
©Silberschatz, Korth and Sudarshan3.1Database System Concepts

Chapter 3: Relational ModelChapter 3: Relational Model

� Structure of Relational Databases

� Relational Algebra

� Tuple Relational Calculus

� Domain Relational Calculus

� Extended Relational-Algebra-Operations

� Modification of the Database

� Views

©Silberschatz, Korth and Sudarshan3.2Database System Concepts

Example of a RelationExample of a Relation

©Silberschatz, Korth and Sudarshan3.3Database System Concepts

Basic StructureBasic Structure

� Formally, given sets D1, D2, …. Dn a relation r is a subset of
D1 x D2 x … x Dn

Thus a relation is a set of n-tuples (a1, a2, …, an) where
ai ∈ Di

� Example: if

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

Then r = { (Jones, Main, Harrison),
 (Smith, North, Rye),
 (Curry, North, Rye),
 (Lindsay, Park, Pittsfield)}
 is a relation over customer-name x customer-street x customer-city

©Silberschatz, Korth and Sudarshan3.4Database System Concepts

Attribute TypesAttribute Types

� Each attribute of a relation has a name

� The set of allowed values for each attribute is called the domain
of the attribute

� Attribute values are (normally) required to be atomic, that is,
indivisible

� E.g. multivalued attribute values are not atomic

� E.g. composite attribute values are not atomic

� The special value null is a member of every domain

� The null value causes complications in the definition of many
operations

� we shall ignore the effect of null values in our main presentation
and consider their effect later

©Silberschatz, Korth and Sudarshan3.5Database System Concepts

Relation SchemaRelation Schema

� A1, A2, …, An are attributes

� R = (A1, A2, …, An) is a relation schema

E.g. Customer-schema =
 (customer-name, customer-street, customer-city)

� r(R) is a relation on the relation schema R

E.g. customer (Customer-schema)

©Silberschatz, Korth and Sudarshan3.6Database System Concepts

Relation InstanceRelation Instance
� The current values (relation instance) of a relation are

specified by a table

� An element t of r is a tuple, represented by a row in a table

Jones
Smith
Curry

Lindsay

customer-name

Main
North
North
Park

customer-street

Harrison
Rye
Rye

Pittsfield

customer-city

customer

attributes

tuples

©Silberschatz, Korth and Sudarshan3.7Database System Concepts

Relations are UnorderedRelations are Unordered

� Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

� E.g. account relation with unordered tuples

©Silberschatz, Korth and Sudarshan3.8Database System Concepts

DatabaseDatabase

� A database consists of multiple relations

� Information about an enterprise is broken up into parts, with each
relation storing one part of the information

E.g.: account : stores information about accounts
 depositor : stores information about which customer
 owns which account
 customer : stores information about customers

� Storing all information as a single relation such as
 bank(account-number, balance, customer-name, ..)
results in
� repetition of information (e.g. two customers own an account)

� the need for null values (e.g. represent a customer without an
account)

� Normalization theory (Chapter 7) deals with how to design
relational schemas

©Silberschatz, Korth and Sudarshan3.9Database System Concepts

The The customer customer RelationRelation

©Silberschatz, Korth and Sudarshan3.10Database System Concepts

The The depositor depositor RelationRelation

©Silberschatz, Korth and Sudarshan3.11Database System Concepts

E-R Diagram for the Banking EnterpriseE-R Diagram for the Banking Enterprise

©Silberschatz, Korth and Sudarshan3.12Database System Concepts

KeysKeys

� Let K ⊆ R

� K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R) by “possible r” we
mean a relation r that could exist in the enterprise we are
modeling.
Example: {customer-name, customer-street} and
 {customer-name}
are both superkeys of Customer, if no two customers can
possibly have the same name.

� K is a candidate key if K is minimal
Example: {customer-name} is a candidate key for Customer,
since it is a superkey {assuming no two customers can possibly
have the same name), and no subset of it is a superkey.

©Silberschatz, Korth and Sudarshan3.13Database System Concepts

Determining Keys from E-R SetsDetermining Keys from E-R Sets

� Strong entity set. The primary key of the entity set becomes
the primary key of the relation.

� Weak entity set. The primary key of the relation consists of the
union of the primary key of the strong entity set and the
discriminator of the weak entity set.

� Relationship set. The union of the primary keys of the related
entity sets becomes a super key of the relation.

� For binary many-to-one relationship sets, the primary key of the
“many” entity set becomes the relation’s primary key.

� For one-to-one relationship sets, the relation’s primary key can be
that of either entity set.

� For many-to-many relationship sets, the union of the primary keys
becomes the relation’s primary key

©Silberschatz, Korth and Sudarshan3.14Database System Concepts

Schema Diagram for the Banking EnterpriseSchema Diagram for the Banking Enterprise

©Silberschatz, Korth and Sudarshan3.15Database System Concepts

Query LanguagesQuery Languages

� Language in which user requests information from the database.

� Categories of languages

� procedural

� non-procedural

� “Pure” languages:

� Relational Algebra

� Tuple Relational Calculus

� Domain Relational Calculus

� Pure languages form underlying basis of query languages that
people use.

