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Chapter 3:  Relational ModelChapter 3:  Relational Model

� Structure of Relational Databases

� Relational Algebra

� Tuple Relational Calculus

� Domain Relational Calculus

� Extended Relational-Algebra-Operations

� Modification of the Database

� Views
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Example of a RelationExample of a Relation



©Silberschatz, Korth and Sudarshan3.3Database System Concepts

Basic StructureBasic Structure

� Formally, given sets D1, D2, …. Dn a relation r is a subset of
D1 x  D2  x … x Dn

Thus a relation is a set of n-tuples (a1, a2, …, an) where
ai  ∈ Di

� Example:  if

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city     = {Harrison, Rye, Pittsfield}

Then r = {   (Jones, Main, Harrison),
                   (Smith, North, Rye),
                   (Curry, North, Rye),
                   (Lindsay, Park, Pittsfield)}
 is a relation over customer-name x customer-street x customer-city
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Attribute TypesAttribute Types

� Each attribute of a relation has a name

� The set of allowed values for each attribute is called the domain
of the attribute

� Attribute values are (normally) required to be atomic, that is,
indivisible

� E.g. multivalued attribute values are not atomic

� E.g. composite attribute values are not atomic

� The special value null  is a member of every domain

� The null value causes complications in the definition of many
operations

�  we shall ignore the effect of null values in our main presentation
and consider their effect later
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Relation SchemaRelation Schema

� A1, A2, …, An are attributes

� R = (A1, A2, …, An ) is a relation schema

E.g.   Customer-schema =
                     (customer-name, customer-street, customer-city)

� r(R) is a relation on the relation schema R

E.g. customer (Customer-schema)
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Relation InstanceRelation Instance
� The current values (relation instance) of a relation are

specified by a table

� An element t of r is a tuple, represented by a row in a table

Jones
Smith
Curry

Lindsay

customer-name

Main
North
North
Park

customer-street

Harrison
Rye
Rye

Pittsfield

customer-city

customer

attributes

tuples
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Relations are UnorderedRelations are Unordered

� Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

� E.g. account relation with unordered tuples
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DatabaseDatabase

� A database consists of multiple relations

� Information about an enterprise is broken up into parts, with each
relation storing one part of the information

E.g.:   account :    stores information about accounts
                   depositor : stores information about which customer
                                     owns which account
                   customer : stores information about customers

� Storing all information as a single relation such as
   bank(account-number, balance, customer-name, ..)
results in
� repetition of information (e.g. two customers own an account)

� the need for null values  (e.g. represent a customer without an
account)

� Normalization theory (Chapter 7) deals with how to design
relational schemas



©Silberschatz, Korth and Sudarshan3.9Database System Concepts

The The customer customer RelationRelation
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The The depositor depositor RelationRelation
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E-R Diagram for the Banking EnterpriseE-R Diagram for the Banking Enterprise
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KeysKeys

� Let K ⊆ R

� K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R) by “possible r” we
mean a relation r that could exist in the enterprise we are
modeling.
Example:  {customer-name, customer-street} and
                 {customer-name}
are both superkeys of Customer, if no two customers can
possibly have the same name.

� K is a candidate key if K is minimal
Example:  {customer-name} is a candidate key for Customer,
since it is a superkey {assuming no two customers can possibly
have the same name), and no subset of it is a superkey.
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Determining Keys from E-R SetsDetermining Keys from E-R Sets

� Strong entity set.  The primary key of the entity set becomes
the primary key of the relation.

� Weak entity set.  The primary key of the relation consists of the
union of the primary key of the strong entity set and the
discriminator of the weak entity set.

� Relationship set.  The union of the primary keys of the related
entity sets becomes a super key of the relation.

� For binary many-to-one relationship sets, the primary key of the
“many” entity set becomes the relation’s primary key.

� For one-to-one relationship sets, the relation’s primary key can be
that of either entity set.

� For many-to-many relationship sets, the union of the primary keys
becomes the relation’s primary key
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Schema Diagram for the Banking EnterpriseSchema Diagram for the Banking Enterprise
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Query LanguagesQuery Languages

� Language in which user requests information from the database.

