposes (e.g., finding median income,
average bank balance etc.)

B Solutions:
* System rejects any query that involves fewer than some

‘ An n-ary Relationship Set

E;

24



‘ Authorization-Grant Graph

‘Attempt to Defeat Authorization Revocation

DBA

PN

/\
U, Uyw > U,

(a)

25



‘ Authorization Graph

‘ Physical Level Security

B Protection of equipment from floods, power failure, etc.
B Protection of disks from theft, erasure, physical damage, etc.

B Protection of network and terminal cables from wiretaps non-
invasive electronic eavesdropping, physical damage, etc.

Solutions:

26



‘ Human Level Security

B Protection from stolen passwords, sabotage, etc.

B Primarily a management problem:

‘ Operating System Level Security

B Protection from invalid logins

B File-level access protection (often not very helpful for database

27



‘ Network-Level Security

B Each site must ensure that it communicate with trusted sites (not
intruders).

‘ Database-Level Security

B Assume security at network, operating system, human, and
physical levels.

B Database specific issues:
* each user may have authority to read only part of the data and to

28



