Databases Spring

RELATIONAL DATABASE DESIGN

“Good” database design - Avoiding anomalies

Functional Dependencies

Normalization & Decomposition Using Functional Dependencies
1NF - Atomic Domains and First Normal Form

2NF - Partial Dependencies and Second Normal Form

3NF - Transitive dependencies and Third Normal Form

4NF - Multi-valued Dependencies and Fourth Normal Form

5NF - Decomposition and non loss-less join

Benefits of Normalization

UvA H. Afsarmanesh 1

Databases Spring

AVOIDING ANOMALIES - DATABASE CONSISTENCY

How to avoid inconsistent/anomalous state in Databases
1 Integrity Constraints address/avoid anomalies that can occur
during the Database Manipulation stage
[J e.g. Referential integrities and foreign keys

[J Normalization addresses/avoids anomalies that can occur

during the Database Design stage - “good” database design

UVA H. Afsarmanesh 2

Databases Spring

FUNCTIONAL DEPENDENCY

O Relations in the database should be legal under a given set of
Functional Dependencies (FDs)

Example:
* Name > Telephone-number

e Article-number - Price

U Attribute B (in relation F) is functionally dependent on attribute
A (also in relation F) means:
= For each value of A, there is a unique value of B
= Written: A—>B
» Read: A “functionally determines” B

or B is “functionally dependent” on A

UvA H. Afsarmanesh 3

Databases Spring

FUNCTIONAL DEPENDENCY - continued

= We can extend the notion of functional dependence to
multiple fields

= A1,A2,...,Am > B1,B2,...Bn

sFirst-name, last-name -> Student-ID

= Full functional dependence (vs. partial functional
dependence) is a functional dependence where there is
not a functional dependence from a subset of the
A1,A2,...,Am to B1,B2,...,Bn

O Normalization: decomposes the relations according to their
FDs, to avoid anomalies (e.g. insertion, deletion, and update
anomalies)

= Developed through a number of stages:
1NF, 2NF, 3NF, BCNF (Boyce Codd Normal Form), 4NF and 5NF

UVA H. Afsarmanesh 4

Databases Spring

EXAMPLE O0-O DATABASE SCHEMA

0 Database of ships with potentially hazardous cargo entering the coastal
water of some country (C1)

= This is a portion of the schema
= Only major relationships are shown

BANNED-OIL-TANKER
M)

Country-Banning

COUNTRY

Name >
Captain

(1) \Has-Name

INSPECTION

PERSON-NAME

Inspected
(1)

UvA H. Afsarmanesh DATE 5

Databases Spring

EXAMPLE OF FUNCTIONAL DEPENDENCIES

Consider the following relation schema:
OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRY-BANNING)

CAPTAIN-NAME

COUNTRY-
BANNING

= primary key: HULL#, COUNTRY-BANNING

= example FDs:

o HULL# > NAME | OIL-TANKERS |
o HULL# - CAPTAIN-NAME (full functional dependency)
o HULL#, NAME -> CAPTAIN-NAME (partial functional dependency)

FD counterexample: HULL# > COUNTRY-BANNING

A4

** Dependencies are defined by the database designer, based on the knowledge of the
application environment (i.e. they are data-dependent)

UVA H. Afsarmanesh 6

Databases Spring

1st NORMAL FORM (1NF)
NORMALIZATION IN RELATIONAL DB SYSTEMS

U Functional dependencies and keys may be used to develop normalization
* In order to avoid certain types of anomalies

U Normalization steps

1.FIRST NORMAL FORM All attributes
» No multi-valued attributes (repeating groups)| contain atomic
** Remove multi-valued attributes values only

Example in theDatabase of ships environment:
OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRIES-BANNING*)

Modify it to:
o OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME, COUNTRY-BANNING)

Or

o OIL-TANKERS (HULL#, NAME, CAPTAIN-NAME)
BANS (HULL#, COUNTRY-BANNING)

UvA H. Afsarmanesh 7

Databases Spring

27d NORMAL FORM (2NF)
- 2.SECOND NORMAL FORMW # # ## #0#7 +//

= if INF and every attribute not part of the primary key is fully functionally
dependent on the primary key.

** Remove partial functional dependencies

1- Example:
INSPECTIONS (DATE, HULL#, RESULT, HOME-PORT)

2- Functional dependencies:
DATE, HULL# > RESULT
HULL# > HOME-PORT

DATE, HULL# > HOME-PORT
3- the primary key is DATE, HULL#, but HOME-PORT is partially
functionally dependent on the key DATE, HULL#

d1 h1 Pass L.A.

- Causes anomalies: .
d2 h1 Fail LA.

d3 h1 Pass L.A.
UvA H. Afsarmanesh

Databases Spring

2" NORMAL FORM (continued)
2. SECOND NORMAL FORM (continued)

5 — anomalies:

Update:
» change HOME-PORT from L.A. to S.F. in the 1st tuple, still key is
valid, but the information is wrong since h1 has both L.A. and S.F. as
home-port.

Insert:
= h2 with home-port S.D. cannot be added until it is inspected.
= if we add a tuple (d4, h1, pass, S.F.), the system will not catch the
inconsistency for the homeport of h1.

