DIMS: Implementation of a Federated Information
Management System for PRODNET I

Cesar Garita, Yasemin Ugur,Anne Frenkel,Hamideh
Afsarmanesh,L.O.Hertzberger

University of Amsterdam, Faculty of Science
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{cesar, yasem n, annef, ham deh, bob}@w ns. uva. nl

Abstract. The Esprit project PRODNET !l (Production Planning and
Management in an Extended Enterprise) had as its robjective the
development of a reference architecture and a stppfrastructure for
Industrial Virtual Enterprises (VESs). The Distrtbd Information
Management system (DIMS) component of the PRODNE@hitecture
supports the complex VE information managementireqents and is based
on a federated database architecture. In the de$iDitMS, general concepts
of federated database systems are specificallpréail and adapted to the
specificities of the VE paradigm. In previous wotke federated information
management requirements for industrial collaboeat¥iE environments have
been systematically analyzed. This analysis hastifikd the required data
models and data manipulation operations for the PRET application
domain. Based on this analysis, the need for fédersharing and exchange of
information among the VE enterprises, while preisgntheir autonomy with
proper information visibility rights, are also refel in earlier documents. The
focus of this paper is on describing the internefnkel design and certain
implementation aspects of the DIMS federated dagbarchitecture for
PRODNET. In particular, the main components of theernal DIMS
architecture are described in details, such agmteeoperable server agent, the
generic federated query processor, and the expbensa manager among
other development issues.

1 Introduction

The Virtual Enterprise (VE) concept can be brieflgfined as an interoperable
network of pre-existing enterprises collaboratirgyvadrds the achievement of a
common goal. As a whole, these enterprises cactitmtogether and be regarded
as a single organization. Even though there aamynuefinitions and ontologies

1 This research was partially supported by the ESPRtoject22647 (1996-1999),
PRODNET Il of the European Commission, and involtbé following partners: New
University of Lisbon, University of Amsterdam, ESTEUninova, Lichen Informatique,
ProSTEP, Federal University of Santa Catarina, s\knod CSIN.

around the VE paradigm, the fact is that any ITtfptan or infrastructure aimed at
the support of these virtual organizations willtagrly face an extremely complex
and fractal-shaped problem domain. There alreatt enany software tools and
standards that are able to cope with parts of ¢tetad interoperability issues, but
there are a large number of challenges and opeasdsft unresolved. For instance,
there is still no common and widely accepted dgéni of a flexible reference
architecture for VEs that can properly support tN& coordination and
interoperability requirements.

In this context, it is clear that advanced mechasignust be designed and
implemented in order to support the complex VE rimation management
requirements [22], [5]. In PRODNET, the Distriedtinformation Management
System (DIMS) is the component that encapsulatethalfunctionality to support
these requirements. In order to implement the Didd8iponent, two major pre-
development phases were carried out in terms ofefjgirement analysis and the
general system design. The results of these tetiare documented in other papers
and briefly summarized in the next paragraphs r(fore details see [7], [8], [15]).

First, in relation to the analysis phase, a profbstudy of the PRODNET VE
application domain was performed and an initiaksification of the information
that needed to be modeled was defined. For thizose, three main focus areas that
represent the main kinds of interaction and exckanf information between
different elements of the VE environment were dikoh Then, after further
modeling and classification of the information ifwem in the focus areas, it was
possible to identify which part of the informatioeeded to be kept local, imported,
exported, and accessed in an integrated way anfenglifferent enterprise nodes.
Subsequently, the DIMS information management djmers: that were required for
the VE interoperation layer were described.

In order to support all the information managemeeduirements identified
during the analysis phase, a federated databalsiemtare was conceived during the
design phase of the DIMS module [4],[6],[9]. Thesida of the DIMS federated
layer is based on the definition of a PCL (PRODNEdJoperation Layer)ntegrated
schema that is represented and handled in all nodes.a bah be exchanged and
shared through this integrated schema, but theeprapcess rights are defined
locally at every enterprise in order to precisggafy the rights of external nodes on
the local information of every node. Therefore, DBS properly preserves the
federated information access and visibility coristsaby means of well-determined
export schema definitions. The general design ®DMS has also been influenced
by the PEER federated system architecture [2]38],[25].

After this general design phase, which mostly fedusn the specification of the
federated schema integration approach, the intddid5 kernel architecture itself
still needed to be designed and implemented. Nantleé specific internal DIMS
components needed to be conceptualized, desigmedjnagplemented in order to
support the general federated schema architectline internal system design and
final implementation of the DIMS kernel represdme tnain focus of this paper.

