Project Databasetoepassingen 2007

Bachelor Informatiekunde
Universiteit van Amsterdam

x
Universitg of Amsterdam - Prometheus Pruject

Prometheus

Prometheus was the wisest of all.
His name means “{orethought” and
he was able to foretell the future’

Robert Jan de Groot Tim Gielissen
Robertus.deGroot@student.uva.nl Tim.Gielissen@student.uva.nl
0583634 0409154

Abstract

The paper in front of you is a report of the development of a system called “Prometheus”.
Prometheus is a system that can help teachers communicate homework to their students and that
supports students in planning their homework.

It is believed that the creation of this system is a (partial) solution to a problem that has been
recognized years ago in the Dutch education system. Students seem to have problems planning their
homework, especially at the University where there are few contact hours. This system can solve this
problem by providing functionalities that support planning.

Prometheus is a database application that is accessible over the internet. It is based primarily on PHP
en (my)SQL techniques. It can be used by student and teacher (who can also be administrators).

This paper will cover many different aspects of the development, including requirements, functional
requirements, organization and planning etc.

Page 2

Inhoud

N [0 oo [¥ T AT o T OO TP PP PRSPPI 4
P o o] o111 oo TSP TR SPUPRRPRRPR 5
DA A o e o] [T 0 g Ko [=X Yol T o d o [P 5
P A CTo Y- 1 Kol i 1 o[o] o) [=Tot A USSP 5
2.3 mUSBIS ittt e e a e s a e s s 5
P el U= To [U T =T 1= o) K 6
2.5 = SCENAMIO cueviiiiiitiii ittt a e s a e s 7
2.6 = BlaCKboardooiioeee e e s s 7
2.7 —‘And we shall call him... Prometheus’..........ccooiiiiiniiree e e 8
Y oY T o Y- 1 o [P SR U 9
3.1 MEBENOM ..t et h e st bbb e b e e e re e s e e e ateereen 9
3.2 —TechNIQUES aNd TOOIS ...ccccuiiieiccieie ettt e e et e e e et e e e seata e e e sbtaeeesbtaeesssraeeesnssneaesnns 9
G Rl VT YoruToT o Y o =Tl 1 o= Yd o] o TP 10
3.4 — Planning and OrganiZatioNccueeiiiiiiei ettt e e e e e e str e e e e stb e e s eantae e e ennrae e e e nnraee s 12
RESUIES ettt sttt e b e bt b e bt e s bt e s et e e st e e b e s b e e sh et sab e s bt e bt e bt e bt e sneeenn e et e eteen 13
4.1 - E-R model & Realized functionalitiescceerierienienieeeeeeee e 13
4.2 = The Databasecoouieriieiiee e e saee s e 15
e N YA (=10 0 I A ol o1 (=T] ISR 16
4.4 — Graphical User INterface DESIZNcccicuviiiiiiieee ettt ettt e e tre e s e e e e eaaae e e e sabae e s eenbaeeeenases 17
R Y= Lol U) £V 2 PP PPPPPPPPPPPPPPRE 21
EVAIUGTION .. bbbttt ettt et h e sae e st st e bt e bt e b e s be e s et e ereen 22
5.1 — Evaluation of Prometheusooiiiiiieeee e 22
5.2 - EXTENSIONS weviiiiiiiiiiiiiiiicicitic et a e s 22
5.3 — Evaluation Of the ProJECTceii i e s e e e s ae e e e naeee s 22
RETEIEINCES ...ttt ettt a et et e bt e b e e s b e e sae e sate st e e b e e bt e bt e sbeesne e et e ereen 23
Y oY T=T oo [PSRRI 24

Page 3

1 - Introduction

In 1998 some changes were made in the Dutch education system. A number of measures were
introduced to promote independent studying by students in high school. For example: students
were given more control over their own time schedules and there were less checks on the
completion of homework. The goa of these measures was to teach the students to work on
their own and thereby make it easier to bridge the gap between high school and university. At
the university, students are expected to demonstrate a greater deal of independence than they
are used to in high school. This causes students to drop out of university [1].

Recent research among students showed that students still feel they do not have enough
planning abilities compared to other essential abilities [2]. The percentages in the image
below show how much of the students think they master a specific skill “reasonably well to
good”. We see that 70% of the students of VWO (high school) with the Second Phase
education method think that they master the skill of planning reasonably well to good. This
means that 30% does not. We can see in the diagram that this percentage is alot lower than
the percentages of the other abilities (including communication skills, collaboration skills,
analytical skillsetc.). We can conclude that alot of students still have problems with planning
their homework at the university.

To help students at the university cope with this high degree of independence, tools can be
helpful. In this project such atool is developed. This tool can help students cope with their
independence by giving them overviews of homework with associated deadlines and by
giving them the possibility to plan their homework in an easy and clarifying way.

Ficuur 48 OORDELEN STUDENTEN OVER DE BEHEERSING VAN ALGEMENE VAARDIGHEDEN

zelfstandig werken

Q5% s Py B
analytische vaardigheden creativiteit
= . VWO 0.5. =) WO

@ vwons.—»wo

samenwerken

taalvaardigheid) studieplanning
informatie verzamelen
en verwerken

Figure 1 - Judgements from students about their own abilities (includes planning) [2]

Bron: ROA, zoog

Page 4

2 - Problem

2.1 - Problem description

A lot of students still seem to have problems with planning their homework. In the Dutch education
system the government is trying to solve the problem in high schools with the Second Phase. This
project targets the students already studying at the university with problems with planning.

