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Chapter 3:  Introduction to SQL

 Overview of the SQL Query Language
 Data Definition
 Basic Query Structure
 Additional Basic Operations
 Set Operations
 Null Values
 Aggregate Functions
 Nested Subqueries
 Modification of the Database 
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History

 IBM Sequel language developed as part of System R project at 
the IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)
 ANSI and ISO standard SQL:

 SQL-86, SQL-89, SQL-92
 SQL:1999, SQL:2003, SQL:2008

 Commercial systems offer most, if not all, SQL-92 features, 
plus varying feature sets from later standards and special 
proprietary features.
 Not all examples here may work on your particular system.
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Data Definition Language

 The schema for each relation.
 The domain of values associated with each attribute.
 Integrity constraints
 And as we will see later, also other information such as 

 The set of indices to be maintained for each relations.
 Security and authorization information for each relation.
 The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the 
specification of information about relations, including:
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Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.
 varchar(n). Variable length character strings, with user-specified 

maximum length n.
 int. Integer (a finite subset of the integers that is machine-

dependent).
 smallint. Small integer (a machine-dependent subset of the integer 

domain type).
 numeric(p,d). Fixed point number, with user-specified precision of 

p digits, with n digits to the right of decimal point.
 real, double precision. Floating point and double-precision floating 

point numbers, with machine-dependent precision.
 float(n). Floating point number, with user-specified precision of at 

least n digits.
 More are covered in Chapter 4.
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Create Table Construct

 An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation
 each Ai is an attribute name in the schema of relation r
 Di is the data type of values in the domain of attribute Ai

 Example:
create table instructor (

ID char(5),
name           varchar(20) not null,
dept_name  varchar(20),
salary numeric(8,2))

 insert into instructor  values (‘10211’, ’Smith’, ’Biology’, 66000);
 insert into instructor  values (‘10211’, null, ’Biology’, 66000);
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Integrity Constraints in Create Table

 not null
 primary key (A1, ..., An )
 foreign key (Am, ..., An ) references r

Example:  Declare dept_name as the primary key for department
.

create table instructor (
ID char(5),
name           varchar(20) not null,
dept_name  varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null
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And a Few More Relation Definitions
 create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department) );

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year),
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section );

 Note: sec_id can be dropped from primary key above, to ensure a 
student cannot be registered for two sections of the same course in the 
same semester
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And more still
 create table course (

course_id varchar(8) primary key,
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
foreign key (dept_name) references department) );

 Primary key declaration can be combined with attribute 
declaration as shown above
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Drop and Alter Table Constructs

 drop table student
 Deletes the table and its contents

 delete from student
 Deletes all contents of table, but retains table

 alter table
 alter table r add A D

 where A is the name of the attribute to be added to 
relation r and D is the domain of A.

All tuples in the relation are assigned null as the value 
for the new attribute.

 alter table r drop A

where A is the name of an attribute of relation r
Dropping of attributes not supported by many 

databases



©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 6th Edition

Basic Query Structure 

 The SQL data-manipulation language (DML) provides the 
ability to query information, and insert, delete and update 
tuples

 A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

 Ai represents an attribute
 Ri represents a relation
 P is a predicate.

 The result of an SQL query is a relation.
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The select Clause

 The select clause list the attributes desired in the result of a query
 corresponds to the projection operation of the relational algebra

 Example: find the names of all instructors:
select name
from instructor

 NOTE:  SQL names are case insensitive (i.e., you may use upper- or 
lower-case letters.)  
 E.g.   Name ≡ NAME ≡ name
 Some people use upper case wherever we use bold font.
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The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.
 To force the elimination of duplicates, insert the keyword distinct

after select.
 Find the names of all departments with instructor, and remove 

duplicates
select distinct dept_name
from instructor

 The keyword all specifies that duplicates not be removed.

select all dept_name
from instructor
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The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”
select *
from instructor

 The select clause can contain arithmetic expressions involving 
the operation, +, –, ∗, and /, and operating on constants or 
attributes of tuples.

 The query:
select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation, 
except that the value of the attribute salary is divided by 12.
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The where Clause

 The where clause specifies conditions that the result must 
satisfy
 Corresponds to the selection predicate of the relational 

algebra.
 To find all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

 Comparison results can be combined using the logical 
connectives and, or, and not.