� Categories of languages

� procedural

� non-procedural

� “Pure” languages:

� Relational Algebra

� Tuple Relational Calculus

� Domain Relational Calculus

� Pure languages form underlying basis of query languages that
people use.
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Relational AlgebraRelational Algebra

� Procedural language

� Six basic operators

� select

� project

� union

� set difference

� Cartesian product

� rename

� The operators take two or more relations as inputs and give a
new relation as a result.
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Select Operation – ExampleSelect Operation – Example

• Relation r A B C D
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• σA=B ^ D > 5 (r)
A B C D
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Select OperationSelect Operation

� Notation:  σ p(r)
� p is called the selection predicate

� Defined as:

 σp(r) = {t | t ∈ r and p(t)}

Where p is a formula in propositional calculus consisting
of terms connected by : ∧ (and), ∨ (or), ¬ (not)
Each term is one of:

<attribute> op <attribute> or <constant>

     where op is one of:  =, ≠, >, ≥. <. ≤
� Example of selection:

  σ branch-name=“Perryridge”(account)
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Project Operation – ExampleProject Operation – Example

� Relation r: A B C
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Project OperationProject Operation

� Notation:

∏A1, A2, …, Ak (r)

where A1, A2 are attribute names and r is a relation name.

� The result is defined as the relation of k columns obtained by
erasing the columns that are not listed

� Duplicate rows removed from result, since relations are sets

� E.g. To eliminate the branch-name attribute of account
          ∏account-number, balance (account)
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Union Operation – ExampleUnion Operation – Example

� Relations r, s:

     r ∪ s:

A B
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Union OperationUnion Operation

� Notation:  r ∪ s

� Defined as:

r  ∪ s = {t | t ∈ r or t ∈ s}

� For r ∪ s to be valid.

1.  r, s must have the same arity (same number of attributes)

2.  The attribute domains must be compatible (e.g., 2nd column
     of r deals with the same type of values as does the 2nd
     column of s)

� E.g. to find all customers with either an account or a loan
    ∏customer-name (depositor)   ∪ ∏customer-name (borrower)
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Set Difference Operation – ExampleSet Difference Operation – Example

� Relations r, s:

r – s:

A B
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Set Difference OperationSet Difference Operation

� Notation r – s

� Defined as:

 r – s  = {t | t ∈ r and t ∉ s}

� Set differences must be taken between compatible relations.

� r and s must have the same arity

� attribute domains of r and s must be compatible
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Cartesian-Product Operation-ExampleCartesian-Product Operation-Example

Relations r, s:

r x s:

A B
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Cartesian-Product OperationCartesian-Product Operation

� Notation r x s

� Defined as:

r x s = {t q | t ∈ r and q ∈ s}

� Assume that attributes of r(R) and s(S) are disjoint.  (That is,
R ∩ S = ∅).

� If attributes of r(R) and s(S) are not disjoint, then renaming must
be used.



©Silberschatz, Korth and Sudarshan3.27Database System Concepts

Composition of OperationsComposition of Operations

� Can build expressions using multiple operations

� Example:  σA=C(r x s)

� r x s

� σA=C(r x s)
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Rename OperationRename Operation

� Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.

� Allows us to refer to a relation by more than one name.

Example:

 ρ x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

                                          ρx (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.
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Banking ExampleBanking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)
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Example QueriesExample Queries

� Find all loans of over $1200

                       σamount > 1200 (loan)
� Find the loan number for each loan of an amount greater than

$1200

                      ∏loan-number (σamount > 1200 (loan))
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Example QueriesExample Queries

� Find the names of all customers who have a loan, an account, or
both, from the bank

∏customer-name (borrower) ∪ ∏customer-name (depositor)

� Find the names of all customers who have a loan and an account
at bank.

∏customer-name (borrower) ∩ ∏customer-name (depositor)
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Example QueriesExample Queries

� Find the names of all customers who have a loan at the Perryridge
branch.

          ∏customer-name (σbranch-name=“Perryridge”

    (σborrower.loan-number = loan.loan-number(borrower x loan)))
� Find the names of all customers who have a loan at the Perryridge

branch but do not have an account at any branch of the bank.