Studying at the university is different from going to high school. At the university students have less
contact hours than students in high school, but a lot more homework. There is also less control on
the completion of homework. Thus, it’s the responsibility of the student to plan their homework to
fit in the available time. There are a couple of problems that can be expected here. First of all,
students can underestimate the amount of homework because they do not have an overview of all
the homework assignments. They put off the homework and get in trouble when the deadline
approaches. Also, students can find it hard to plan their homework in their head or in another
unorganized manner. They may forget assignments or use their time inefficiently.

What adds to these problems is that teachers often do not have a standardized manner of assigning
homework. They tell what needs to be done face-to-face, put it on paper and pass that around, put it
on a website or put the homework on a digital learning environment. Even within one method, the
form can vary greatly.

2.2 - Goal of the project

The goal of this project is to develop a system that addresses the problem described in the problem
description, i.e. a system that helps teachers communicate homework to students and helps students
to plan those homework assignments. This goal is divided in specific functionalities in the
requirements section (2.4).

The system is developed at the University of Amsterdam and will form an extension of the current
digital learning environment in use there. This digital learning environment will be described in
section 2.6.

2.3 - Users

Three types of users can be distinguished: Students, teachers and administrators. Assistants will get
the same rights as teachers and will therefore also be called teachers.

Students: Students can enroll for courses, view their homework and devise a planning for their
homework.
Teachers: Teachers can schedule homework assignments for the courses they teach. They also

have the possibility to view all the homework assignments of their students. Teacher
cannot view the planning of the students.

Administrator: Administrators manage the application. They can add teachers, students and courses
to the system. They also have the possibility to view and edit information about
teachers, students and courses.

At this stage, only teachers can be administrators (and an administrator is always a teacher). This

choice was made to save some time in the implementation phase.

The exact possibilities of the users will be described in the next section.

Page 5

2.4 - Requirements

This application is designed for students and teachers to help them plan their homework. The system
will be an extension to Blackboard. The Prometheus application is a stand-alone application and only
extends Blackboard in a way that it offers a possibility that Blackboard does not. Thus enrolling in a
Blackboard course will not enroll the student in Prometheus. If Prometheus proves to be successful,
the two systems can be integrated. For the time being Prometheus is designed as a stand-alone
system however. The system should meet the following requirements.

e Teachers should be able to see which students are enrolled in the courses that they teach.

e Teachers should be able to add homework to the system, with the appropriate deadline and
an estimate of the time required. The teacher should only be able to add homework for their
own courses. The teacher should also be able to edit the homework. The homework deadline
can not occur the created date.

e Teachers should have an overview of all the homework they have assigned.

e Teachers should have an overview of the homework they assigned per course. This and the
previous overview should be able to sort by deadline and by course.

e Teachers should have an overview for each course, that tells them which other courses their
students have. The homework assignments for these other courses should be displayed next to
the own homework assignments, and conflicts with deadlines should be highlighted. This
overview should allow a teacher to view homework from other courses, and to edit own
homework assignments

e Administrators should be able to add courses to the Prometheus system, and assign teachers
to these courses. No course should be added if the end date for that course is before the date
it is created.

e Administrators should be able to add and remove teachers to the system and classify them as
also being an administrator or not.

o Administrators should be able to add and remove students to the system. However, if an
existing student number is used, the system should give an error.

e Students should be able to enrol for the available courses. They should not be able to enrol in a
course they are already enrolled to.

e Students should be able to see for which courses they are enrolled.

e Students should have an overview of all the homework in one course. The required time, the
deadline and the content of the assignment can be read from this overview.

e Students should have an overview of all the homework that they are assigned to do. This
means there should be an overview of all homework from the courses the students are
enrolled in. This overview can also be sorted by deadline and by course name.

e Students should be able to devise a planning (workpackages) for their homework assignments,
specifying when they plan to do or to finish the assignments. The students should also be able
to add a short personal comment to this planning and to mark the completed homework when
it is completed.

e The system should allow a student to add a workpackage about a homework assignment,
even if the planned date extends the official deadline. This allows the student to plan non-
deliverable assignments such as ‘reading’” homework in their own time. The student will be
notified by the system though, by changing the personal deadline to a read color if it extends
the official deadline.

e Students can delete their workpackages whenever they wish (completed or not).

Page 6

2.5 - Scenario

In this scenario, the system and its functions will be described to show how it can help students and
teachers. Note however that not all functionalities are covered in this scenario.

Henk has just started at the University of Amsterdam studying “Informatiekunde”. He is a bit worried
about the workload at the university because he never was really good at planning his homework in
high school. He sometimes tried to plan his homework in his head but this never really worked out.

In the first week of the first semester, Henk receives a letter about a system called ‘Prometheus’ along
with login information. When he logs in he sees he can enroll for the courses he has to follow. He
enrolls for “Basis Informatica”, “Informatie en organisatie” and “Webtechnologie- en talen” and these
courses are immediately displayed under “enrolled courses” so Henk knows all went well.

Now Henk clicks on the homework/planning-button. This brings him to the page where all his
personal homework is displayed. (This homework is entered into the system by his teachers, see
below.) From this overview of homework Henk can start to devise a personal planning. The system
provides functionality for creating a planning so Henk doesn’t have to do it in his head anymore.

Henk creates a planning for the following week. He plans to ‘read Chapter 1’ for the course ‘Basis
Informatica’ on Tuesday. The required time for this assignment is set on two hours so Henk thinks he
can do it right between dinner and his soccer practice. Henk repeats the process of planning the
assignments for the next week. As the week progresses, Henk checks back every now and then to see
what he plans to do on that particular day. He can mark assignments as being completed and/or
delete the assignment from his planning.