The rest of this paper is organized as follows.ctiSe 2 describes the general
DIMS reference architecture. Section 3 describesdetails the main DIMS

functional components. Finally, Section 4 summaritee achieved results after the
implementation of the DIMS module.

2 General DIMS Implementation Approach

In order to illustrate the role of the DIMS in tHRRODNET architecture, it is

necessary to first introduce the general PRODNEdenarchitecture (see Fig. 1).
This architecture has been extensively reportecther papers [10], and here only
the basic elements are described.

2.1 The PRODNET Node Architecture

Every enterprise in the PRODNET Il network of patehVE-members is considered
as anode consisting of three major components: an Inteatiule, a PRODNET

Cooperation Layer (PCL), and an Advanced VE Coaidam Functionalities

(ACFs) module. The Internal Module of a node talbjcconsists of the internal
information management systems of the company —asdits Production Planning
and Control systems (PPC)-, necessary to accompbshegular operations. The
ACFs module provides some additional functionaditte extend the scope of the
PCL, including the coordination of VE-related aittes, and supporting tools for
logistics operations. The Distributed BusinesscBse Manager (DBPMS) module
represents one of these ACFs. Finally, the PCLpmorant is responsible for the
actual functionalities for the inter-operation aides in the PRODNET network. The
PCL is the fundamental component that allows thterenise to interoperate with
others in the context of the VE. The PCL itself sists of several internal
components described below:

— The Human Interface module: supports the end-ustsactions with the PCL.

PRODNET Enterprise Node A Node B

LLIT
ACFs LI
Advanced 1€ Prodnet A
Coordination ha mwgﬂ“ Cooperau'on Node C
Functionalities o 9 Layer (PCL) oce
r

A
Internal Module <
-PPC pms | [tem el ﬁ ml:l
(Production <> Federated Workflov | Sdety& I y =
Planning and m: Engne I <
Control) W ﬁ?ﬁﬁg | M— | < \
- Other internal | [Conmuri cat | *

modules | irfor. handing & reme [Manacer -

Node C

Fig. 1. Description of the PRODNET node architecture.

- The Configuration component: allows the set up eftain elements and
functionalities of the PCL, for every VE in whichgaven enterprise is involved.

— The STEP and EDI modules: primarily support thehexge of technical product
data and the commercial order-related data respécti

— The Local Coordination Module (LCM): executes amthtcols the internal PCL
workflow, which specifies the desired cooperatiemvior of each PCL [11].

— The PRODNET Communication Interface (PCI): is resiole for the actual
communication channel among nodes in the VE netjzidk

— The Distributed Information Management System (DJMSupports all the
distributed information management requirementgtferPCL operation.
In the next two sections, the details of the DIM&erence architecture and its

internal components are described.

2.2 The DIMS three-tier architecture

In addition to the client-server kind of applicatgy some multi-threaded
applications are conveniently modeled using a thiezearchitecture, also called
client-agent-server architecture. In this architeetthe client is only concerned with
presentation services. The agent (or applicationesg processes the application
logic for the client tier, hiding the underlying mfementation and access details of
the server tier and adding higher level supporttionalities for the client. The
server tier includes the low-level implementatidnttee data management services
required by the agent tier.

In this sense, the DIMS implementation approaclovid a three-tier architecture
of this type (please see Fig. 2). The client teerdpresented by all the other PCL
components that request DIMS services via a DIMéntllibrary. The applications
server (agent) is represented by the DIMS Serveenfigtogether with the other
DIMS internal operational components. The DIMS $e\gent acts as a client of an
ORACLE database server, which in turn represergssdrver tier in this scenario.
Bearing in mind this general three-tier architeetwvill help understanding the
relationships among some DIMS components that kel addressed in coming
sections of this document.

Other PCL
components and S DIMS Server Agent an.d/l

externalmaclie internal components

Client Tier

DIMS Database Manager Ej
(ORACLE server)

Fig. 2. General DIMS three-tier architecture.

