
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 3: Introduction to SQL

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Chapter 3: Introduction to SQL

 Overview of the SQL Query Language
 Data Definition
 Basic Query Structure
 Additional Basic Operations
 Set Operations
 Null Values
 Aggregate Functions
 Nested Subqueries
 Modification of the Database

©Silberschatz, Korth and Sudarshan3.3Database System Concepts - 6th Edition

History

 IBM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)
 ANSI and ISO standard SQL:

 SQL-86, SQL-89, SQL-92
 SQL:1999, SQL:2003, SQL:2008

 Commercial systems offer most, if not all, SQL-92 features,
plus varying feature sets from later standards and special
proprietary features.
 Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Data Definition Language

 The schema for each relation.
 The domain of values associated with each attribute.
 Integrity constraints
 And as we will see later, also other information such as

 The set of indices to be maintained for each relations.
 Security and authorization information for each relation.
 The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 6th Edition

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.
 varchar(n). Variable length character strings, with user-specified

maximum length n.
 int. Integer (a finite subset of the integers that is machine-

dependent).
 smallint. Small integer (a machine-dependent subset of the integer

domain type).
 numeric(p,d). Fixed point number, with user-specified precision of

p digits, with n digits to the right of decimal point.
 real, double precision. Floating point and double-precision floating

point numbers, with machine-dependent precision.
 float(n). Floating point number, with user-specified precision of at

least n digits.
 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Create Table Construct

 An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation
 each Ai is an attribute name in the schema of relation r
 Di is the data type of values in the domain of attribute Ai

 Example:
create table instructor (

ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))

 insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);
 insert into instructor values (‘10211’, null, ’Biology’, 66000);

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 6th Edition

Integrity Constraints in Create Table

 not null
 primary key (A1, ..., An)
 foreign key (Am, ..., An) references r

Example: Declare dept_name as the primary key for department
.

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

And a Few More Relation Definitions
 create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department));

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year),
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

 Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 6th Edition

And more still
 create table course (

course_id varchar(8) primary key,
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
foreign key (dept_name) references department));

 Primary key declaration can be combined with attribute
declaration as shown above

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 6th Edition

Drop and Alter Table Constructs

 drop table student
 Deletes the table and its contents

 delete from student
 Deletes all contents of table, but retains table

 alter table
 alter table r add A D

 where A is the name of the attribute to be added to
relation r and D is the domain of A.

All tuples in the relation are assigned null as the value
for the new attribute.

 alter table r drop A

where A is the name of an attribute of relation r
Dropping of attributes not supported by many

databases

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 6th Edition

Basic Query Structure

 The SQL data-manipulation language (DML) provides the
ability to query information, and insert, delete and update
tuples

 A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

 Ai represents an attribute
 Ri represents a relation
 P is a predicate.

 The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 6th Edition

The select Clause

 The select clause list the attributes desired in the result of a query
 corresponds to the projection operation of the relational algebra

 Example: find the names of all instructors:
select name
from instructor

 NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)
 E.g. Name ≡ NAME ≡ name
 Some people use upper case wherever we use bold font.

©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 6th Edition

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.
 To force the elimination of duplicates, insert the keyword distinct

after select.
 Find the names of all departments with instructor, and remove

duplicates
select distinct dept_name
from instructor

 The keyword all specifies that duplicates not be removed.

select all dept_name
from instructor

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 6th Edition

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”
select *
from instructor

 The select clause can contain arithmetic expressions involving
the operation, +, –, ∗, and /, and operating on constants or
attributes of tuples.

 The query:
select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12.

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 6th Edition

The where Clause

 The where clause specifies conditions that the result must
satisfy
 Corresponds to the selection predicate of the relational

algebra.
 To find all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

 Comparison results can be combined using the logical
connectives and, or, and not.

 Comparisons can be applied to results of arithmetic expressions.