The week before the semester starts, Theodore is planning the course he has to teach coming
semester. When he is done, he starts Prometheus and logs in. Because Theodore is a teacher he can
add homework for the courses he is teaching. He can thus use Prometheus to communicate the
homework to the students. When he entered the homework for his courses he can check which
students have enrolled for his course already and how much homework these students have. This way
he can try to avoid any conflicts with the homework of other courses (and possibly change a
homework deadline).

2.6 - Blackboard

At the University of Amsterdam homework is mainly communicated to the students using an
electronic learning environment called “Blackboard”. The way teachers assign homework using
Blackboard differs greatly. Some teachers put all the homework in a Microsoft Word Document and
put that on blackboard, others use the announcements to assign homework, examples are abundant.
These differences however are not due to a limitation of Blackboard. Blackboard actually offers a
functionality for teachers to assign homework (called ‘tasks’) to students in a standardized manner
(figure 2 on the next page).

Page 7

Uvh onderwis

COURSES > J0T00 SEMANTIC WER » TOOLS + TASKS

Announcements
Cursus informatie a - High Priority + - Low Priority
Cursus matariaal
Opdrachten Buisiiy Subyesd iy Dol Date
Tips There are no tasks in this course.
Uitslagen oKk)

Staff Information
Communication
Taools

@ Course Map

Figure 2 The functionality of Blackboard to assign homework to students

This functionality hardly seems to be used. Then why will the system developed in this project be any
different? What is the difference between the Blackboard function of assigning tasks and the system
developed in this project?

First of all, the system developed in this project provides an overview of all the homework of a
student, not just that of one course. The combination of the homework of all courses into one
overview will be more valuable than one distinct overview per course. It will be easier to compare
courses or homework assignments and conflicts between different assignments can be found more
easily. Also, students only have to look in one place to see all their homework assignments.

Secondly, teachers will be able to add more information about assignments in the system developed
in this project than in Blackboard. In Blackboard teachers can add a priority indication, a subject, a
status and a due date. The system developed in this project will have more information fields
including for example a ‘long description’ for a detailed description (more than one line) and a field
for the (estimated) ‘required time’.

Finally and probably most important: the system developed in this project will have the functionality
to devise a planning using the overview of the total homework. This way, students can really use the
information to make concrete plans instead of an ambiguous plan in their head. It is like having
homework already written in their agenda, they only have to give it a place.

The system developed in this project will thus be an extension to Blackboard, able to provide more
functionalities than the current Blackboard. (In this phase the system will be designed as a stand-
alone system for testing purposes.)

2.7 - ‘And we shall call him... Prometheus’

The system is called Prometheus as briefly mentioned in the scenario. Prometheus is a character
from the Greek mythology. His name means forethought and he taught people to think ahead.
Prometheus also stands for the subjection of nature, taking control. Prometheus didn’t adapt to its
environment but adapted his environment to him. He tried to understand how things worked so he
could use them for his own goals. (P. Pekelharing, lecture 2 Honoursmodule Ethics, 10 oktober,
2007.)

Page 8

Approach

3.1 - Method

The method used for the various parts of this project will be explained here. Some choices that were
made during the project will be explained here as well.

The first step of the project was to make an analysis of the problem. The two group members used
their own experience with homework and planning as frame of reference. Through conversation and
brainstorming the problem became clear.

During these brainstorming sessions the user requirements were defined as well. A few scenarios
were imagined and the user requirements were recorded along the way. The user requirements
were thus created and tested by scenarios.

During this phase, the system was designed in a general sense as well. The intention was to create a
database application that was accessible over the internet. The choice was made for a relational
database application because that is the most ideal form of storage for the kind of information used
in the system. Relational databases provide the possibility to connect information (hence: relational
database) and create new information without having to store it explicitly. It should be accessible
over the internet because students have to be able to access the system from home, school or
anywhere else. (More on the architecture of the system in section 4.3.)

From that point on, the implementing phase began. This was really a trial and error process. On the
one hand trial and error on the implementation side (e.g. code, queries), on the other hand on the
interaction side with the University of Amsterdam (design, show design, re-design with feedback).
The documentation was during each phase of the project but especially when the application was
finished. This way there was no need to rewrite parts because of changes to the system. (To illustrate
this point, there were about 5 different versions of the Graphical User Interface. It would be
inefficient to change the documentation with each version, therefore only the last version is
documented.)

3.2 - Techniques and Tools
The following techniques and tools were used during the development of this project:

Techniques:

(x)HTML Used to structure the elements on the website.

CSS Used to define the layout of the (elements in) the website.

PHP Used to create parts of the websites dynamically using information from the
database. PHP was also used to process input from html-forms and to keep variables
during the entire visit of the user to the website.

MySQL Used (within PHP) to communicate with the database.

sQL Used (within PHP) to write queries that can be applied to the database using MySQL.

Tools:

PHPmyAdmin Used to create and manage the database

Online editor Used to write all the code. It is a very basic editor. It only colors some parts of the
code. The advantage of this editor was that the creators could work on the server
directly and didn’t have to upload their files repeatedly. (A screenshot of the editor
can be found in the appendix, appendix 2.)

Photoshop Used to create the bars at the top and bottom of the interface and the image in the
log in screen (also used in a different form as a watermark throughout the system).

Page 9

All these techniques were chosen because they were perceived as being the most commonly used
techniques for this kind of project. The tools were chosen by availability.

Because the project is a learning project, it might be noteworthy that the creators only had (some)
prior experience with (x)HTML, CSS, Photoshop and with SQL-queries. Figure 3.1 shows where the
different techniques and tools were used.