2.3 The DIMS reference architecture

In this section, the main components of the DIM§$liaptions server tier introduced
in the previous section are described. The gemefatence architecture of this tier
embodies the following components, as depictedign & the DIMS Server Agent,
the Federated Query Processor, the Export Schenmadéa and Tool, the Internal
DIMS Database Manager, and the DIMS Kernel Conégur A general
description for every component is given in theggaaphs below and in Section 3,
more details will be included:

+ DIMS Server Agent: corresponds to the heart of “dgent tier” of the DIMS
architecture and is responsible for receiving aisgatching all the DIMS service
requests issued by the other PCL modules. The Sé&gent determines the
nature of the service requests and activates ofirkelved DIMS internal
components.

* DIMS Federated Query Processor (FQP): its mainctie is to transparently
support the access to data distributed over thesoflthe VE network, taking
into account the specific visibility access riglitspresented by export schemas)
defined for every node. The FQP functionality oM3 enables end users such as
the VE Coordinator to query the privileged propigtVE related information for
which the coordinator is authorized, while hidimhg data location details.

* Export Schema Manager (ESM) and Tool (ESMT): emdake functionality to
create and maintain the hierarchy of export scheimatsare defined on the PCL
local schema, based on the visibility access trespecified for a given node. The
ESM will ensure that the export schema hierarchyaies consistent, and that the
schema definitions for every dependent partner mxpohema are properly
created. The ESMT (Export Schema Manager Tool)eldped for DIMS
provides a user inteface to support the definitaord creation of the export
schemas.

* Internal DIMS Database Manager: the DBMS that wasduas “construction
ground” for the DIMS is the Oracle DBMS (version3)/. This component
represents the server tier of the DIMS which presidll the functionalities that
are expected from a database management systeradimgl transaction
management, data storage and retrieval, storedegwoes management, SQL
support, triggers, etc. The Oracle Server is usen fthe DIMS internal
components through a specific set of access mesimansuch as ODBC drivers,
stored procedures and packages. All the low-lee#its to access these Oracle-
specific tools are hidden from the PCL componenmtsich do not access the
Oracle server directly.

» DIMS Kernel Configurator: allows the user to spgdffe values of certain DIMS
operation parameters, including the communicatiart pumber of DIMS server,
and the timeout duration for distributed queries.

3 DIMS internal implementation

This section addresses more specific design anteimgntation details regarding the
DIMS Server Agent, the Federated Query ProcesabitteanExport Schema Manager
components of the DIMS architecture, that wereothticed in Section 2.

3.1 The DIMS Server Agent

The Server Agent is the gateway to the internal BIMrchitecture, which
encapsulates all the specific information managerservices for the PCL modules.
The agent can be seen as a bi-directional gategiage it also provides a
mechanism that allows internal DIMS componentseach the service interface of
other PCL modules when required. To supportititeroperation mechanism, both
the DIMS and the other PCL modules are extendeapped) with some kind of
interoperation layer, through which services can réeiprocally requested and
answered. This layer couples with the associatesldgenity problems among these
modules.

The interoperation layer is actually composed af tain parts (see Fig. 4): the
PCL Module Interoperation Layer and the DIMS Inferation Layer. Each of these
layers is in turn decomposed into two major compdsiethe client component and
the server (or proxy) component. This subdivisiendue to the fact that the
interoperation between the PCL module and the Di8®anaged by a dual client-
server interaction, in which each interoperatioyetaneeds to simultaneously act as
client and server of the other layer. For instartbe DIMS is able to request
services from the PCL module (PM) via the PM cligrierface. The PM client in

BExternal Modules
[Other PCL Corrponents] (e.g. PPC, DBPMS)
Y

4
DIMS service requests/ DIMS service answers/ DIMS service DIMS service answers/
PCL service answers PCL service requests requests/answets | PPC service requests

v N

DIMS | DIMS Server Agent +7

9 query results/
=derated querlesl PCL service requests

export schema config.

export schema queries

Export > BExport < Federated
Schema Schema N Query
Tool Manager ¥ Processor

export schema info.

intemal data acce iinternal data acce
DIMS

Kemel Internal DIMS Database Manager@ i4 -
Config. internal data access

onfig. data access

Fig. 3.. General DIMS architecture approach.

turn will contact the PM server that will carry diie service request. Similarly, the
PM needs to be able to request services from théSDlia the DIMS client. In this
way, the DIMS client will in turn contact the DIMrver (proxy) that will carry out
the service request, as shown in Fig. 4.

All PMs and DIMS client interfaces are provided@isLs that are linked to the
corresponding main application. The DLL supports ititerface to specific services
that must be implemented in the associated seriZech client DLL provider must
implement a mechanism in order to establish the noonication with the
corresponding server. For the implementation ofdramunication mechanism for
each module, the PRODNET approach does not impogeanstraints about it. In
the case of DIMS, the implementation was done uséngote procedure calls (RPC)
[23].