©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 6th Edition

The from Clause

 The from clause lists the relations involved in the query
 Corresponds to the Cartesian product operation of the

relational algebra.
 Find the Cartesian product instructor X teaches

select ∗
from instructor, teaches

 generates every possible instructor – teaches pair, with all
attributes from both relations

 Cartesian product not very useful directly, but useful combined
with where-clause condition (selection operation in relational
algebra)

©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 6th Edition

Cartesian Product: instructor X teaches
instructor teaches

©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 6th Edition

Joins
 For all instructors who have taught some course, find their names

and the course ID of the courses they taught.
select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

 Find the course ID, semester, year and title of each course offered
by the Comp. Sci. department

select section.course_id, semester, year, title
from section, course
where section.course_id = course.course_id and

dept_name = ‘Comp. Sci.'

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 6th Edition

Try Writing Some Queries in SQL

 Suggest queries to be written…..

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 6th Edition

Natural Join

 Natural join matches tuples with the same values for all
common attributes, and retains only one copy of each common
column

 select *
from instructor natural join teaches;

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 6th Edition

Natural Join Example

 List the names of instructors along with the course ID of the courses that
they taught.

 select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

 select name, course_id
from instructor natural join teaches;

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 6th Edition

Natural Join (Cont.)

 Danger in natural join: beware of unrelated attributes with same name which
get equated incorrectly

 List the names of instructors along with the the titles of courses that they
teach
 Incorrect version (makes course.dept_name = instructor.dept_name)

 select name, title
from instructor natural join teaches natural join course;

 Correct version
 select name, title

from instructor natural join teaches, course
where teaches.course_id = course.course_id;

 Another correct version
 select name, title

from (instructor natural join teaches)
join course using(course_id);

©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 6th Edition

The Rename Operation

 The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

 E.g.
 select ID, name, salary/12 as monthly_salary

from instructor

 Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.

 select distinct T. name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

 Keyword as is optional and may be omitted
instructor as T ≡ instructor T

 Keyword as must be omitted in Oracle

©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 6th Edition

String Operations
 SQL includes a string-matching operator for comparisons on

character strings. The operator “like” uses patterns that are
described using two special characters:
 percent (%). The % character matches any substring.
 underscore (_). The _ character matches any character.

 Find the names of all instructors whose name includes the substring
“dar”.

select name
from instructor
where name like '%dar%'

 Match the string “100 %”
like ‘100 \%' escape '\'

©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 6th Edition

String Operations (Cont.)

 Patters are case sensitive.
 Pattern matching examples:

 ‘Intro%’ matches any string beginning with “Intro”.
 ‘%Comp%’ matches any string containing “Comp” as a substring.
 ‘_ _ _’ matches any string of exactly three characters.
 ‘_ _ _ %’ matches any string of at least three characters.

 SQL supports a variety of string operations such as
 concatenation (using “||”)
 converting from upper to lower case (and vice versa)
 finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 6th Edition

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors
select distinct name
from instructor
order by name

 We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the
default.
 Example: order by name desc

 Can sort on multiple attributes
 Example: order by dept_name, name

©Silberschatz, Korth and Sudarshan3.27Database System Concepts - 6th Edition

Where Clause Predicates

 SQL includes a between comparison operator
 Example: Find the names of all instructors with salary between

$90,000 and $100,000 (that is, ≥ $90,000 and ≤ $100,000)
 select name

from instructor
where salary between 90000 and 100000

 Tuple comparison
 select name, course_id

from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 6th Edition

Duplicates

 In relations with duplicates, SQL can define how many copies
of tuples appear in the result.

 Multiset versions of some of the relational algebra operators –
given multiset relations r1 and r2:

1. σθ (r1): If there are c1 copies of tuple t1 in r1, and t1
satisfies selections σθ,, then there are c1 copies of t1 in σθ
(r1).

2. ΠA (r): For each copy of tuple t1 in r1, there is a copy of
tuple ΠA (t1) in ΠA (r1) where ΠA (t1) denotes the
projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies
of tuple t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1
x r2

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 6th Edition

Duplicates (Cont.)