      ∏customer-name (σbranch-name = “Perryridge”

              (σborrower.loan-number = loan.loan-number(borrower x loan)))

      –     ∏customer-name(depositor)
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Example QueriesExample Queries

� Find the names of all customers who have a loan at the Perryridge
branch.

− Query 1

  ∏customer-name(σbranch-name = “Perryridge”

    (σborrower.loan-number = loan.loan-number(borrower x loan)))
 −  Query 2

     ∏customer-name(σloan.loan-number = borrower.loan-number(
                           (σbranch-name = “Perryridge”(loan)) x
                                                                      borrower)
                        )
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Example QueriesExample Queries

Find the largest account balance

� Rename account relation as d

� The query is:

     ∏balance(account) - ∏account.balance

    (σaccount.balance < d.balance (account x ρd (account)))
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Formal DefinitionFormal Definition

� A basic expression in the relational algebra consists of either one
of the following:
� A relation in the database

� A constant relation

� Let E1 and E2 be relational-algebra expressions; the following are
all relational-algebra expressions:
� E1 ∪ E2
� E1 - E2
� E1 x E2
� σp (E1), P is a predicate on attributes in E1
� ∏s(E1), S is a list consisting of some of the attributes in E1

� ρ x (E1), x is the new name for the result of E1
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Additional OperationsAdditional Operations

We define additional operations that do not add any power to the

relational algebra, but that simplify common queries.

� Set intersection

� Natural join

� Division

� Assignment
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Set-Intersection OperationSet-Intersection Operation

� Notation: r ∩ s

� Defined as:

� r ∩ s ={ t | t ∈ r and t ∈ s }

� Assume:

� r, s have the same arity

� attributes of r and s are compatible

� Note: r ∩ s = r - (r - s)
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Set-Intersection Operation - ExampleSet-Intersection Operation - Example

� Relation r, s:

� r ∩ s

A       B

α
α
β

1
2
1

A       B

α
β

2
3

r s

A       B

α      2
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Natural-Join OperationNatural-Join Operation

� Notation:  r     s

� Let r and s be relations on schemas R and S respectively.The result is a
relation on schema R ∪ S which is obtained by considering each pair of
tuples tr from r and ts from s.

� If tr and ts have the same value on each of the attributes in R ∩ S, a tuple t
is added to the result, where

� t has the same value as tr on r

� t has the same value as ts on s

� Example:

R = (A, B, C, D)

S = (E, B, D)

� Result schema = (A, B, C, D, E)

� r    s is defined as:

∏r.A, r.B, r.C, r.D, s.E (σr.B = s.B  r.D = s.D (r  x  s))
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Natural Join Operation – ExampleNatural Join Operation – Example

� Relations r, s:

A B
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Division OperationDivision Operation

� Suited to queries that include the phrase “for all”.

� Let r and s be relations on schemas R and S respectively
where
� R = (A1, …, Am, B1, …, Bn)

� S = (B1, …, Bn)

The result of  r ÷ s is a relation on schema

R – S = (A1, …, Am)

r ÷ s = { t  |  t ∈ ∏ R-S(r) ∧ ∀ u ∈ s ( tu ∈ r ) }

r ÷ s 
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Division Operation – ExampleDivision Operation – Example

Relations r, s:

r ÷ s: A

B

α

β
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2

A B

α
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α
β
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∈
∈
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Another Division ExampleAnother Division Example

A B

α
α
α
β
β
γ
γ
γ

a
a
a
a
a
a
a
a

C D

α
γ
γ
γ
γ
γ
γ
β

a
a
b
a
b
a
b
b

E

1
1
1
1
3
1
1
1

Relations r, s:
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Division Operation (Cont.)Division Operation (Cont.)

� Property
� Let q – r  ÷ s

� Then q is the largest relation satisfying q x s ⊆ r

� Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S  ⊆ R

r ÷ s = ∏R-S (r) –∏R-S ( (∏R-S (r) x s) – ∏R-S,S(r))

To see why
� ∏R-S,S(r) simply reorders attributes of r

� ∏R-S(∏R-S (r) x s) – ∏R-S,S(r)) gives those tuples t in

 ∏R-S (r) such that for some tuple u ∈ s, tu ∉ r.
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Assignment OperationAssignment Operation

� The assignment operation (←) provides a convenient way to
express complex queries, write query as a sequential program
consisting of a series of assignments followed by an expression
whose value is displayed as a result of the query.