©Silberschatz, Korth and Sudarshan3.16Database System Concepts

Relational AlgebraRelational Algebra

� Procedural language

� Six basic operators

� select

� project

� union

� set difference

� Cartesian product

� rename

� The operators take two or more relations as inputs and give a
new relation as a result.

©Silberschatz, Korth and Sudarshan3.17Database System Concepts

Select Operation – ExampleSelect Operation – Example

• Relation r A B C D

α

α

β

β

α

β

β

β

1

5

12

23

7

7

3

10

• σA=B ^ D > 5 (r)
A B C D

α

β

α

β

1

23

7

10

©Silberschatz, Korth and Sudarshan3.18Database System Concepts

Select OperationSelect Operation

� Notation: σ p(r)
� p is called the selection predicate

� Defined as:

 σp(r) = {t | t ∈ r and p(t)}

Where p is a formula in propositional calculus consisting
of terms connected by : ∧ (and), ∨ (or), ¬ (not)
Each term is one of:

<attribute> op <attribute> or <constant>

 where op is one of: =, ≠, >, ≥. <. ≤
� Example of selection:

 σ branch-name=“Perryridge”(account)

©Silberschatz, Korth and Sudarshan3.19Database System Concepts

Project Operation – ExampleProject Operation – Example

� Relation r: A B C

α

α

β

β

10

20

30

40

1

1

1

2

A C

α

α

β

β

1

1

1

2

=

A C

α

β

β

1

1

2

� ∏A,C (r)

©Silberschatz, Korth and Sudarshan3.20Database System Concepts

Project OperationProject Operation

� Notation:

∏A1, A2, …, Ak (r)

where A1, A2 are attribute names and r is a relation name.

� The result is defined as the relation of k columns obtained by
erasing the columns that are not listed

� Duplicate rows removed from result, since relations are sets

� E.g. To eliminate the branch-name attribute of account
 ∏account-number, balance (account)

©Silberschatz, Korth and Sudarshan3.21Database System Concepts

Union Operation – ExampleUnion Operation – Example

� Relations r, s:

 r ∪ s:

A B

α

α

β

1

2

1

A B

α

β

2

3

r
s

A B

α

α

β

β

1

2

1

3

©Silberschatz, Korth and Sudarshan3.22Database System Concepts

Union OperationUnion Operation

� Notation: r ∪ s

� Defined as:

r ∪ s = {t | t ∈ r or t ∈ s}

� For r ∪ s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd column
 of r deals with the same type of values as does the 2nd
 column of s)

� E.g. to find all customers with either an account or a loan
 ∏customer-name (depositor) ∪ ∏customer-name (borrower)

©Silberschatz, Korth and Sudarshan3.23Database System Concepts

Set Difference Operation – ExampleSet Difference Operation – Example

� Relations r, s:

r – s:

A B

α

α

β

1

2

1

A B

α

β

2

3

r
s

A B

α

β

1

1

©Silberschatz, Korth and Sudarshan3.24Database System Concepts

Set Difference OperationSet Difference Operation

� Notation r – s

� Defined as:

 r – s = {t | t ∈ r and t ∉ s}

� Set differences must be taken between compatible relations.

� r and s must have the same arity

� attribute domains of r and s must be compatible

©Silberschatz, Korth and Sudarshan3.25Database System Concepts

Cartesian-Product Operation-ExampleCartesian-Product Operation-Example

Relations r, s:

r x s:

A B

α

β

1

2

A B

α
α
α
α
β
β
β
β

1
1
1
1
2
2
2
2

C D

α
β
β
γ
α
β
β
γ

10
19
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

C D

α
β
β
γ

10
10
20
10

E

a
a
b
br

s

©Silberschatz, Korth and Sudarshan3.26Database System Concepts

Cartesian-Product OperationCartesian-Product Operation

� Notation r x s

� Defined as:

r x s = {t q | t ∈ r and q ∈ s}

� Assume that attributes of r(R) and s(S) are disjoint. (That is,
R ∩ S = ∅).

� If attributes of r(R) and s(S) are not disjoint, then renaming must
be used.

©Silberschatz, Korth and Sudarshan3.27Database System Concepts

Composition of OperationsComposition of Operations

� Can build expressions using multiple operations

� Example: σA=C(r x s)

� r x s

� σA=C(r x s)

A B

α
α
α
α
β
β
β
β

1
1
1
1
2
2
2
2

C D

α
β
β
γ
α
β
β
γ

10
19
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B C D E

α
β
β

1
2
2

α
β
β

10
20
20

a
a
b

©Silberschatz, Korth and Sudarshan3.28Database System Concepts

Rename OperationRename Operation

� Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.

� Allows us to refer to a relation by more than one name.

Example:

 ρ x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

 ρx (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.