 Example: Suppose multiset relations r1 (A, B) and r2 (C)
are as follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}
 Then ΠB(r1) would be {(a), (a)}, while ΠB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
 SQL duplicate semantics:

select A1,, A2, ..., An
from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

))((21,,, 21 mPAAA rrr
n

×××∏  σ

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 6th Edition

Set Operations

 Find courses that ran in Fall 2009 or in Spring 2010

 Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union
(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect
(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)
except
(select course_id from section where sem = ‘Spring’ and year = 2010)

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 6th Edition

Set Operations

 Set operations union, intersect, and except
 Each of the above operations automatically eliminates

duplicates
 To retain all duplicates use the corresponding multiset versions

union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it
occurs:
 m + n times in r union all s
 min(m,n) times in r intersect all s
 max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 6th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for
some of their attributes

 null signifies an unknown value or that a value does not exist.
 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null
 The predicate is null can be used to check for null values.

 Example: Find all instructors whose salary is null.
select name
from instructor
where salary is null

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 6th Edition

Null Values and Three Valued Logic

 Any comparison with null returns unknown
 Example: 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:
 OR: (unknown or true) = true,

(unknown or false) = unknown
(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

 NOT: (not unknown) = unknown
 “P is unknown” evaluates to true if predicate P evaluates

to unknown
 Result of where clause predicate is treated as false if it

evaluates to unknown

©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 6th Edition

Aggregate Functions

 These functions operate on the multiset of values of a
column of a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 6th Edition

Aggregate Functions (Cont.)

 Find the average salary of instructors in the Computer Science
department
 select avg (salary)

from instructor
where dept_name= ’Comp. Sci.’;

 Find the total number of instructors who teach a course in the
Spring 2010 semester
 select count (distinct ID)

from teaches
where semester = ’Spring’ and year = 2010

 Find the number of tuples in the course relation
 select count (*)

from course;

©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 6th Edition

Aggregate Functions – Group By

 Find the average salary of instructors in each department
 select dept_name, avg (salary)

from instructor
group by dept_name;

 Note: departments with no instructor will not appear in result

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 6th Edition

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must
appear in group by list
 /* erroneous query */

select dept_name, ID, avg (salary)
from instructor
group by dept_name;

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 6th Edition

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose
average salary is greater than 42000

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

select dept_name, avg (salary)
from instructor
group by dept_name
having avg (salary) > 42000;

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 6th Edition

Null Values and Aggregates

 Total all salaries
select sum (salary)
from instructor

 Above statement ignores null amounts
 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

 What if collection has only null values?
 count returns 0
 all other aggregates return null

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 6th Edition

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.
 A subquery is a select-from-where expression that is nested

within another query.
 A common use of subqueries is to perform tests for set

membership, set comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 6th Edition

Example Query

 Find courses offered in Fall 2009 and in Spring 2010

 Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and

course_id in (select course_id
from section
where semester = ’Spring’ and year= 2010);

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id
from section
where semester = ’Spring’ and year= 2010);

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 6th Edition

Example Query

 Find the total number of (distinct) studentswho have taken
course sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 6th Edition

Set Comparison

 Find names of instructors with salary greater than that of some
(at least one) instructor in the Biology department.

 Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept_name = ’Biology’);

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ’Biology’;

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 6th Edition

Definition of Some Clause

 F <comp> some r ⇔ ∃ t ∈ r such that (F <comp> t)
Where <comp> can be: <, ≤, >, =, ≠

0
5
6

(5 < some) = true

0
5
0

) = false

5

0
5(5 ≠ some) = true (since 0 ≠ 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) ≡ in
However, (≠ some) ≡ not in

©Silberschatz, Korth and Sudarshan3.45Database System Concepts - 6th Edition

Example Query

 Find the names of all instructors whose salary is greater than
the salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary

from instructor
where dept_name = ’Biology’);

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 6th Edition

Definition of all Clause

 F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

0
5
6

(5 < all) = false

6
10
4

) = true

5

4
6(5 ≠ all) = true (since 5 ≠ 4 and 5 ≠ 6)

(5 < all

) = false(5 = all

(≠ all) ≡ not in
However, (= all) ≡ in

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 6th Edition

Test for Empty Relations

 The exists construct returns the value true if the argument
subquery is nonempty.

 exists r ⇔ r ≠ Ø
 not exists r ⇔ r = Ø

©Silberschatz, Korth and Sudarshan3.48Database System Concepts - 6th Edition

Correlation Variables

 Yet another way of specifying the query “Find all courses
taught in both the Fall 2009 semester and in the Spring 2010
semester”

select course_id
from section as S
where semester = ’Fall’ and year= 2009 and

exists (select *
from section as T
where semester = ’Spring’ and year= 2010

and S.course_id= T.course_id);
 Correlated subquery
 Correlation name or correlation variable