� Assignment must always be made to a temporary relation
variable.

� Example:  Write r ÷ s as

temp1 ← ∏R-S (r)

temp2 ← ∏R-S  ((temp1 x s) – ∏R-S,S (r))

result = temp1 – temp2

� The result to the right of the ← is assigned to the relation variable on

the left of the ←.

� May use variable in subsequent expressions.
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Example QueriesExample Queries

� Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.

� Query 1

 ∏CN(σBN=“Downtown”(depositor    account)) ∩

 ∏CN(σBN=“Uptown”(depositor    account))

where CN denotes customer-name and BN denotes

branch-name.

� Query 2

 ∏customer-name, branch-name (depositor    account)

÷ ρtemp(branch-name) ({(“Downtown”), (“Uptown”)})
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� Find all customers who have an account at all branches located
in Brooklyn city.

 ∏customer-name, branch-name (depositor     account)
÷ ∏branch-name (σbranch-city = “Brooklyn” (branch))

Example QueriesExample Queries
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Extended Relational-Algebra-OperationsExtended Relational-Algebra-Operations

� Generalized Projection

� Outer Join

� Aggregate Functions
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Generalized ProjectionGeneralized Projection

� Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

∏ F1, F2, …, Fn(E)

� E is any relational-algebra expression

� Each of F1, F2, …, Fn  are are arithmetic expressions involving
constants and attributes in the schema of E.

� Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

∏customer-name, limit – credit-balance (credit-info)
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Aggregate Functions and OperationsAggregate Functions and Operations

� Aggregation function takes a collection of values and returns a
single value as a result.

avg:  average value
min:  minimum value
max:  maximum value
sum:  sum of values
count:  number of values

� Aggregate operation in relational algebra

G1, G2, …, Gn g F1( A1), F2( A2),…, Fn( An) (E)

� E is any relational-algebra expression

� G1, G2 …, Gn is a list of attributes on which to group (can be empty)

� Each Fi is an aggregate function

� Each Ai is an attribute name



©Silberschatz, Korth and Sudarshan3.51Database System Concepts

Aggregate Operation – ExampleAggregate Operation – Example

� Relation r:

A B

α
α
β
β

α
β
β
β

C

7

7

3

10

g sum(c) (r)
sum-C

27
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Aggregate Operation – ExampleAggregate Operation – Example

� Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name balance

Perryridge
Brighton
Redwood

1300
1500
700
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Aggregate Functions (Cont.)Aggregate Functions (Cont.)

� Result of aggregation does not have a name

� Can use rename operation to give it a name

� For convenience, we permit renaming as part of aggregate
operation

branch-name g sum(balance) as sum-balance (account)
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Outer JoinOuter Join

� An extension of the join operation that avoids loss of information.

� Computes the join and then adds tuples form one relation that
does not match tuples in the other relation to the result of the
join.

� Uses null values:

� null signifies that the value is unknown or does not exist

� All comparisons involving null are (roughly speaking) false by
definition.

✔ Will study precise meaning of comparisons with nulls later
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Outer Join – ExampleOuter Join – Example

� Relation loan

loan-number amount

L-170
L-230
L-260

3000
4000
1700

� Relation borrower

customer-name loan-number

Jones
Smith
Hayes

L-170
L-230
L-155

branch-name

Downtown
Redwood
Perryridge
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Outer Join – ExampleOuter Join – Example

� Inner Join

loan     Borrower

loan          borrower
� Left Outer Join

loan-number amount

L-170
L-230

3000
4000

customer-name

Jones
Smith

branch-name

Downtown
Redwood

loan-number amount

L-170
L-230
L-260

3000
4000
1700

customer-name

Jones
Smith
null

branch-name

Downtown
Redwood
Perryridge
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Outer Join – ExampleOuter Join – Example

� Right Outer Join
       loan          borrower

loan-number amount

L-170
L-230
L-155

3000
4000
null

customer-name

Jones
Smith
Hayes

loan-number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name

Jones
Smith
null
Hayes

loan        borrower
� Full Outer Join

branch-name

Downtown
Redwood
null

branch-name

Downtown
Redwood
Perryridge
null
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Null ValuesNull Values

� It is possible for tuples to have a null value, denoted by null, for
some of their attributes

� null signifies an unknown value or that a value does not exist.