©Silberschatz, Korth and Sudarshan3.29Database System Concepts

Banking ExampleBanking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan3.30Database System Concepts

Example QueriesExample Queries

� Find all loans of over $1200

 σamount > 1200 (loan)
� Find the loan number for each loan of an amount greater than

$1200

 ∏loan-number (σamount > 1200 (loan))

©Silberschatz, Korth and Sudarshan3.31Database System Concepts

Example QueriesExample Queries

� Find the names of all customers who have a loan, an account, or
both, from the bank

∏customer-name (borrower) ∪ ∏customer-name (depositor)

� Find the names of all customers who have a loan and an account
at bank.

∏customer-name (borrower) ∩ ∏customer-name (depositor)

©Silberschatz, Korth and Sudarshan3.32Database System Concepts

Example QueriesExample Queries

� Find the names of all customers who have a loan at the Perryridge
branch.

 ∏customer-name (σbranch-name=“Perryridge”

 (σborrower.loan-number = loan.loan-number(borrower x loan)))
� Find the names of all customers who have a loan at the Perryridge

branch but do not have an account at any branch of the bank.

 ∏customer-name (σbranch-name = “Perryridge”

 (σborrower.loan-number = loan.loan-number(borrower x loan)))

 – ∏customer-name(depositor)

©Silberschatz, Korth and Sudarshan3.33Database System Concepts

Example QueriesExample Queries

� Find the names of all customers who have a loan at the Perryridge
branch.

− Query 1

 ∏customer-name(σbranch-name = “Perryridge”

 (σborrower.loan-number = loan.loan-number(borrower x loan)))
 − Query 2

 ∏customer-name(σloan.loan-number = borrower.loan-number(
 (σbranch-name = “Perryridge”(loan)) x
 borrower)
)

©Silberschatz, Korth and Sudarshan3.34Database System Concepts

Example QueriesExample Queries

Find the largest account balance

� Rename account relation as d

� The query is:

 ∏balance(account) - ∏account.balance

 (σaccount.balance < d.balance (account x ρd (account)))

©Silberschatz, Korth and Sudarshan3.35Database System Concepts

Formal DefinitionFormal Definition

� A basic expression in the relational algebra consists of either one
of the following:
� A relation in the database

� A constant relation

� Let E1 and E2 be relational-algebra expressions; the following are
all relational-algebra expressions:
� E1 ∪ E2
� E1 - E2
� E1 x E2
� σp (E1), P is a predicate on attributes in E1
� ∏s(E1), S is a list consisting of some of the attributes in E1

� ρ x (E1), x is the new name for the result of E1

©Silberschatz, Korth and Sudarshan3.36Database System Concepts

Additional OperationsAdditional Operations

We define additional operations that do not add any power to the

relational algebra, but that simplify common queries.

� Set intersection

� Natural join

� Division

� Assignment

©Silberschatz, Korth and Sudarshan3.37Database System Concepts

Set-Intersection OperationSet-Intersection Operation

� Notation: r ∩ s

� Defined as:

� r ∩ s ={ t | t ∈ r and t ∈ s }

� Assume:

� r, s have the same arity

� attributes of r and s are compatible

� Note: r ∩ s = r - (r - s)

©Silberschatz, Korth and Sudarshan3.38Database System Concepts

Set-Intersection Operation - ExampleSet-Intersection Operation - Example

� Relation r, s:

� r ∩ s

A B

α
α
β

1
2
1

A B

α
β

2
3

r s

A B

α 2

©Silberschatz, Korth and Sudarshan3.39Database System Concepts

Natural-Join OperationNatural-Join Operation

� Notation: r s

� Let r and s be relations on schemas R and S respectively.The result is a
relation on schema R ∪ S which is obtained by considering each pair of
tuples tr from r and ts from s.

� If tr and ts have the same value on each of the attributes in R ∩ S, a tuple t
is added to the result, where

� t has the same value as tr on r

� t has the same value as ts on s

� Example:

R = (A, B, C, D)

S = (E, B, D)

� Result schema = (A, B, C, D, E)

� r s is defined as:

∏r.A, r.B, r.C, r.D, s.E (σr.B = s.B r.D = s.D (r x s))

©Silberschatz, Korth and Sudarshan3.40Database System Concepts

Natural Join Operation – ExampleNatural Join Operation – Example

� Relations r, s:

A B

α
β
γ
α
δ

1
2
4
1
2

C D

α
γ
β
γ
β

a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E

α
β
γ
δ
∈

r

A B

α
α
α
α
δ

1
1
1
1
2

C D

α
α
γ
γ
β

a
a
a
a
b

E

α
γ
α
γ
δ

s

r s

©Silberschatz, Korth and Sudarshan3.41Database System Concepts

Division OperationDivision Operation

� Suited to queries that include the phrase “for all”.