User
Controls the Inf tion f PHP
svstem usin INTERFACE nformation from - Retrieve input
Y 9 HTML forms
the HTML forms - Connect to Database
LT T L 2 created With messcesesesed) - Perform function on g Quety to retrieve information
HTML, CSS and basis of the input ~s~ from database/ alter
Photoshop - Send query to £ f
o - s\database ggrllg MySQL/

%

+ (1

[}]

\ 3
|)
‘\
New HTML®, PHP Result(s) from
page AN - Dynamically ue
~§~ creates the new query DATABASE
“& HTML-page on the ¢emmeeemsss==s (created using
basis of PHPmyAdmin)
information from
database
PHP to save variables during the entire visit of the user

Figure 3.1 Techniques used in Prometheus

For the calendar we used an open source PHP calendar class
(http://www.cascade.org.uk/software/php/calendar/). It was modified to work with our system. The
calendar class that was used only offered the basic functions, it could only display the current month
or year, with the appropriate dates. However, the class had to be fully understood and modified for
use with the Prometheus project. This required a great deal of time and programming during this
project.

It was beyond the scope of this project, to build our own php calendar. Moreover, the calendar we
used from this open source website had no connection to a database when we used it. The
modifications that took place allowed this calendar to communicate with the database properly,
which is the very core of this project.

3.3 - Function Specification

e Show courses for/from a person. The interface which relies on the php code, should be able
to call a 'select' statement, which retrieves the course number, course name and start & end
date. If the user is an administrator, this person should be able to delete information from
this table with a SQL Delete function. If the user is a student or a teacher, this person should
be able to view a more specific description about this table information

e Enroll to courses. The Gui should allow to call an Insert SQL statement, once a student
decides to enroll to a course. Students should not be able to enroll to a course twice.

e Show homework for/from a person. The PHP code should be able to call a 'select' statement,
which retrieves the homework number, homework description, deadline and the required
amount of time. If the user is a teacher, this person should be able to edit or delete
information from this table using an SQL Update statement. If the user is a student, this
person should be able to view a more specific description about this table information

Page

10

http://www.cascade.org.uk/software/php/calendar/

Show homework from a course. The PHP code should be able to call a 'select' statement,
which displays the homework number, homework description, deadline and the required
amount of time which apply for the selected course. If the user is a teacher, this person
should be able to edit or delete information from this table using an SQL Update statement.
If the user is a student, this person should be able to view a more specific description about
this table information

Create Workpackage. The GUI should allow the user to select any of the homework
assignments and let the user create a personal deadline and a personal comment for it. The
GUI then calls an Insert statement. This function will only be available for the user group
‘students’.

Show Workpackage from a person. This piece of code should allow the user group, which are
only students in this case, to view information from their personal workpackages; personal
deadline, planning and completed. This function uses a Select SQL Query to find all
workpackages for a certain user. Users can also update the attribute ‘completed’. This
function calls a SQL statement which updates the database.

Update profile. This function applies to teachers and students who wish to update their
profile. This code should be designed to update the database with an ‘update’ statement.
When the user wishes to update his/her password, it has to be entered twice, and the
second user input should match the first.

Create homework. This function allows the user group ‘teachers’ to create information which
will be added to the database. The user has to insert the description, deadline and required
time. A long description is optional. When the created deadline occurs before the current
date, the system should warn the user. Otherwise, the code should call an Insert statement.
Homework Overview. This function is designed to retrieve the essential information about a
user’s courses, and other courses and deadlines linked to it. The system should retrieve the
proper data from the tables, color them appropriately, and allow the user to use this
information to view, or edit it, depending on the authorization. This function is only available
for teachers.

Create teacher. A php code designed to call an insert statement allows the user to create a
teacher, defining the teachers last name, first name and whether this person should be an
administrator or not. A teacher number should automatically be generated by the system.
This function is only available for users who have an ‘administrator’ tag.

Create Student. This code is almost the same as the code above, and also available to
administrators only. However, this time the administrator cannot define the student as an
administrator. Also, a student number has to be created. This is because students often
already have a student number, created by the university administration. The system should
warn the administrator if the created student number is already in use.

Create course. This PHP code has to allow the user to create a course name, a start date and
an end date, and to assign one or more teachers to it. This code then calls an insert
statement which inserts the course into the databases, and assignes the teacher(s) to this
course properly. This function will only be available to the administrator group.

Sort table. This code uses the SQL function ‘order by’ to refresh the table and to sort the
requested attributes. This function is available to all users.

Page

11

3.4 - Planning and organization
The general planning of the project can be seen in the table below.

Week Activity

Overall planning, defining topic, initial ER modeling

User requirements, scenario, ER-model, learn PHP / MySQL

Learn PHP / MySQL, implement first functionalities of students, setting up database

Implementation: Log-in, student functionalities, expanding database

b W NP

Implementation: Student functionalities, admin functionalities
Documentation

6 Implementation: Teacher functionalities, admin functionalities
Documentation

Implementation, documentation and testing

Presentation / Demo

Each week the two group members met several times for a meeting, once or twice each week with
someone from the University of Amsterdam to discuss the progress of the project. Outside of those
meetings, the group member communicated through e-mail and Microsoft Live Messenger (instant
messaging). Both group members participated equally in the different forms of tasks (programming,
modeling, documenting etc.). This was because of the nature of the project: a learning project.

Page

12

Results

4.1 - E-R model & Realized functionalities
In this section the conceptual structure of the database will be described using an Entity-

Relationship-Diagram. The choices in this ERD shall also be explained in this section.

w| &
%ig

Teachorir
LastMama
FirstMarne

Passward

Admin

Teacher —N—‘————N— Course

RequiredTime Homewaork nrollment

|
orkpackagahr 1 Studenthr
Complated o Firsthlame

{ Deadine) N |
{ Planning) Work ——
Package 11— Planning - M. Student

E
¢
z

Figure 4.1 ER-diagram

The following choices have been made during the construction of this ERD.