 Comparisons can be applied to results of arithmetic expressions.
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The from Clause

 The from clause lists the relations involved in the query
 Corresponds to the Cartesian product operation of the 

relational algebra.
 Find the Cartesian product instructor X teaches

select ∗
from instructor, teaches

 generates every possible instructor – teaches pair, with all 
attributes from both relations

 Cartesian product not very useful directly, but useful combined 
with where-clause condition (selection operation in relational 
algebra)



©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 6th Edition

Cartesian Product: instructor X teaches
instructor teaches
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Joins
 For all instructors who have taught some course, find their names 

and the course ID of the courses they taught.
select name, course_id
from instructor, teaches
where  instructor.ID = teaches.ID

 Find the course ID, semester, year and title of each course offered 
by the Comp. Sci. department

select section.course_id, semester, year, title
from section, course
where  section.course_id = course.course_id  and

dept_name = ‘Comp. Sci.'
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Try Writing Some Queries in SQL

 Suggest queries to be written…..
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Natural Join

 Natural join matches tuples with the same values for all 
common attributes, and retains only one copy of each common 
column

 select *
from instructor natural join teaches;
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Natural Join Example

 List the names of instructors along with the course ID of the courses that 
they taught.

 select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

 select name, course_id
from instructor natural join teaches;
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Natural Join (Cont.)

 Danger in natural join: beware of unrelated attributes with same name which 
get equated incorrectly

 List the names of instructors along with the the titles of courses that they 
teach
 Incorrect version (makes course.dept_name = instructor.dept_name)

 select name, title
from instructor natural join teaches natural join course;

 Correct version
 select name, title

from instructor natural join teaches, course
where teaches.course_id = course.course_id;

 Another correct version
 select name, title

from (instructor natural join teaches)
join course using(course_id);
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The Rename Operation

 The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

 E.g.
 select ID, name, salary/12 as monthly_salary

from instructor

 Find the names of all instructors who have a higher salary than 
some instructor in ‘Comp. Sci’.

 select distinct T. name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

 Keyword as is optional and may be omitted
instructor as T ≡ instructor T

 Keyword as must be omitted in Oracle
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String Operations
 SQL includes a string-matching operator for comparisons on 

character strings.  The operator “like” uses patterns that are 
described using two special characters:
 percent (%).  The % character matches any substring.
 underscore (_).  The _ character matches any character.

 Find the names of all instructors whose name includes the substring 
“dar”.

select name
from instructor
where name like '%dar%'

 Match the string “100 %”
like ‘100 \%' escape  '\'
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String Operations (Cont.)

 Patters are case sensitive. 
 Pattern matching examples:

 ‘Intro%’ matches any string beginning with “Intro”.
 ‘%Comp%’ matches any string containing “Comp” as a substring.
 ‘_ _ _’ matches any string of exactly three characters.
 ‘_ _ _ %’ matches any string of at least three characters.

 SQL supports a variety of string operations such as
 concatenation (using “||”)
 converting from upper to lower case (and vice versa)
 finding string length, extracting substrings, etc.
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Ordering the Display of Tuples

 List in alphabetic order the names of all instructors 
select distinct name
from    instructor
order by name

 We may specify desc for descending order or asc for 
ascending order, for each attribute; ascending order is the 
default.
 Example:  order by name desc

 Can sort on multiple attributes
 Example: order by dept_name, name
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Where Clause Predicates

 SQL includes a between comparison operator
 Example:  Find the names of all instructors with salary between 

$90,000 and $100,000 (that is, ≥ $90,000 and ≤ $100,000)
 select name

from instructor
where salary between 90000 and 100000

 Tuple comparison
 select name, course_id

from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);
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Duplicates

 In relations with duplicates, SQL can define how many copies 
of tuples appear in the result.

 Multiset versions of some of the relational algebra operators –
given multiset relations r1 and r2:

1. σθ (r1): If there are c1 copies of tuple t1 in r1, and t1
satisfies selections σθ,, then there are c1 copies of t1 in σθ
(r1).

2. ΠA (r ): For each copy of tuple t1 in r1, there is a copy of 
tuple ΠA (t1) in ΠA (r1) where ΠA (t1) denotes the 
projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies 
of tuple t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 
x r2
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Duplicates (Cont.)