� Let r and s be relations on schemas R and S respectively
where
� R = (A1, …, Am, B1, …, Bn)

� S = (B1, …, Bn)

The result of r ÷ s is a relation on schema

R – S = (A1, …, Am)

r ÷ s = { t | t ∈ ∏ R-S(r) ∧ ∀ u ∈ s (tu ∈ r) }

r ÷ s

©Silberschatz, Korth and Sudarshan3.42Database System Concepts

Division Operation – ExampleDivision Operation – Example

Relations r, s:

r ÷ s: A

B

α

β

1

2

A B

α
α
α
β
γ
δ
δ
δ
∈
∈
β

1
2
3
1
1
1
3
4
6
1
2

r

s

©Silberschatz, Korth and Sudarshan3.43Database System Concepts

Another Division ExampleAnother Division Example

A B

α
α
α
β
β
γ
γ
γ

a
a
a
a
a
a
a
a

C D

α
γ
γ
γ
γ
γ
γ
β

a
a
b
a
b
a
b
b

E

1
1
1
1
3
1
1
1

Relations r, s:

r ÷ s:

D

a
b

E

1
1

A B

α
γ

a
a

C

γ
γ

r

s

©Silberschatz, Korth and Sudarshan3.44Database System Concepts

Division Operation (Cont.)Division Operation (Cont.)

� Property
� Let q – r ÷ s

� Then q is the largest relation satisfying q x s ⊆ r

� Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S ⊆ R

r ÷ s = ∏R-S (r) –∏R-S ((∏R-S (r) x s) – ∏R-S,S(r))

To see why
� ∏R-S,S(r) simply reorders attributes of r

� ∏R-S(∏R-S (r) x s) – ∏R-S,S(r)) gives those tuples t in

 ∏R-S (r) such that for some tuple u ∈ s, tu ∉ r.

©Silberschatz, Korth and Sudarshan3.45Database System Concepts

Assignment OperationAssignment Operation

� The assignment operation (←) provides a convenient way to
express complex queries, write query as a sequential program
consisting of a series of assignments followed by an expression
whose value is displayed as a result of the query.

� Assignment must always be made to a temporary relation
variable.

� Example: Write r ÷ s as

temp1 ← ∏R-S (r)

temp2 ← ∏R-S ((temp1 x s) – ∏R-S,S (r))

result = temp1 – temp2

� The result to the right of the ← is assigned to the relation variable on

the left of the ←.

� May use variable in subsequent expressions.

©Silberschatz, Korth and Sudarshan3.46Database System Concepts

Example QueriesExample Queries

� Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.

� Query 1

 ∏CN(σBN=“Downtown”(depositor account)) ∩

 ∏CN(σBN=“Uptown”(depositor account))

where CN denotes customer-name and BN denotes

branch-name.

� Query 2

 ∏customer-name, branch-name (depositor account)

÷ ρtemp(branch-name) ({(“Downtown”), (“Uptown”)})

©Silberschatz, Korth and Sudarshan3.47Database System Concepts

� Find all customers who have an account at all branches located
in Brooklyn city.

 ∏customer-name, branch-name (depositor account)
÷ ∏branch-name (σbranch-city = “Brooklyn” (branch))

Example QueriesExample Queries

©Silberschatz, Korth and Sudarshan3.48Database System Concepts

Extended Relational-Algebra-OperationsExtended Relational-Algebra-Operations

� Generalized Projection

� Outer Join

� Aggregate Functions

©Silberschatz, Korth and Sudarshan3.49Database System Concepts

Generalized ProjectionGeneralized Projection

� Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

∏ F1, F2, …, Fn(E)

� E is any relational-algebra expression

� Each of F1, F2, …, Fn are are arithmetic expressions involving
constants and attributes in the schema of E.

� Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

∏customer-name, limit – credit-balance (credit-info)

©Silberschatz, Korth and Sudarshan3.50Database System Concepts

Aggregate Functions and OperationsAggregate Functions and Operations

� Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

� Aggregate operation in relational algebra

G1, G2, …, Gn g F1(A1), F2(A2),…, Fn(An) (E)

� E is any relational-algebra expression

� G1, G2 …, Gn is a list of attributes on which to group (can be empty)

� Each Fi is an aggregate function

� Each Ai is an attribute name

©Silberschatz, Korth and Sudarshan3.51Database System Concepts

Aggregate Operation – ExampleAggregate Operation – Example

� Relation r:

A B

α
α
β
β

α
β
β
β

C

7

7

3

10

g sum(c) (r)
sum-C

27

©Silberschatz, Korth and Sudarshan3.52Database System Concepts

Aggregate Operation – ExampleAggregate Operation – Example

� Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name balance

Perryridge
Brighton
Redwood

1300
1500
700

©Silberschatz, Korth and Sudarshan3.53Database System Concepts

Aggregate Functions (Cont.)Aggregate Functions (Cont.)

� Result of aggregation does not have a name

� Can use rename operation to give it a name

� For convenience, we permit renaming as part of aggregate
operation

branch-name g sum(balance) as sum-balance (account)

©Silberschatz, Korth and Sudarshan3.54Database System Concepts

Outer JoinOuter Join

� An extension of the join operation that avoids loss of information.

� Computes the join and then adds tuples form one relation that
does not match tuples in the other relation to the result of the
join.

� Uses null values:

� null signifies that the value is unknown or does not exist

� All comparisons involving null are (roughly speaking) false by
definition.