©Silberschatz, Korth and Sudarshan3.49Database System Concepts - 6th Edition

Not Exists

 Find all students who have taken all courses offered in the
Biology department.

select distinct S.ID, S.name
from student as S
where not exists ((select course_id

from course
where dept_name = ’Biology’)

except
(select T.course_id
from takes as T
where S.ID = T.ID));

 Note that X – Y = Ø ⇔ X ⊆ Y
 Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan3.50Database System Concepts - 6th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate tuples
in its result.
 (Evaluates to “true” on an empty set)

 Find all courses that were offered at most once in 2009
select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2009);

©Silberschatz, Korth and Sudarshan3.51Database System Concepts - 6th Edition

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause
 Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.
select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;
 Note that we do not need to use the having clause
 Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan3.52Database System Concepts - 6th Edition

Subqueries in the From Clause (Cont.)

 And yet another way to write it: lateral clause
select name, salary, avg_salary
from instructor I1,

lateral (select avg(salary) as avg_salary
from instructor I2
where I2.dept_name= I1.dept_name);

 Lateral clause permits later part of the from clause (after the lateral
keyword) to access correlation variables from the earlier part.

 Note: lateral is part of the SQL standard, but is not supported on many
database systems; some databases such as SQL Server offer
alternative syntax

©Silberschatz, Korth and Sudarshan3.53Database System Concepts - 6th Edition

With Clause

 The with clause provides a way of defining a temporary view
whose definition is available only to the query in which the with
clause occurs.

 Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)

select budget
from department, max_budget
where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan3.54Database System Concepts - 6th Edition

Complex Queries using With Clause

 With clause is very useful for writing complex queries
 Supported by most database systems, with minor syntax

variations
 Find all departments where the total salary is greater than the

average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),

dept_total_avg(value) as
(select avg(value)
from dept_total)

select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;

©Silberschatz, Korth and Sudarshan3.55Database System Concepts - 6th Edition

Scalar Subquery

 Scalar subquery is one which is used where a single value is expected
 E.g. select dept_name,

(select count(*)
from instructor
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

 E.g. select name
from instructor
where salary * 10 >

(select budget from department
where department.dept_name = instructor.dept_name)

 Runtime error if subquery returns more than one result tuple

©Silberschatz, Korth and Sudarshan3.56Database System Concepts - 6th Edition

Modification of the Database

 Deletion of tuples from a given relation
 Insertion of new tuples into a given relation
 Updating values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan3.57Database System Concepts - 6th Edition

Modification of the Database – Deletion

 Delete all instructors
delete from instructor

 Delete all instructors from the Finance department
delete from instructor
where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name

from department
where building = ’Watson’);

©Silberschatz, Korth and Sudarshan3.58Database System Concepts - 6th Edition

Deletion (Cont.)

 Delete all instructors whose salary is less than the average
salary of instructors

delete from instructor
where salary< (select avg (salary) from instructor);

 Problem: as we delete tuples from deposit, the average salary
changes

 Solution used in SQL:
1. First, compute avg salary and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

©Silberschatz, Korth and Sudarshan3.59Database System Concepts - 6th Edition

Modification of the Database – Insertion

 Add a new tuple to course
insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently
insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null
insert into student

values (’3003’, ’Green’, ’Finance’, null);

©Silberschatz, Korth and Sudarshan3.60Database System Concepts - 6th Edition

Insertion (Cont.)

 Add all instructors to the student relation with tot_creds set to 0
insert into student

select ID, name, dept_name, 0
from instructor

 The select from where statement is evaluated fully before any of
its results are inserted into the relation (otherwise queries like

insert into table1 select * from table1
would cause problems, if table1 did not have any primary key
defined.