First of all, multiple teachers should be able to teach the same course. For example, the
course ‘statistics’ is taught by a lecturer and an assistant (they will both be registered as
‘teachers’).

A Teacher can teach multiple courses.

A teacher can create multiple homework assignments for one course, and can create
homework for every course he or she teaches. This means that a teacher can also create
homework for multiple courses. A homework assignment can only belong to one course and
can only have been created by one teacher.

The primary key in the ‘assignment’ relationship is ‘HomeworkNr’. This relationship contains
three attributes: TeacherNr, CourseNr & HomeworkNr. and links the three entities (Teacher,
Course & Homework) together. The only unique key in this relationship is ‘HomeworkNr’,
because the same teachernumbers and coursenumbers will occur multiple times in this
table. In this application, only a single assignment can be linked to a homework object. This is
because otherwise homework assignments wouldn’t be as specific as they should be. For
example, a homework object ‘read chapter 1’ could be used for multiple assignments. What
Prometheus needs however, are more specific homework objects which have a required
time and a longer description. Although ‘read chapter 1’ can be re-used, the required time

Page

13

and the longer description cannot. It would be possible to merge the ‘homework’ and
‘assighment’ table, since they both contain the same primary key. This design flaw was
recognised by the designers and has been a point of discussion even during the
implementation phase. The separation of this data could indeed support the function we
declined: reusing homework objects for multiple assignments. Since that is not the case,
these tables could best be merged. However, by the time the designers agreed on this point,
the implementation phase had already started and many files relied on the original database
design. Since the separation of the tables ‘assignment’ and ‘homework’ functions equally
well as one table containing both ‘assignment’ and ‘homework’ data, the designers chose to
leave the tables as they are. This design mistake has been recognised, but will not affect the
functionality of the system. Although ‘Teacher’ and ‘Course’ are linked together twice,
without the ‘teaches’ relationship the database could never know if a teacher teaches a
course, if there isn’t a homework assignment that links the teacher to the course. On the
other hand, without the ‘teacher’ or ‘course’ attribute in the ‘assignment’ relationship, the
database can’t tell which homework belongs to which teacher or course. This double
relationship cannot be avoided and will also appear between the ‘student’ and ‘course’
entities. Teachers can only create homework for their own course. Students can only create
workpackages for homework assignments that they have, which implies they can only create
workpackages for courses they are enrolled to.

A student can be enrolled in multiple courses, and a course can be followed by multiple
students.

A student can create a workpackage for every homework assignment he or she receives.
Using the ‘planning’ relationship, the entities ‘Student’, ‘Workpackage’ & ‘Homework’ are
linked together. For this connection, the ‘Planning’ relationship contains the attributes
‘StudentNr’, ‘HomeworkNr’ & ‘WorkpackageNr’. “WorkpackageNr’ will be the primary key,
because this relationship will contain multiple workpackages about the same homework
assignment (and thus the same homeworknumbers and studentnumbers). A workpackage
can only be made by a single student, while a student can create multiple workpackages. A
student has multiple homework assignments, and a homework assignment is intended for
multiple students.

Student and course is linked together twice, but the same argument as described above
applies here; without the ‘enrollment’ relationship, the database can’t tell if a student is
enrolled in a course when that course has no homework assignments.

Page

14

4.2 - The Database

In this section we will give an overview of the database. In the diagram below you can see the tables
and the attributes. The lines depict a direct connection between two tables. (More detailed table
schema can be found in the appendix (appendix 1).

Teacher Teaches Course
TeacherNr TeacherNr CourseNr
LastName CourseNr CourseName
FirstName | — StartDate
Password Assignment - | EndDate
Admin HomeworkNr
| TeacherNr
CourseNr
Enrollment

Homework 2Hudenthc

HomeworkNe SOUIREN

Description

Deadline

RequiredTime

LongDescription

|

WorkPackage Planning Student
WarkPackageNr WorkPackageNr | | StudentNr
Deadline StudentNr LastName
Completed HomeworkNr FirstName
Planning Password

Figure 4.2. Database schema

The database was designed using the ER-model. The explanation of the ER-diagram is therefore for a
large part also the explanation of the structure of the database. Attributes that may be unclear are

explained here:
Teacher.Admin

Homework.Description
Homework.RequiredTime

Homework.LongDescription

WorkPackage.Deadline
WorkPackage.Completed

WorkPackage.Planning

A Boolean value that determines whether a teacher is also an
administrator or not.

Short description of the assignment, for example “Read chapter 5”
An estimate of the teacher how long the completion of the
homework will take

This attribute provides the possibility to provide a longer description
of the homework assignment. For example:

“Read chapter 5 of ‘Databases for Dummies’. Pay special attention to
the section ‘ER-diagrams’ because next week you’ll have to make on
yourself. Also don’t forget to bring the chapter to the next lecture”
The personal deadline of the student for an assignment (not the
teacers deadline!)

A Boolean value that determines whether the assignment is
completed or not

This attribute provides the possibility to enter a subtask. If the
assignment is for example “Read chapter 1 to 3” the subtask might be
“Read chapter 1”.

Page

15

4.3 - System Architecture
The system developed in this project consists of three

components: the graphical user interface (GUI), the Graphic User Interface
storage and query manager and the database. In this e
project a client/server model was used to arrange these L
T

three components.
The client is the computer of the user. With his Storage and query manager
computer, the user can connect to the system from all < “[
over the world over the internet. When he connects to I i,‘ -
the system, the GUI is transported to the internet S

. . Database
browser of the machine of the user. The processing . -
power of the client is used to generate the GUI on the Figure 4.3. System architecture
screen.