✔ Will study precise meaning of comparisons with nulls later

©Silberschatz, Korth and Sudarshan3.55Database System Concepts

Outer Join – ExampleOuter Join – Example

� Relation loan

loan-number amount

L-170
L-230
L-260

3000
4000
1700

� Relation borrower

customer-name loan-number

Jones
Smith
Hayes

L-170
L-230
L-155

branch-name

Downtown
Redwood
Perryridge

©Silberschatz, Korth and Sudarshan3.56Database System Concepts

Outer Join – ExampleOuter Join – Example

� Inner Join

loan Borrower

loan borrower
� Left Outer Join

loan-number amount

L-170
L-230

3000
4000

customer-name

Jones
Smith

branch-name

Downtown
Redwood

loan-number amount

L-170
L-230
L-260

3000
4000
1700

customer-name

Jones
Smith
null

branch-name

Downtown
Redwood
Perryridge

©Silberschatz, Korth and Sudarshan3.57Database System Concepts

Outer Join – ExampleOuter Join – Example

� Right Outer Join
 loan borrower

loan-number amount

L-170
L-230
L-155

3000
4000
null

customer-name

Jones
Smith
Hayes

loan-number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name

Jones
Smith
null
Hayes

loan borrower
� Full Outer Join

branch-name

Downtown
Redwood
null

branch-name

Downtown
Redwood
Perryridge
null

©Silberschatz, Korth and Sudarshan3.58Database System Concepts

Null ValuesNull Values

� It is possible for tuples to have a null value, denoted by null, for
some of their attributes

� null signifies an unknown value or that a value does not exist.

� The result of any arithmetic expression involving null is null.

� Aggregate functions simply ignore null values

� Is an arbitrary decision. Could have returned null as result instead.

� We follow the semantics of SQL in its handling of null values

� For duplicate elimination and grouping, null is treated like any
other value, and two nulls are assumed to be the same

� Alternative: assume each null is different from each other

� Both are arbitrary decisions, so we simply follow SQL

©Silberschatz, Korth and Sudarshan3.59Database System Concepts

Null ValuesNull Values

� Comparisons with null values return the special truth value
unknown
� If false was used instead of unknown, then not (A < 5)

 would not be equivalent to A >= 5

� Three-valued logic using the truth value unknown:
� OR: (unknown or true) = true,

 (unknown or false) = unknown
 (unknown or unknown) = unknown

� AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

� NOT: (not unknown) = unknown

� In SQL “P is unknown” evaluates to true if predicate P evaluates
to unknown

� Result of select predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.60Database System Concepts

Modification of the DatabaseModification of the Database

� The content of the database may be modified using the following
operations:

� Deletion

� Insertion

� Updating

� All these operations are expressed using the assignment
operator.

©Silberschatz, Korth and Sudarshan3.61Database System Concepts

DeletionDeletion

� A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.

� Can delete only whole tuples; cannot delete values on only
particular attributes

� A deletion is expressed in relational algebra by:

r ← r – E

where r is a relation and E is a relational algebra query.

©Silberschatz, Korth and Sudarshan3.62Database System Concepts

Deletion ExamplesDeletion Examples

� Delete all account records in the Perryridge branch.

account ← account – σ branch-name = “Perryridge” (account)

� Delete all loan records with amount in the range of 0 to 50

loan ← loan – σ amount ≥ 0 and amount ≤ 50 (loan)

� Delete all accounts at branches located in Needham.

r1 ← σ branch-city = “Needham” (account branch)

r2 ← ∏branch-name, account-number, balance (r1)

r3 ← ∏ customer-name, account-number (r2 depositor)

account ← account – r2

depositor ← depositor – r3

©Silberschatz, Korth and Sudarshan3.63Database System Concepts

InsertionInsertion

� To insert data into a relation, we either:

� specify a tuple to be inserted

� write a query whose result is a set of tuples to be inserted

� in relational algebra, an insertion is expressed by:

r ← r ∪ E

where r is a relation and E is a relational algebra expression.

� The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

©Silberschatz, Korth and Sudarshan3.64Database System Concepts

Insertion ExamplesInsertion Examples

� Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account ← account ∪ {(“Perryridge”, A-973, 1200)}

depositor ← depositor ∪ {(“Smith”, A-973)}

� Provide as a gift for all loan customers in the Perryridge branch,
a $200 savings account. Let the loan number serve as the
account number for the new savings account.

r1 ← (σbranch-name = “Perryridge” (borrower loan))

account ← account ∪ ∏branch-name, account-number,200 (r1)

depositor ← depositor ∪ ∏customer-name, loan-number,(r1)

©Silberschatz, Korth and Sudarshan3.65Database System Concepts

UpdatingUpdating

� A mechanism to change a value in a tuple without charging all
values in the tuple

� Use the generalized projection operator to do this task

r ← ∏ F1, F2, …, FI, (r)

� Each F, is either the ith attribute of r, if the ith attribute is not
updated, or, if the attribute is to be updated

� Fi is an expression, involving only constants and the attributes of
r, which gives the new value for the attribute

©Silberschatz, Korth and Sudarshan3.66Database System Concepts

Update ExamplesUpdate Examples

� Make interest payments by increasing all balances by 5 percent.

account ← ∏ AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

� Pay all accounts with balances over $10,000
6 percent interest and pay all others 5 percent

account ← ∏ AN, BN, BAL * 1.06 (σ BAL > 10000 (account))
 ∪ ∏AN, BN, BAL * 1.05 (σBAL ≤ 10000 (account))

©Silberschatz, Korth and Sudarshan3.67Database System Concepts

ViewsViews

� In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the database.)