� The result of any arithmetic expression involving null is null.

� Aggregate functions simply ignore null values

� Is an arbitrary decision.  Could have returned null as result instead.

� We follow the semantics of SQL in its handling of null values

� For duplicate elimination and grouping, null is treated like any
other value, and two nulls are assumed to be  the same

� Alternative: assume each null is different from each other

� Both are arbitrary decisions,  so we simply follow SQL
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Null ValuesNull Values

� Comparisons with null values return the special truth value
unknown
� If false was used instead of unknown, then    not (A < 5)

               would not be equivalent to               A >= 5

� Three-valued logic using the truth value unknown:
� OR: (unknown or true)         = true,

       (unknown or false)        = unknown
       (unknown or unknown) = unknown

� AND:   (true and unknown)         = unknown,
           (false and unknown)        = false,
           (unknown and unknown) = unknown

� NOT:  (not unknown) = unknown

� In SQL “P is unknown” evaluates to true if predicate P evaluates
to unknown

� Result of select  predicate is treated as false if it evaluates to
unknown
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Modification of the DatabaseModification of the Database

� The content of the database may be modified using the following
operations:

� Deletion

� Insertion

� Updating

� All these operations are expressed using the assignment
operator.
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DeletionDeletion

� A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.

� Can delete only whole tuples; cannot delete values on only
particular attributes

� A deletion is expressed in relational algebra by:

r ← r – E

where r is a relation and E is a relational algebra query.
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Deletion ExamplesDeletion Examples

� Delete all account records in the Perryridge branch.

account ← account – σ branch-name = “Perryridge” (account)

� Delete all loan records with amount in the range of 0 to 50

loan ← loan – σ amount ≥ 0 and amount ≤ 50 (loan)

� Delete all accounts at branches located in Needham.

r1 ← σ branch-city = “Needham” (account      branch)

r2 ← ∏branch-name, account-number, balance (r1)

r3 ← ∏ customer-name, account-number (r2     depositor)

account ← account – r2

depositor ← depositor – r3
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InsertionInsertion

� To insert data into a relation, we either:

� specify a tuple to be inserted

� write a query whose result is a set of tuples to be inserted

� in relational algebra, an insertion is expressed by:

r ←  r  ∪  E

where r is a relation and E is a relational algebra expression.

� The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.
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Insertion ExamplesInsertion Examples

� Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account ←  account  ∪ {(“Perryridge”, A-973, 1200)}

depositor ←  depositor  ∪ {(“Smith”, A-973)}

� Provide as a gift for all loan customers in the Perryridge branch,
a $200 savings account.  Let the loan number serve as the
account number for the new savings account.

r1 ← (σbranch-name = “Perryridge” (borrower    loan))

account ← account ∪ ∏branch-name, account-number,200 (r1)

depositor ← depositor ∪ ∏customer-name, loan-number,(r1)
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UpdatingUpdating

� A mechanism to change a value in a tuple without charging all
values in the tuple

� Use the generalized projection operator to do this task

r ← ∏ F1, F2, …, FI, (r)

� Each F, is either the ith attribute of r, if the ith attribute is not
updated, or, if the attribute is to be updated

� Fi  is an expression, involving only constants and the attributes of
r, which gives the new value for the attribute
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Update ExamplesUpdate Examples

� Make interest payments by increasing all balances by 5 percent.

account ← ∏ AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

� Pay all accounts with balances over $10,000
6 percent interest and pay all others 5 percent

account ←     ∏ AN, BN, BAL * 1.06 (σ BAL > 10000 (account))
                  ∪  ∏AN, BN, BAL * 1.05 (σBAL ≤ 10000 (account))
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ViewsViews

� In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the database.)