 Example: Suppose multiset relations r1 (A, B) and r2 (C) 
are as follows:

r1 = {(1, a) (2,a)}     r2 = {(2), (3), (3)}
 Then ΠB(r1) would be {(a), (a)}, while ΠB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
 SQL duplicate semantics:

select A1,, A2, ..., An
from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

))(( 21,,, 21 mPAAA rrr
n

×××∏  σ
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Set Operations

 Find courses that ran in Fall 2009 or in Spring 2010

 Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union
(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect
(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)
except
(select course_id from section where sem = ‘Spring’ and year = 2010)
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Set Operations

 Set operations union, intersect, and except
 Each of the above operations automatically eliminates 

duplicates
 To retain all duplicates use the corresponding multiset versions 

union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it 
occurs:
 m + n times in r union all s
 min(m,n) times in r intersect all s
 max(0, m – n) times in r except all s
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Null Values

 It is possible for tuples to have a null value, denoted by null, for 
some of their attributes

 null signifies an unknown value or that a value does not exist.
 The result of any arithmetic expression involving null is null

 Example:  5 + null returns null
 The predicate  is null can be used to check for null values.

 Example: Find all instructors whose salary is null.
select name
from instructor
where salary is null
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Null Values and Three Valued Logic

 Any comparison with null returns unknown
 Example: 5 < null   or   null <> null    or    null = null

 Three-valued logic using the truth value unknown:
 OR: (unknown or true)   = true,

(unknown or false)  = unknown
(unknown or unknown) = unknown

 AND: (true and unknown)  = unknown,    
(false and unknown) = false,
(unknown and unknown) = unknown

 NOT:  (not unknown) = unknown
 “P is unknown” evaluates to true if predicate P evaluates 

to unknown
 Result of where clause predicate is treated as false if it 

evaluates to unknown
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Aggregate Functions

 These functions operate on the multiset of values of a 
column of a relation, and return a value

avg: average value
min:  minimum value
max:  maximum value
sum:  sum of values
count:  number of values
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Aggregate Functions (Cont.)

 Find the average salary of instructors in the Computer Science 
department
 select avg (salary)

from instructor
where dept_name= ’Comp. Sci.’;

 Find the total number of instructors who teach a course in the 
Spring 2010 semester
 select count (distinct ID)

from teaches
where semester = ’Spring’ and year = 2010

 Find the number of tuples in the course relation
 select count (*)

from course;
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Aggregate Functions – Group By

 Find the average salary of instructors in each department
 select dept_name, avg (salary)

from instructor
group by dept_name;

 Note: departments with no instructor will not appear in result
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Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must 
appear in group by list
 /* erroneous query */

select dept_name, ID, avg (salary)
from instructor
group by dept_name;
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Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose 
average salary is greater than 42000

Note:  predicates in the having clause are applied after the 
formation of groups whereas predicates in the where
clause are applied before forming groups

select dept_name, avg (salary)
from instructor
group by dept_name
having avg (salary) > 42000;
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Null Values and Aggregates

 Total all salaries
select sum (salary )
from instructor

 Above statement ignores null amounts
 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null 
values on the aggregated attributes

 What if collection has only null values?
 count returns 0
 all other aggregates return null
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Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.
 A subquery is a select-from-where expression that is nested 

within another query.
 A common use of subqueries is to perform tests for set 

membership, set comparisons, and set cardinality.
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Example Query

 Find courses offered in Fall 2009 and in Spring 2010

 Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and 

course_id in (select course_id
from section
where semester = ’Spring’ and year= 2010);

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and 

course_id  not in (select course_id
from section
where semester = ’Spring’ and year= 2010);
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Example Query

 Find the total number of (distinct) studentswho have taken 
course sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner.  The 
formulation above is simply to illustrate SQL features.

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in 

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);
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Set Comparison

 Find names of instructors with salary greater than that of some 
(at least one) instructor in the Biology department.

 Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept_name = ’Biology’);

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ’Biology’;



©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 6th Edition

Definition of  Some Clause

 F <comp> some r ⇔ ∃ t ∈ r such that (F <comp> t )
Where <comp> can be:  <,  ≤, >, =, ≠

0
5
6

(5 < some ) = true

0
5
0

) = false

5

0
5(5 ≠ some ) = true (since 0 ≠ 5)

(read:  5 < some tuple in the relation) 

(5 < some

) = true(5 = some

(= some) ≡ in
However, (≠ some) ≡ not in
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Example Query

 Find the names of all instructors whose salary is greater than 
the salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary

from instructor
where dept_name = ’Biology’);
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Definition of all Clause

 F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

0
5
6

(5 < all ) = false

6
10
4

) = true

5

4
6(5 ≠ all ) = true (since 5 ≠ 4 and 5 ≠ 6)

(5 < all

) = false(5 = all

(≠ all) ≡ not in
However, (= all) ≡ in
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Test for Empty Relations

 The exists construct returns the value true if the argument 
subquery is nonempty.

 exists r ⇔ r ≠ Ø
 not exists r ⇔ r = Ø
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Correlation Variables