� Consider a person who needs to know a customer’s loan number
but has no need to see the loan amount. This person should see
a relation described, in the relational algebra, by

∏customer-name, loan-number (borrower loan)

� Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan3.68Database System Concepts

View DefinitionView Definition

� A view is defined using the create view statement which has the
form

create view v as <query expression

where <query expression> is any legal relational algebra query
expression. The view name is represented by v.

� Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

� View definition is not the same as creating a new relation by
evaluating the query expression Rather, a view definition causes
the saving of an expression to be substituted into queries using
the view.

©Silberschatz, Korth and Sudarshan3.69Database System Concepts

View ExamplesView Examples

� Consider the view (named all-customer) consisting of branches
and their customers.

create view all-customer as

∏branch-name, customer-name (depositor account)

∪ ∏branch-name, customer-name (borrower loan)

� We can find all customers of the Perryridge branch by writing:

 ∏branch-name

(σbranch-name = “Perryridge” (all-customer))

©Silberschatz, Korth and Sudarshan3.70Database System Concepts

Updates Through ViewUpdates Through View

� Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

� Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person, branch-
loan, is defined as:

create view branch-loan as

∏branch-name, loan-number (loan)

� Since we allow a view name to appear wherever a relation name
is allowed, the person may write:

branch-loan ← branch-loan ∪ {(“Perryridge”, L-37)}

©Silberschatz, Korth and Sudarshan3.71Database System Concepts

Updates Through Views (Cont.)Updates Through Views (Cont.)

� The previous insertion must be represented by an insertion into
the actual relation loan from which the view branch-loan is
constructed.

� An insertion into loan requires a value for amount. The insertion
can be dealt with by either.
� rejecting the insertion and returning an error message to the user.

� inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

� Some updates through views are impossible to translate into
database relation updates

� create view v as σbranch-name = “Perryridge” (account))

 v ← v ∪ (L-99, Downtown, 23)

� Others cannot be translated uniquely
� all-customer ← all-customer ∪ (Perryridge, John)

✔ Have to choose loan or account, and
create a new loan/account number!

©Silberschatz, Korth and Sudarshan3.72Database System Concepts

Views Defined Using Other ViewsViews Defined Using Other Views

� One view may be used in the expression defining another view

� A view relation v1 is said to depend directly on a view relation v2
if v2 is used in the expression defining v1

� A view relation v1 is said to depend on view relation v2 if either v1

depends directly to v2 or there is a path of dependencies from
v1 to v2

� A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan3.73Database System Concepts

View ExpansionView Expansion

� A way to define the meaning of views defined in terms of other
views.

� Let view v1 be defined by an expression e1 that may itself contain
uses of view relations.

� View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1
Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

� As long as the view definitions are not recursive, this loop will
terminate

©Silberschatz, Korth and Sudarshan3.74Database System Concepts

Tuple Relational CalculusTuple Relational Calculus

� A nonprocedural query language, where each query is of the form

{t | P (t) }

� It is the set of all tuples t such that predicate P is true for t

� t is a tuple variable, t[A] denotes the value of tuple t on attribute A

� t ∈ r denotes that tuple t is in relation r

� P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.75Database System Concepts

Predicate Calculus FormulaPredicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., <, ≤, =, ≠, >, ≥)

3. Set of connectives: and (∧), or (v)‚ not (¬)

4. Implication (�): x � y, if x if true, then y is true

x � y ≡ ¬x v y

5. Set of quantifiers:

� ∃ t ∈ r (Q(t)) ≡ ”there exists” a tuple in t in relation r
 such that predicate Q(t) is true

� ∀t ∈ r (Q(t)) ≡ Q is true “for all” tuples t in relation r

©Silberschatz, Korth and Sudarshan3.76Database System Concepts

Banking ExampleBanking Example

� branch (branch-name, branch-city, assets)

� customer (customer-name, customer-street, customer-city)

� account (account-number, branch-name, balance)

� loan (loan-number, branch-name, amount)

� depositor (customer-name, account-number)

� borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan3.77Database System Concepts

Example QueriesExample Queries

� Find the loan-number, branch-name, and amount for loans of
over $1200

{t | t ∈ loan ∧ t [amount] > 1200}

� Find the loan number for each loan of an amount greater than
$1200

{t | ∃ s ∈ loan (t[loan-number] = s[loan-number]
∧ s [amount] > 1200}

Notice that a relation on schema [customer-name] is implicitly
defined by the query

©Silberschatz, Korth and Sudarshan3.78Database System Concepts

Example QueriesExample Queries

� Find the names of all customers having a loan, an account, or
both at the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
 ∨ ∃u ∈ depositor(t[customer-name] = u[customer-name])

� Find the names of all customers who have a loan and an account
at the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
 ∧ ∃u ∈ depositor(t[customer-name] = u[customer-name])