Whenever the user uses a functionality of the GUI, a request is sent to the storage and query
manager on the server to provide that functionality. This storage and query manager will honor the
request if possible by contacting the database.

The database is also located on the server. A query on the database will produce a result which is
sent back to the storage and query manager.

When the storage and query manager receives the results from the database, it will put it in the right
form and sent the information back to the GUI of the client. All the processes of the storage and
guery manager and the database use the processing power of the server.

When the GUI of the client receives the new information it will display it and the entire process can
start again.

This approach has a couple of advantages. First of all, not much is asked of the clients. The client
machines only have to display the information and send requests. The server does most of the
difficult processing. This way, almost any user with a system that has a internet browser can use the
system. The second advantage of the client / server architecture is safety. A user cannot access or
change the database directly. This way, the creator of the system can determine exactly what a user
can do/see and what not.

Page

16

4.4 - Graphical User Interface Design
In this section the graphical user interface (GUI) will be discussed.

Log in screen

All users start at the same log in page. This first page is designed to be visually attracting and
recognizable. The man in the painting is Prometheus. The same picture will be embedded as a
watermark throughout the entire system. The users have to enter their username and their password
in order to log in. The password won’t be visible when it is entered.

L%l Uuivet’siiq of Amsterdam - Prmnet]leuspmject

Please login here

Username: ID4D9154 Password: I**********

T T

Figure 4.4 Log in screen
When a user logs in, the system determines what kind of user it is (student, teacher or
teacher/administrator) and will send the user to the right page. (Photoshop 7.0 was used to adapt
the picture of Prometheus.)

Page

17

Aesthetic GUI-components

3
|

§ Universiteit van Amstendam. Hello Tim! Welcome to the PROMETHEUS projeck. || ': "-ﬂ
&l Project Databaserocpassingen e .

+i7Eianning - Edit Pr

PROMETHEUS

“Prometheus was the wisest of all. His name means
“forethought "and he was able to foretall the future

Figure 4.5 Welcoming page Student

1: On the top and the bottom of the screen there are bars. These bars are meant to associate
the system with the University of Amsterdam and to make the system more visually pleasing. There
are two pictures in the bars, one of the ‘Roeterseiland’ complex and one of the ‘Oudemanhuispoort’
complex, the two largest complexes of the University of Amsterdam. The top bar also contains the
logo of the University of Amsterdam, the text “University of Amsterdam” and the title of the course
in which the system was developed. (Photoshop 7.0 was used to create these bars and picture from
the University of Amsterdam website.)

2: All users are welcomed with a picture of Prometheus and a quote about him. This is to create
an ‘academic’ and inspiring feel and to keep reminding users why the system is called Prometheus.
(Actually, the website of the University of Amsterdam also has some references to ancient Greek
characters.) Again, this picture is also meant to make the system more visually pleasing. The same
picture is also embedded as a watermark throughout the entire system for the same reasons.

3 and 4 will be mentioned in the next subsection: Menu.

Menu
The menu is always available at the top of the screen.

Hello Frits! Welcome to the PROMETHEUS project. 1ogout

SOMIN PAGE
Insert Teachers - Maintain EZDI.II'SE.S - Maintain Students - TEACHER PAGE

Figure 4.6 Menu of admin/teacher
At the top there is a welcoming message including the name of the user (3 in figure 4.5). This will
provide feedback about a successful log in (and about who is logged in). Next to the welcoming
message, a user can also log out pressing the log out button (4 in figure 4.5).

On the left of the screen teachers and administrators have a little information field which shows if
the user is on an admin page or on a teacher page. This is there because some users have two roles.
The buttons are made red and with a rollover effect to make them look like buttons. Teacher who
are also administrators have an extra button in their menu with capital letters. This button is
different from the other buttons and thus displayed different (with capital letters). This button lets
the user switch between the teacher page and the admin page.

Page

18

Main pages

All the information that appears in the center of the screen has the same design. It has a color-
scheme designed to fit the entire site design but also to make the information more clear (and
attractive). Each page has a watermark embedded in it.

Each table has a title so that the user knows what the meaning of the table is. The buttons in the
tables have a slightly different layout so that they will be recognized as buttons. What the button is
for is displayed on the button and in the top row of the table.

Enrolled Courses
EuurEenr"Euursenarne IIStarh:latE "Enddate "Shuw homework per cuurse" More Info I

|1 "Cnnceptueel MDdeIIeren"ZDD?-D‘B-DS "200?-10-31 || <-- Show Homewark I" More Info I|
|3 "Databases Ik ||2IIIIII?-EI‘3-EIS "200?-10-31 || <-- Show Hormewark I" More Info I|

Available Courses
IEuursenr"Euursenarne "Starh:late "Enddate " Enroll I

|2 "Organisatiekunde "2IIIEI?-EIEI-I32 "2IIIEI?-1III-31 || <-- Enrall Il
|1 "Cnnceptueel MDdeIIeren"ZDD?-DE‘-DS "2IIIEI?-1I:I-31 || <-- Enroll Il
|3 "Databases Ik "2IIIEI?-EIEI-EIS "2IIIEI?-1I:I-31 || <-- Enrall Il

Figure 4.7 Example of table layout

The homework/planning page of the students is probably the most important page of the entire
system. This page also has more interactional options (next to the buttons) and a calendar.