� Consider a person who needs to know a customer’s loan number
but has no need to see the loan amount.  This person should see
a relation described, in the relational algebra, by

∏customer-name, loan-number (borrower    loan)

� Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.



©Silberschatz, Korth and Sudarshan3.68Database System Concepts

View DefinitionView Definition

� A view is defined using the create view statement which has the
form

create view v as <query expression

where <query expression> is any legal relational algebra query
expression.  The view name is represented by v.

� Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

� View definition is not the same as creating a new relation by
evaluating the query expression  Rather, a view definition causes
the saving of an expression to be substituted into queries using
the view.
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View ExamplesView Examples

� Consider the view (named all-customer) consisting of branches
and their customers.

create view all-customer as

∏branch-name, customer-name (depositor    account)

∪ ∏branch-name, customer-name (borrower    loan)

� We can find all customers of the Perryridge branch by writing:

 ∏branch-name

(σbranch-name = “Perryridge” (all-customer))
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Updates Through ViewUpdates Through View

� Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

� Consider the person who needs to see all loan data in the loan
relation except amount.  The view given to the person, branch-
loan, is defined as:

create view branch-loan as

∏branch-name, loan-number (loan)

� Since we allow a view name to appear wherever a relation name
is allowed, the person may write:

branch-loan ← branch-loan ∪ {(“Perryridge”, L-37)}
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Updates Through Views (Cont.)Updates Through Views (Cont.)

� The previous insertion must be represented by an insertion into
the actual relation loan from which the view branch-loan is
constructed.

� An insertion into loan requires a value for amount. The insertion
can be dealt with by either.
� rejecting the insertion and returning an error message to the user.

� inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

� Some updates through views are impossible to translate into
database relation updates

� create view v as σbranch-name = “Perryridge” (account))

     v ← v ∪ (L-99, Downtown, 23)

� Others cannot be translated uniquely
� all-customer ← all-customer  ∪ (Perryridge, John)

✔ Have to choose loan or account, and
create a new loan/account number!
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Views Defined Using Other ViewsViews Defined Using Other Views

� One view may be used in the expression defining another view

� A view relation v1 is said to depend directly on a view relation v2
if v2 is used in the expression defining v1

� A view relation v1 is said to depend on view relation v2 if either v1

depends directly to v2  or there is a path of dependencies from
v1 to v2

� A view relation v is said to be recursive  if it depends on itself.
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View ExpansionView Expansion

� A way to define the meaning of views defined in terms of other
views.

� Let view v1 be defined by an expression e1 that may itself contain
uses of view relations.

� View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1
Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

� As long as the view definitions are not recursive, this loop will
terminate
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Tuple Relational CalculusTuple Relational Calculus

� A nonprocedural query language, where each query is of the form

{t | P (t) }

� It is the set of all tuples t such that predicate P is true for t

� t is a tuple variable, t[A] denotes the value of tuple t on attribute A

� t ∈ r denotes that tuple t is in relation r

� P is a formula similar to that of the predicate calculus
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Predicate Calculus FormulaPredicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators:  (e.g., <, ≤, =, ≠, >, ≥)

3. Set of connectives:  and (∧), or (v)‚ not (¬)

4. Implication (�): x � y, if x if true, then y is true

x � y ≡ ¬x v y

5. Set of quantifiers:

� ∃ t ∈ r (Q(t)) ≡ ”there exists” a tuple in t in relation r
                        such that predicate Q(t) is true

� ∀t ∈ r (Q(t)) ≡ Q is true “for all” tuples t in relation r
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Banking ExampleBanking Example

� branch (branch-name, branch-city, assets)

� customer (customer-name, customer-street, customer-city)

� account (account-number, branch-name, balance)

� loan (loan-number, branch-name, amount)

� depositor (customer-name, account-number)

� borrower (customer-name, loan-number)
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Example QueriesExample Queries

� Find the loan-number, branch-name, and  amount for loans of
over $1200

{t | t ∈ loan ∧ t [amount] > 1200}

� Find the loan number for each loan of an amount greater than
$1200

{t | ∃ s ∈ loan (t[loan-number] = s[loan-number]
∧ s [amount] > 1200}

Notice that a relation on schema [customer-name] is implicitly
defined by the query
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Example QueriesExample Queries