©Silberschatz, Korth and Sudarshan3.79Database System Concepts

Example QueriesExample Queries

� Find the names of all customers having a loan at the Perryridge
branch

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
 ∧ ∃u ∈ loan(u[branch-name] = “Perryridge”
 ∧ u[loan-number] = s[loan-number]))}

� Find the names of all customers who have a loan at the
Perryridge branch, but no account at any branch of the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
 ∧ ∃u ∈ loan(u[branch-name] = “Perryridge”
 ∧ u[loan-number] = s[loan-number]))
 ∧ not ∃v ∈ depositor (v[customer-name] =
 t[customer-name]) }

©Silberschatz, Korth and Sudarshan3.80Database System Concepts

Example QueriesExample Queries

� Find the names of all customers having a loan from the
Perryridge branch, and the cities they live in

{t | ∃s ∈ loan(s[branch-name] = “Perryridge”
 ∧ ∃u ∈ borrower (u[loan-number] = s[loan-number]

 ∧ t [customer-name] = u[customer-name])
 ∧ ∃ v ∈ customer (u[customer-name] = v[customer-name]

 ∧ t[customer-city] = v[customer-city])))}

©Silberschatz, Korth and Sudarshan3.81Database System Concepts

Example QueriesExample Queries

� Find the names of all customers who have an account at all
branches located in Brooklyn:

{t | ∃ c ∈ customer (t[customer.name] = c[customer-name]) ∧
 ∀ s ∈ branch(s[branch-city] = “Brooklyn” �
 ∃ u ∈ account (s[branch-name] = u[branch-name]
 ∧ ∃ s ∈ depositor (t[customer-name] = s[customer-name]
 ∧ s[account-number] = u[account-number])))}

©Silberschatz, Korth and Sudarshan3.82Database System Concepts

Safety of ExpressionsSafety of Expressions

� It is possible to write tuple calculus expressions that generate
infinite relations.

� For example, {t | ¬ t ∈ r} results in an infinite relation if the
domain of any attribute of relation r is infinite

� To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

� An expression {t | P(t)} in the tuple relational calculus is safe if
every component of t appears in one of the relations, tuples, or
constants that appear in P

©Silberschatz, Korth and Sudarshan3.83Database System Concepts

Domain Relational CalculusDomain Relational Calculus

� A nonprocedural query language equivalent in power to the tuple
relational calculus

� Each query is an expression of the form:

{ < x1, x2, …, xn > | P(x1, x2, …, xn)}

� x1, x2, …, xn represent domain variables

� P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.84Database System Concepts

Example QueriesExample Queries

� Find the branch-name, loan-number, and amount for loans of over
$1200

{< l, b, a > | < l, b, a > ∈ loan ∧ a > 1200}

� Find the names of all customers who have a loan of over $1200

{< c > | ∃ l, b, a (< c, l > ∈ borrower ∧ < l, b, a > ∈ loan ∧ a > 1200)}

� Find the names of all customers who have a loan from the
Perryridge branch and the loan amount:

 {< c, a > | ∃ l (< c, l > ∈ borrower ∧ ∃b(< l, b, a > ∈ loan ∧
 b = “Perryridge”))}

or {< c, a > | ∃ l (< c, l > ∈ borrower ∧ < l, “Perryridge”, a > ∈ loan)}

©Silberschatz, Korth and Sudarshan3.85Database System Concepts

Example QueriesExample Queries

� Find the names of all customers having a loan, an account, or
both at the Perryridge branch:

 {< c > | ∃ l ({< c, l > ∈ borrower
 ∧ ∃ b,a(< l, b, a > ∈ loan ∧ b = “Perryridge”))
 ∨ ∃ a(< c, a > ∈ depositor
 ∧ ∃ b,n(< a, b, n > ∈ account ∧ b = “Perryridge”))}

� Find the names of all customers who have an account at all
branches located in Brooklyn:

 {< c > | ∃ n (< c, s, n > ∈ customer) ∧
∀ x,y,z(< x, y, z > ∈ branch ∧ y = “Brooklyn”) �

 ∃ a,b(< x, y, z > ∈ account ∧ < c,a > ∈ depositor)}

©Silberschatz, Korth and Sudarshan3.86Database System Concepts

Safety of ExpressionsSafety of Expressions

{ < x1, x2, …, xn > | P(x1, x2, …, xn)}

is safe if all of the following hold:

1.All values that appear in tuples of the expression are values
 from dom(P) (that is, the values appear either in P or in a tuple
 of a relation mentioned in P).

 2.For every “there exists” subformula of the form ∃ x (P1(x)), the
 subformula is true if an only if P1(x) is true for all values x from
 dom(P1).

 3. For every “for all” subformula of the form ∀x (P1 (x)), the
 subformula is true if and only if P1(x) is true for all values x
 from dom (P1).