Homework October 2007
[|Course name IAssignment IIDatE IIReguired I:ime”More info I 5 OMETE W GRS
i 2 323 4 5 6
|C0nceptuee| Modelleren"Opdracht 1 blackboard"2DD?-1D-lﬂ ||I33:3I3:EIEI ” =-- Mare info Il 2 g g .@ 11 12 12
ElCOnceptueel Modelleren"Opdracht Z blackboard"2l3l:l?-1l3-18 "DS:SS:DD " <-- Mare info Il
14 1516 17 .19 20
|C0nceptuee| Modelleren"dubbele deadline "200?-10-18 "ElS:lD:EIEI ” <-- Mare info Il
|C0nceptuee| Modelleren"driedubbele deadline "200?-10-18 ||E|3:DD:EIEI ” =-- Mare info Il 22 23 24 23 26 27
gﬁl 29 30 31
|Databases Ik "Read chapter 5 ||2DD.'-"-1D-28 "D2:DD:DD ” <-- Mare info Il

Add assignment to planning

I Select Assignment " (Sub)task " Personal Deadline "Completedl
| Databases [K[3] : Read chapter 5 | [2007 [se] 10 [se] 21 [w]][Mo [v] |
| insert "l Clear "
Planning
Personal ’
Lourse 135k = Lompiebed
Course Task [Subljtaslk Deadline Completed|| Edit Delete
Conceptueel ModellerenjCpdracht 1 blackboard zo07-10-0g || “Yes |_’*":| Edit I Delete I
Conceptueel Modellereni|Cpdracht 2 blackboard zo07-10-18 ||| Mo |_V:I Edit I Delete I
Datsbazes IK Read chapter 5 Test zo07-12-17 || Mo |#| ||_edit ||| oslete |
Databaszes IK Read chapter 5 Tast 2 2007-10-29 || Mo |»| ||_edit ||| oelete |

Figure 4.8 Homework/planning page

Page

19

The interactional possibilities are for a large part self-explanatory and very common over the entire
internet. It is assumed that a regular user will have experience with elements like drop-down boxes
and text input fields.

Some tables in the system can be sorted. The columns that can be sorted can be recognized by a
slightly different color from the other (dark red instead of black). They all have rollover effects to
make them look more like buttons.

Some deadlines in the planning table are red. This means that the personal deadline is after the
deadline set by the teacher.

The calendar also uses colors to add information to the display. Orange is the current day. Light blue
means one deadline and dark blue means more deadlines on one day. Users can click on these dates
to get more information.

The calendar on the page in the screenshot below uses different color codes. They are explained on
the page.

IEulur" DescHption
ﬁlSingle assignrnents which beloang to that course
-IMultiple assignments on the same date, including one or mare that belang to that course

ISingle assigmnents which belong to other courses vour students are enrolled to

IMuItipIe deadlines on the zarme date which belong to other courzes vour students are enrolled to

ICIick on a deadline to edit or view homework assignrents

Students enrolled to Conceptueel Modelleren, also have these other courses
October 2007

I Course II Shovr Homework " More Info I M T°W T E S

I

ceptueel Modeller i Shn:w.' Hormework. " Mare In'FD | J g g @ 11 17 13
Organizatiekunde (3] Shnw Hormework " Maore In'FD |
14 15 16 17 .19 20
Catabaszes IK (3] Show Homework |m
OnderzoeksPracticurn (1) Show Homework I| More Info I e ﬂ SEZRL AT
Geschiedenis (1) Show Homework I" Maore Info I| J 29 =20 21
28

Figure 4.9 Homework overview page

In this section the graphical user interface was presented. However, there was only a possibility to
show a few pages. It is assumed that most of the information speaks for itself; therefore the GUI was
not described in more detail (especially the GUI design of the main pages). For a better
understanding of the GUI, please take a look at the real system.

Page

20

4.5 - Security

In this paragraph the security measures are discussed.

Before a user can do anything, he has to log in. The system checks the username and password and
sends the user to the administrator page, the teacher page, the student page or back to the log in
page in case of a mismatch between username and password. Therefore, only users that are
registered by an administrator are able to use the system and manipulate (some) data in the
database. A user can try to type the URL of a file that the system uses into the address bar of the
browser directly to surpass the log in system. A user that will do that will receive an error message
and will be sent back to the log in page. A PHP session is used to do this. A Boolean variable is kept
through the entire visit of the user, if this variable has the value ‘false’ than a user will be sent back
to the log in page on any action. The variable is set to ‘true’ if the user enters the right log in
information. The variable cannot be set to ‘true’ manually.

The passwords used in the system are encrypted using md5-encryption. Because of this the
passwords are not stored in their original form in the database but in an encrypted, unrecognizable
form. This provides privacy for the students (because the administrator cannot see their passwords)
and security in case of a corruption of the database.

Users can also log out. When a user logs out the PHP session is destroyed. This means that all
information about the current session will be deleted and will be set back to default. (Default for the
“access” value mentioned above is false!) If an user works on a public computer and logs out but
leaves the browser open, nobody will be able to re-enter the system using the “back” button of the
browser. The system will provide an error message and send them back to the log in page.

Page

21

Evaluation

5.1 - Evaluation of Prometheus

Prometheus was designed and implemented in about six weeks (and not fulltime!). Therefore, it is
not surprising that a lot can be improved in order for it to be used in a real life situation. In this
subsection only a few improvements will be mentioned that are necessary if the University of
Amsterdam wants to use the system.

- More hierarchy in the information structure and information display. Prometheus
displays all the courses in one list, not according to study, faculty or something like that.
The same goes for teachers and students.

- There was a design flaw in the ER-diagram (not combining ‘homework’ and ‘assignment’
into one table) and therefore in the database. This can be improved. If the University of
Amsterdam wants to use the system, the current design will not be optimal. In the
current version of the system the design flaw doesn’t cause any inconvenience, in a
system with thousands of entries the additional disk space and processing power needed
because of this design flaw can expected to be significant.