Delete:
= delete the last inspection record for h1 and you also loose the
information on its home-port

6 — decompose to:
INSEPECTION (DATE, HULL#, RESULT)
SHIP-HOME-PORTS (HULL#, HOME-PORT)

UvA H. Afsarmanesh 9

Databases Spring

3" NORMAL FORM (3NF)

3. THIRD NORMAL FORM

= |f 2NF and every non-key attribute is non-transitively dependent on the
primary key

** Remove transitive dependencies

Example:

1- CREW (ID#, HULL#, HOME-PORT)

2-(ID# > HULL# 4- But HULL# is not a candidate key in
ID# > HOME-PORT the CREW relation
HULL# -> HOME-PORT
CREW
3- ID# — HULL# [o# [Hu# | HOME-PORT]
C1 h1 L.A.
\l c2 h1 LA.
C3 h2 S.F.
HOME-PORT c4 h2 S.F.

UVA H. Afsarmanesh 10

Databases Spring

3" NORMAL FORM (continued)
3. THIRD NORMAL FORM (continued)

5- Anomalies
Update:
= |f C1 starts to work for h2 (HULL#) and you change h1 to h2
then it is inconsistent since h2 is in S.F. but you have it in L.A.
Insert:
= h3 with S.D. cannot be added if there is no ID# for CREW
= |fladd (c4 h2 S.D.), it will not be caught by the system as
inconsistency for the city home-port of h2
Delete:

= Delete the last tuple for a crew working on a ship, and you also
loose the information on the home-port of that ship

6- decompose to
CREW (ID#, HULL#)
SHIP-HOME-PORTS (HULL#, HOME-PORT)

X CREW-HOME-PORTS (ID#, HOME-PORT)
is semantically wrong and has no meaning in real life

UvA H. Afsarmanesh 11

Databases Spring

4tr NORMAL FORM (4NF)

4. FOURTH NORMAL FORM

= Even if a relation is in third normal form, there may still
remain some anomalies (problems)

o Multi-valued dependency: more general than a
functional dependency

o A >> B (A multi-determines B) if B has a well-
defined value (but not necessarily a single value)

* Remove multi-valued dependencies

UVA H. Afsarmanesh 12

Databases Spring

4th NORMAL FORM (continued-1)

4. FOURTH NORMAL FORM (continued)

— Example:
CAPITAIN-NAME ->-> LICENSING-COUNTRY

BLY C1 USA
BLY C1 GERMANY
BLY c2 USA
BLY c2 GERMANY
BLY c3 USA
BLY c3 GERMANY
WHITE c4 ENGLAND
WHITE C5 TALY X Wrong

* This shows that captain BLY has crew C1, C2, C3, and is licensed from
both USA and GERMANY

QUERY: Find the licensing countries for the captain of the crew c2?

UvA H. Afsarmanesh 13

Databases Spring

4tr NORMAL FORM (continued-2)

4. FOURTH NORMAL FORM (continued)

» Example decomposed relations:
CAPTAIN-CREW (CAPTAIN-NAME, CREW-ID#)
CAPTAIN-LICENSES (CAPTAIN-NAME, LICENSING-COUNTRY)

= |f all relations are in fourth normal form

— then, each tuple in each relation consists of one main key,
plus some mutually independent attribute values

* then, the key identifies an object, and other attribute
values describe that object

UVA H. Afsarmanesh 14

Databases Spring

5th NORMAL FORM

5. FIFTH NORMAL FORM

= Even if a relation is in fourth normal form, there may still
be more anomalies

o0 Non-loss- decomposition: no loss of information

(semantics) must occur with a join after a decomposition

o usually, a join after a decomposition returns the original (pre-

decomposition) relation

o BUT, there may be join dependencies

** Remove join dependencies

UvA H. Afsarmanesh 15

Databases Spring

Al B1 C2 —_—

A2 B1 Cf W 7

A B2 C1 =a
Al B1 Cf

A1 Bf B1 C2 A1 C2
A2 Bf B1 Ci A2 Cf
A1 B2 B2 Ci A1 C1
M /
&
A1 B1 C2 oo?y‘
A1 B1 Cf o
X wrong [A2" " [B1 " [C2 A1 BT C2
A2 B1 O A2 B1 Cf
a1 Bs e A1 B1 Cf

A1 B2 C1

UVA H. Afsarmanesh 16

Databases Spring

NORMALIZATION cont.

5. FIFTH NORMAL FORM (continued)

Lossless Decomposition
= Let R be arelation schema
= Let R1 and R2 form a decomposition of R
= This decomposition is a lossless (join) decomposition of R, if at least one
of the following functional dependencies holds:
oRl 1 R2 >R1
oRl1 [R2 3 R2

= ThusR1 [R1 must form a superkey of either R1 or R2

In the previous example: R = (RA, RB, RC)
R1= (RA, RB)
R2 = (RB, RC)
Rl [1R2= RB

But, RB is not a superkey of either R1 or R2, thus this decomposition is lossy

UvA H. Afsarmanesh 17

Databases Spring

BENEFITS OF NORMALIZATION - WHY NORMALIZE?

= Avoid anomalies

» Reduce data redundancy (by decompositions)
= Capture some application environment semantics
o Key represents the object-ID

o Other attributes describe the object

U Functional dependencies capture some facts about the

application environment

U Normalization allows us to enforce those semantics into the

system

= however, there are many other types of semantic constraints that

cannot be captured by functional dependencies
= relational integrity constraints are required

e.g. No employee’s salary can be more than his manager’s salary
UVA H. Afsarmanesh 18