End of Chapter 3End of Chapter 3

©Silberschatz, Korth and Sudarshan3.88Database System Concepts

Result of Result of σσσσσσσσ branch-name = branch-name = ““PerryridgePerryridge”” ((loanloan))

©Silberschatz, Korth and Sudarshan3.89Database System Concepts

Loan Number and the Amount of the LoanLoan Number and the Amount of the Loan

©Silberschatz, Korth and Sudarshan3.90Database System Concepts

Names of All Customers Who HaveNames of All Customers Who Have
Either a Loan or an AccountEither a Loan or an Account

©Silberschatz, Korth and Sudarshan3.91Database System Concepts

Customers With An Account But No LoanCustomers With An Account But No Loan

©Silberschatz, Korth and Sudarshan3.92Database System Concepts

Result of Result of borrower borrower ×××××××× loanloan

©Silberschatz, Korth and Sudarshan3.93Database System Concepts

Result of Result of σσσσσσσσ branch-name = branch-name = ““PerryridgePerryridge”” ((borrower borrower ×××××××× loan) loan)

©Silberschatz, Korth and Sudarshan3.94Database System Concepts

Result of Result of ΠΠΠΠΠΠΠΠcustomer-namecustomer-name

©Silberschatz, Korth and Sudarshan3.95Database System Concepts

Result of the SubexpressionResult of the Subexpression

©Silberschatz, Korth and Sudarshan3.96Database System Concepts

Largest Account Balance in the BankLargest Account Balance in the Bank

©Silberschatz, Korth and Sudarshan3.97Database System Concepts

Customers Who Live on the Same Street and In theCustomers Who Live on the Same Street and In the
Same City as SmithSame City as Smith

©Silberschatz, Korth and Sudarshan3.98Database System Concepts

Customers With Both an Account and a LoanCustomers With Both an Account and a Loan
at the Bankat the Bank

©Silberschatz, Korth and Sudarshan3.99Database System Concepts

Result of Result of ΠΠΠΠΠΠΠΠcustomer-name, loan-number, amountcustomer-name, loan-number, amount
((borrower borrower loan) loan)

©Silberschatz, Korth and Sudarshan3.100Database System Concepts

Result of Result of ΠΠΠΠΠΠΠΠbranch-namebranch-name((σσσσσσσσcustomer-city =customer-city =

““HarrisonHarrison””((customercustomer account depositor))account depositor))

©Silberschatz, Korth and Sudarshan3.101Database System Concepts

Result of Result of ΠΠΠΠΠΠΠΠbranch-namebranch-name((σσσσσσσσbranch-city =branch-city =
““BrooklynBrooklyn””(branch))(branch))

©Silberschatz, Korth and Sudarshan3.102Database System Concepts

Result of Result of ΠΠΠΠΠΠΠΠcustomer-name, branch-namecustomer-name, branch-name((depositor account)depositor account)

©Silberschatz, Korth and Sudarshan3.103Database System Concepts

The The credit-infocredit-info Relation Relation

©Silberschatz, Korth and Sudarshan3.104Database System Concepts

Result of Result of ΠΠΠΠΠΠΠΠcustomer-name, (limit customer-name, (limit –– credit-balance) credit-balance) asas

credit-availablecredit-available(credit-info).(credit-info).

©Silberschatz, Korth and Sudarshan3.105Database System Concepts

The The pt-works pt-works RelationRelation

©Silberschatz, Korth and Sudarshan3.106Database System Concepts

The The pt-works pt-works Relation After GroupingRelation After Grouping

©Silberschatz, Korth and Sudarshan3.107Database System Concepts

Result of Result of branch-name branch-name ςςςςςςςς sumsum(salary) (salary) (pt-works)(pt-works)

©Silberschatz, Korth and Sudarshan3.108Database System Concepts

Result of Result of branch-name branch-name ςςςςςςςς sumsum salary, salary, max(max(salarysalary) as) as

max-salary max-salary (pt-works)(pt-works)

©Silberschatz, Korth and Sudarshan3.109Database System Concepts

The The employeeemployee and and ft-works ft-works RelationsRelations

©Silberschatz, Korth and Sudarshan3.110Database System Concepts

The Result of The Result of employee ft-worksemployee ft-works

©Silberschatz, Korth and Sudarshan3.111Database System Concepts

The Result of The Result of employeeemployee ft-worksft-works

©Silberschatz, Korth and Sudarshan3.112Database System Concepts

Result of Result of employee ft-worksemployee ft-works

©Silberschatz, Korth and Sudarshan3.113Database System Concepts

Result of Result of employee ft-worksemployee ft-works

©Silberschatz, Korth and Sudarshan3.114Database System Concepts

Tuples Inserted Into Tuples Inserted Into loan loan and and borrowerborrower

©Silberschatz, Korth and Sudarshan3.115Database System Concepts

Names of All Customers Who Have aNames of All Customers Who Have a
Loan at the Perryridge BranchLoan at the Perryridge Branch

©Silberschatz, Korth and Sudarshan3.116Database System Concepts

E-R DiagramE-R Diagram

©Silberschatz, Korth and Sudarshan3.117Database System Concepts

The The branchbranch Relation Relation

©Silberschatz, Korth and Sudarshan3.118Database System Concepts

The The loan loan RelationRelation

©Silberschatz, Korth and Sudarshan3.119Database System Concepts

The The borrowerborrower Relation Relation