 Yet another way of specifying the query “Find all courses 
taught in both the Fall 2009 semester and in the Spring 2010 
semester”

select course_id
from section as S
where semester = ’Fall’ and year= 2009 and 

exists (select *
from section as T
where semester = ’Spring’ and year= 2010 

and S.course_id= T.course_id);
 Correlated subquery
 Correlation name or correlation variable
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Not Exists

 Find all students who have taken all courses offered in the 
Biology department.

select distinct S.ID, S.name
from student as S
where not exists ( (select course_id

from course
where dept_name = ’Biology’)

except
(select T.course_id
from takes as T
where S.ID = T.ID));

 Note that X – Y = Ø   ⇔ X ⊆ Y
 Note: Cannot write this query using = all and its variants
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Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate tuples 
in its result.
 (Evaluates to “true” on an empty set)

 Find all courses that were offered at most once in 2009
select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id 

and R.year = 2009);
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Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause
 Find the average instructors’ salaries of those departments where the 

average salary is greater than $42,000. 
select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;
 Note that we do not need to use the having clause
 Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary) 

from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;
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Subqueries in the From Clause (Cont.)

 And yet another way to write it: lateral clause
select name, salary, avg_salary
from instructor I1,

lateral (select avg(salary) as avg_salary
from instructor I2
where I2.dept_name= I1.dept_name);

 Lateral clause permits later part of the from clause (after the lateral 
keyword) to access correlation variables from the earlier part.

 Note: lateral is part of the SQL standard, but is not supported on many 
database systems; some databases such as SQL Server offer 
alternative syntax
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With Clause

 The with clause provides a way of defining a temporary view 
whose definition is available only to the query in which the with
clause occurs.

 Find all departments with the maximum budget 

with max_budget (value) as 
(select max(budget)
from department)

select budget
from department, max_budget
where department.budget = max_budget.value;
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Complex Queries using With Clause

 With clause is very useful for writing complex queries
 Supported by most database systems, with minor syntax 

variations
 Find all departments where the total salary is greater than the 

average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),

dept_total_avg(value) as
(select avg(value)
from dept_total)

select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;
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Scalar Subquery

 Scalar subquery is one which is used where a single value is expected
 E.g.   select dept_name, 

(select count(*) 
from instructor 
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

 E.g.  select name
from instructor
where salary * 10 > 

(select budget from department 
where department.dept_name = instructor.dept_name)

 Runtime error if subquery returns more than one result tuple
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Modification of the Database

 Deletion of tuples from a given relation
 Insertion of new tuples into a given relation
 Updating values in some tuples in a given relation
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Modification of the Database – Deletion

 Delete all instructors
delete from instructor

 Delete all instructors from the Finance department
delete from instructor
where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors 
associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name

from department
where building = ’Watson’);
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Deletion (Cont.)

 Delete all instructors whose salary is less than the average 
salary of instructors

delete from instructor
where salary< (select avg (salary) from instructor);

 Problem:  as we delete tuples from deposit, the average salary 
changes

 Solution used in SQL:
1.   First, compute avg salary and find all tuples to delete
2.   Next, delete all tuples found above (without recomputing avg or   

retesting the tuples)
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Modification of the Database – Insertion

 Add a new tuple to course
insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently
insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null
insert into student

values (’3003’, ’Green’, ’Finance’, null);
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Insertion (Cont.)

 Add all instructors to the student relation with tot_creds set to 0
insert into student

select ID, name, dept_name, 0
from instructor

 The select from where statement is evaluated fully before any of 
its results are inserted into the relation (otherwise queries like

insert into table1 select * from table1
would cause problems, if table1 did not have any primary key 
defined. 
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Modification of the Database – Updates

 Increase salaries of instructors whose salary is over $100,000 by 
3%, and all others receive a 5% raise
 Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

 The order is important
 Can be done better using the case statement (next slide)
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Case Statement for Conditional Updates

 Same query as before but with case statement
update instructor

set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end
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Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students
update student S 

set tot_cred = ( select sum(credits)
from takes natural join course

where S.ID= takes.ID and 
takes.grade <> ’F’ and
takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course
 Instead of sum(credits), use:

case 
when sum(credits) is not null then sum(credits)
else 0

end
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Advanced SQL Features**

 Create a table with the same schema as an existing table:
create table temp_account like account
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Figure 3.02
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Figure 3.03
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Figure 3.04
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Figure 3.05
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Figure 3.07
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Figure 3.08
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Figure 3.09
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Figure 3.10
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Figure 3.11
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Figure 3.12
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Figure 3.13
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Figure 3.16
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Figure 3.17
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