©Silberschatz, Korth and Sudarshan3.61Database System Concepts - 6th Edition

Modification of the Database – Updates

 Increase salaries of instructors whose salary is over $100,000 by
3%, and all others receive a 5% raise
 Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

 The order is important
 Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.62Database System Concepts - 6th Edition

Case Statement for Conditional Updates

 Same query as before but with case statement
update instructor

set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

©Silberschatz, Korth and Sudarshan3.63Database System Concepts - 6th Edition

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students
update student S

set tot_cred = (select sum(credits)
from takes natural join course

where S.ID= takes.ID and
takes.grade <> ’F’ and
takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course
 Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 3

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

©Silberschatz, Korth and Sudarshan3.65Database System Concepts - 6th Edition

Advanced SQL Features**

 Create a table with the same schema as an existing table:
create table temp_account like account

©Silberschatz, Korth and Sudarshan3.66Database System Concepts - 6th Edition

Figure 3.02

©Silberschatz, Korth and Sudarshan3.67Database System Concepts - 6th Edition

Figure 3.03

©Silberschatz, Korth and Sudarshan3.68Database System Concepts - 6th Edition

Figure 3.04

©Silberschatz, Korth and Sudarshan3.69Database System Concepts - 6th Edition

Figure 3.05

©Silberschatz, Korth and Sudarshan3.70Database System Concepts - 6th Edition

Figure 3.07

©Silberschatz, Korth and Sudarshan3.71Database System Concepts - 6th Edition

Figure 3.08

©Silberschatz, Korth and Sudarshan3.72Database System Concepts - 6th Edition

Figure 3.09

©Silberschatz, Korth and Sudarshan3.73Database System Concepts - 6th Edition

Figure 3.10

©Silberschatz, Korth and Sudarshan3.74Database System Concepts - 6th Edition

Figure 3.11

©Silberschatz, Korth and Sudarshan3.75Database System Concepts - 6th Edition

Figure 3.12

©Silberschatz, Korth and Sudarshan3.76Database System Concepts - 6th Edition

Figure 3.13

©Silberschatz, Korth and Sudarshan3.77Database System Concepts - 6th Edition

Figure 3.16

©Silberschatz, Korth and Sudarshan3.78Database System Concepts - 6th Edition

Figure 3.17

	Chapter 3: Introduction to SQL
	Chapter 3: Introduction to SQL
	History
	Data Definition Language
	Domain Types in SQL
	Create Table Construct
	Integrity Constraints in Create Table
	And a Few More Relation Definitions
	And more still
	Drop and Alter Table Constructs
	Basic Query Structure
	The select Clause
	The select Clause (Cont.)
	The select Clause (Cont.)
	The where Clause
	The from Clause
	Cartesian Product: instructor X teaches
	Joins
	Try Writing Some Queries in SQL
	Natural Join
	Natural Join Example
	Natural Join (Cont.)
	The Rename Operation
	String Operations
	String Operations (Cont.)
	Ordering the Display of Tuples
	Where Clause Predicates
	Duplicates
	Duplicates (Cont.)
	Set Operations
	Set Operations
	Null Values
	Null Values and Three Valued Logic
	Aggregate Functions
	Aggregate Functions (Cont.)
	Aggregate Functions – Group By
	Aggregation (Cont.)
	Aggregate Functions – Having Clause
	Null Values and Aggregates
	Nested Subqueries
	Example Query
	Example Query
	Set Comparison
	Definition of Some Clause
	Example Query
	Definition of all Clause
	Test for Empty Relations
	Correlation Variables
	Not Exists
	Test for Absence of Duplicate Tuples
	Subqueries in the From Clause
	Subqueries in the From Clause (Cont.)
	With Clause
	Complex Queries using With Clause
	Scalar Subquery
	Modification of the Database
	Modification of the Database – Deletion
	Deletion (Cont.)
	Modification of the Database – Insertion
	Insertion (Cont.)
	Modification of the Database – Updates
	Case Statement for Conditional Updates
	Updates with Scalar Subqueries
	End of Chapter 3
	Advanced SQL Features**
	Figure 3.02
	Figure 3.03
	Figure 3.04
	Figure 3.05
	Figure 3.07
	Figure 3.08
	Figure 3.09
	Figure 3.10
	Figure 3.11
	Figure 3.12
	Figure 3.13
	Figure 3.16
	Figure 3.17