- Prometheus is designed for Firefox. It also works in Internet Explorer, but not as good as
in Firefox. Some things can be improved here. This problem is probably caused by the
different handling of CSS by the different browsers.

The improvements mentioned above do not mean that there is anything wrong with Prometheus.
The functions it allows do work. There were no big problems with the final version of the system. Of
course there are things that can be added or improved if there was more time for the project. (E.g.
expansion of the homework overview function of teachers using the RequiredTime attribute.)

There was no time for usability tests.

5.2 - Extensions

A logical extension of Prometheus would be an interconnection possibility with Blackboard. This way
the information already available in Blackboard can be used by Prometheus (enroliment, course
information etc.). Prometheus could than also be integrated in Blackboard entirely so that students
only have to log in once and have everything available in one browser. Prometheus could than just
be an tab in the Blackboard system.

5.3 - Evaluation of the project

The biggest problem in the project was time. This project used to be fulltime, but now both group
members had to attend three other courses while doing this project. Considering the amount of work
of the project (including learning PHP, mySQL etc.) two people were too few. We would like to have
had more time to improve the system but especially to improve the report and the (preparation for
the) presentation.

A more specific problem we encountered during the project was that sometimes the two teachers
contradicted each other. In some cases we could just inform both teachers about each other’s
opinion, but not in all cases. For example with the functional specification we didn’t have time to
consult both teachers.

Page

22

References
1. Ministerie van Onderwijs, Cultuur en Wetenschap (OCW). Dossier Tweede Fase: doel
tweede fase. 2006. Available at: http://www.minocw.nl/tweedef ase/497/Doel -tweede-
fase.html
2. Tweede Fase Adviespunt. Zeven jaar Tweede Fase, een balans. 2005. Available at:
http://www.tweedef ase-l oket.nl/doc/eval uati e/bal ans. pdf

Page

23

http://www.minocw.nl/tweedefase/497/Doel-tweede-fase.html
http://www.minocw.nl/tweedefase/497/Doel-tweede-fase.html
http://www.tweedefase-loket.nl/doc/evaluatie/balans.pdf

Appendix

Appendix 1 - Database Table Schema’s

Table structure for table Assignment

Field Type
HomeworkNr int(4)
TeacherNr int(7)
CourseNr int(4)

Table structure for table Course

Field Type

int(4)
CourseName varchar(25)
StartDate date
EndDate date

CourseNr

Table structure for table Enrollment

Field Type
StudentNr int(7)
CourseNr int(7)

Table structure for table Homework

Field Type
HomeworkNr int(4)
Description varchar(25)
Deadline date

RequiredTime time
LongDescription longtext

Page
24

Table structure for table Planning

Field Type
WorkPackageNr int(4)
StudentNr int(7)
HomeworkNr int(4)

Table structure for table Student

Field Type

StudentNr int(7)

LastName varchar(25)
FirstName varchar(20)
Password varchar(32)

Table structure for table Teacher

Field Type

TeacherNr int(7)

LastName varchar(25)
FirstName varchar(20)
Password varchar(32)

Admin tinyint(1)

Table structure for table Teaches

Field Type

TeacherNrint(4)
CourseNr int(4)

Table structure for table WorkPackage

Field Type
WorkPackageNr int(4)
Deadline date
Completed tinyint(1)
Planning text

Appendix 2 — The editor used to write the code

& cPanel X - Mozilla Firefox ok

Bestand Bewerken Beeld Geschiedenis Bladwijzers Extra Help ‘
Sy "9 - @ "X 6 |@ http:,l',l'www.timgielissen.nl:2082,|'Frontend,|'><3,|'filernanager,l'editit_code.htrnl':| b4 | ﬁl | Q |
P cPanel % - K cPanel File Manager v3 &-| (P cPanel X & | =
Editing: /homsftimgieli/public_himlthomeworkdatabase/courses.php i - |

<#php
session start():

1
i
o
4 Sacces = § SESSION['acces']:

6 Scurrentuser = § SESSION['usernsme'];
=}

T

g

a

if (Sacces == false){
print "<htmlr<headr<meta http-eguiv=' "refresh'" content=4"3;URL=http://wuv.Cimgielissen.
}
10 else!
n A
12 Connectie naar de database
13 *f
14 mysgl econnect| "localhost", "timgieli Tim", "databases"):

A6

17 IF statemsnt that checks if the sorting order is in the URL, if not, it sets it to & defaulc wvalu
18 */

10 dif (isset (§ GET['avo'])id{

20 ShvailableCoursesOrder = § GET['avo']:
213

22 else!

23 SArailableCoursesOrder = "Coursensme";
29)

25

26 Sguery = "IELECT # FROM Course ORDER EBEY SAvailableCoursesOrder”;
27 Sresult = mysqgl ("timyieli uvahomevorkdha”, Squery):

22 Sguery?2 = "IELECT + FROM (Enrollment INNER JOIN 3tudent OF Enrollment.Studentlr = 3tudent.3tudent
20 Sresult? = mysgl ("timgiell uvahomeworkdia™, Squery?) ;
0

1 Svrandaay = getdate():

sz Sdd = Svandaag['wday']:

2z Smm = Svandaag(['mon'];

24 Syyyy =5Svandaag['vear']:

26 Shuidigedatum = Syyyy."-".5mm. "-"_5dd;

(I 1T | }‘l

Klaar

In the screenshot you can see the editor that was used during the project. It only colors pieces of
code it recognizes, it doesn’t suggest or auto-complete code. It is part of the cPanelX software
installed on the webserver.

Page

25