� Find the names of all customers having a loan, an account, or
both at the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
     ∨ ∃u ∈ depositor(t[customer-name] = u[customer-name])

� Find the names of all customers who have a loan and an account
at the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
      ∧ ∃u ∈ depositor(t[customer-name] = u[customer-name])
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Example QueriesExample Queries

� Find the names of all customers having a loan at the Perryridge
branch

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
     ∧ ∃u ∈ loan(u[branch-name] = “Perryridge”
                         ∧  u[loan-number] = s[loan-number]))}

� Find the names of all customers who have a loan at the
Perryridge branch, but no account at any branch of the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
       ∧ ∃u ∈ loan(u[branch-name] = “Perryridge”
                           ∧  u[loan-number] = s[loan-number]))
       ∧ not ∃v ∈ depositor (v[customer-name] =
                                                      t[customer-name]) }
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Example QueriesExample Queries

� Find the names of all customers having a loan from the
Perryridge branch, and the cities they live in

{t | ∃s ∈ loan(s[branch-name] = “Perryridge”
        ∧ ∃u ∈ borrower (u[loan-number] = s[loan-number]

    ∧  t [customer-name] = u[customer-name])
            ∧ ∃ v ∈ customer (u[customer-name] = v[customer-name]

                                 ∧  t[customer-city] = v[customer-city])))}
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Example QueriesExample Queries

� Find the names of all customers who have an account at all
branches located in Brooklyn:

{t | ∃ c ∈ customer (t[customer.name] = c[customer-name]) ∧
      ∀ s ∈ branch(s[branch-city] = “Brooklyn” �
           ∃ u ∈ account ( s[branch-name] = u[branch-name]
           ∧ ∃ s ∈ depositor (  t[customer-name] = s[customer-name]
                             ∧  s[account-number] = u[account-number] )) )}
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Safety of ExpressionsSafety of Expressions

� It is possible to write tuple calculus expressions that generate
infinite relations.

� For example, {t | ¬ t ∈ r} results in an infinite relation if the
domain of any attribute of relation r is infinite

� To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

� An expression {t | P(t)} in the tuple relational calculus is safe if
every component of t appears in one of the relations, tuples, or
constants that appear in P
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Domain Relational CalculusDomain Relational Calculus

� A nonprocedural query language equivalent in power to the tuple
relational calculus

� Each query is an expression of the form:

{ < x1, x2, …, xn > | P(x1, x2, …, xn)}

� x1, x2, …, xn  represent domain variables

� P represents a formula similar to that of the predicate calculus
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Example QueriesExample Queries

� Find the branch-name, loan-number, and  amount for loans of over
$1200

{< l, b, a > | < l, b, a > ∈ loan ∧ a > 1200}

� Find the names of all customers who have a loan of over $1200

{< c > | ∃ l, b, a (< c, l > ∈ borrower ∧ < l, b, a > ∈ loan ∧ a > 1200)}

� Find the names of all customers who have a loan from the
Perryridge branch and the loan amount:

     {< c, a > | ∃ l (< c, l > ∈ borrower ∧ ∃b(< l, b, a > ∈ loan ∧
                                                                   b = “Perryridge”))}

or {< c, a > | ∃ l (< c, l > ∈ borrower ∧ < l, “Perryridge”, a > ∈ loan)}
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Example QueriesExample Queries

� Find the names of all customers having a loan, an account, or
both at the Perryridge branch:

     {< c > | ∃ l ({< c, l > ∈ borrower
                 ∧ ∃ b,a(< l, b, a > ∈ loan ∧ b = “Perryridge”))
       ∨ ∃ a(< c, a > ∈ depositor
                 ∧ ∃ b,n(< a, b, n > ∈ account ∧ b = “Perryridge”))}

� Find the names of all customers who have an account at all
branches located in Brooklyn:

     {< c > | ∃ n (< c, s, n > ∈ customer) ∧
∀ x,y,z(< x, y, z > ∈ branch ∧ y = “Brooklyn”) �

         ∃ a,b(< x, y, z > ∈ account ∧ < c,a > ∈ depositor)}
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Safety of ExpressionsSafety of Expressions

{ < x1, x2, …, xn > | P(x1, x2, …, xn)}

is safe if all of the following hold:

1.All values that appear in tuples of the expression are values
 from dom(P) (that is, the values appear either in P or in a tuple
 of a relation mentioned in P).

 2.For every “there exists” subformula of the form ∃ x (P1(x)), the
 subformula is true if an only if P1(x) is true for all values x from
 dom(P1).

     3. For every “for all” subformula of the form ∀x (P1 (x)), the      
  subformula is true if and only if P1(x) is true for all values x 
  from dom (P1).



End of Chapter 3End of Chapter 3
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Result of Result of σσσσσσσσ  branch-name = branch-name = ““PerryridgePerryridge”” ( (loanloan))
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Loan Number and the Amount of the LoanLoan Number and the Amount of the Loan
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Names of All Customers Who HaveNames of All Customers Who Have
Either a Loan or an AccountEither a Loan or an Account
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Customers With An Account But No LoanCustomers With An Account But No Loan
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Result of Result of borrower borrower ××××××××  loanloan



©Silberschatz, Korth and Sudarshan3.93Database System Concepts

Result of Result of σσσσσσσσ branch-name =  branch-name = ““PerryridgePerryridge””  ((borrower borrower ××××××××  loan)  loan)
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Result of Result of ΠΠΠΠΠΠΠΠcustomer-namecustomer-name
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Result of the SubexpressionResult of the Subexpression



©Silberschatz, Korth and Sudarshan3.96Database System Concepts

Largest Account Balance in the BankLargest Account Balance in the Bank
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Customers Who Live on the Same Street and In theCustomers Who Live on the Same Street and In the
Same City as SmithSame City as Smith
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Customers With Both an Account and a LoanCustomers With Both an Account and a Loan
at the Bankat the Bank
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Result of Result of ΠΠΠΠΠΠΠΠcustomer-name, loan-number, amountcustomer-name, loan-number, amount
((borrower borrower       loan)    loan)
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Result of Result of ΠΠΠΠΠΠΠΠbranch-namebranch-name((σσσσσσσσcustomer-city =customer-city =

““HarrisonHarrison””((customercustomer          account      depositor))account      depositor))
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Result of Result of ΠΠΠΠΠΠΠΠbranch-namebranch-name((σσσσσσσσbranch-city =branch-city =
““BrooklynBrooklyn””(branch))(branch))
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Result of Result of ΠΠΠΠΠΠΠΠcustomer-name, branch-namecustomer-name, branch-name((depositor     account)depositor     account)



©Silberschatz, Korth and Sudarshan3.103Database System Concepts

The The credit-infocredit-info Relation Relation
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Result of Result of ΠΠΠΠΠΠΠΠcustomer-name, (limit customer-name, (limit –– credit-balance)  credit-balance) asas

credit-availablecredit-available(credit-info).(credit-info).
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The The pt-works pt-works RelationRelation
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The The pt-works pt-works Relation After GroupingRelation After Grouping
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Result of Result of branch-name branch-name ςςςςςςςς  sumsum(salary) (salary) (pt-works)(pt-works)
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Result of Result of branch-name branch-name ςςςςςςςς sumsum salary,  salary, max(max(salarysalary) as) as

max-salary max-salary (pt-works)(pt-works)



©Silberschatz, Korth and Sudarshan3.109Database System Concepts

The The employeeemployee and  and ft-works ft-works RelationsRelations
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The Result of The Result of employee     ft-worksemployee     ft-works
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The Result of The Result of employeeemployee              ft-worksft-works
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Result of Result of employee       ft-worksemployee       ft-works
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Result of Result of employee       ft-worksemployee       ft-works
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Tuples Inserted Into Tuples Inserted Into loan loan and and borrowerborrower
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Names of All Customers Who Have aNames of All Customers Who Have a
Loan at the Perryridge BranchLoan at the Perryridge Branch
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E-R DiagramE-R Diagram
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The The branchbranch Relation Relation
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The The loan loan RelationRelation
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The The borrowerborrower Relation Relation