Furthermore, please notice that the communicatiesh@anism to implement the
functions provided in the client DLLs to requestteimal services, can be
implemented either synchronous or asynchronoughdrsynchronous approach, the
requesting application program will not proceedhwis execution until the request
is fulfilled. The service request can also bes§iatl asynchronously, which means
that the issuing application will send the requastl will be “released” to do other
tasks while the service is carried out. Once #rgice request is accomplished, the
answer is sent to the issuing application via @ifipdunction. Both approaches can
supported by the general PRODNET model, howeverthis document the
asynchronous approach is assumed and describedisisdthe most commonly used
approach.

In order to support the asynchronous approacheaeguisite for each PM (and
the DIMS) is the implementation of an interfaceyiling a pair of services required
for the bilateral interoperation mechanism. Thegerface services are included in
the client DLLs. The basic declaration for the Riterface services is as follows:

<PM_ID>_ServiceReques{parameters)
<PM_ID>_ServiceAnswer(parameters)

The <PM_ID> is the PM unique identifier, an acronym used tdquely
represent each PM within a certain enterprise enwirent, such as: “LCM”
“STEP”, etc. For both of the request/answer fumjdhe parameters comply with a
generic type definition that allows the transmiesad elements of all the necessary
types.

A basic interaction scenario of the general DIMSsHMegration model using the
service request/answer functions is also depiatedrig. 3. For instance, let us
suppose that the PM needs to request a DIMS servitgden the PM will
asynchronously call the DIMS_ServiceRequest functibthe DIMS client interface.
After the invocation, the PM will be released tatioue its regular execution, and
the request will be transparently transferred te DIMS server at the DIMS
interoperation layer side. When the DIMS servioguest is fulfilled, the answer is
sent to the PM via theRM_ID>_ServiceAnswer function of the PM client DLL.
This PM client interface will in turn seamlesslyntact the PM server. It is also
possible that the DIMS request a service from tiefPan equivalent way.

_ odule (P DIMS_ServiceRequest /
(the PM server may in turn \ DIMS_ServiceAnswer
contact internal PM services) PM Interop. Layer

PM [I)IMS
Client
Server
Interface -
L T | moduies
(the PM service answer/request is ‘ " .
transparently transferred to the ——@ = : Interoperation
PM server .
) VR : Layer
PM
Client DIMS (the DIMS service answer/request
oM S . / Interface Server transparently transferred to the
<PM>_ServiceRequest DIMS server)
<PM>_Service Answer —@| |DIMS Interop. Layer)}\

» (the DIMS server directly interacts
with the other DIMS components)

Fig. 4.— General DIMS - PCL module interaction.

About the parameters of the service request/anfwmetions, they consist of three
main predefined types: tken parameter, a list dPCL parameters of an abstract
PCL parameter type, and a result condition parameléhe token parameter type
supports theontext definition for the execution of the service requesid specifies
for instance a unigue service request identifiee, identifier of the specific service
that is being requested from the target module,aatichestamp, among other fields.
The PCL parameters list allows the specificatiorth& actual parameters that the
specific module service demands. For this PCLpaters list, an abstract PCL data
type has been defined from which a large set dfifpelata types can be derived and
used in any module service. Through this mechantee DIMS can offer high-
level services involving the retrieval of distribdt information along the VE
network. For instance, to support the VE monitgriand coordination, certain
DIMS services can be used by the DBPMS module tegecific information related
to the purchase orders and internal productionrerdbat have been assigned to a
given set of the VE partners.

3.2 DIMS Federated Query Processing

The PCL applications such as advanced coordinatiodules, and end users need
to access VE-related data without worrying aboetghysical data distribution. At
the same time, the owner of the data wants to stiffierent parts of the local VE
level data for different groups of users and kedpero part confidential. The
Federated Query Processor (FQP) component adddM& Ehe functionality to
provide authorized access to proprietary VE-reladath distributed over the VE
network, depending on their visibility levels defthat the remote sites [7].

In this section, the main tasks of the FQP areil@éetaOther approaches to the
global query processing design and developmentederbted and multi-database

systems can be found in [13], [16], [17], [18], [Ed [12]. Most of these works aim
at a query processing mechanism to support a demedéi-database architecture
where normally there is a central interoperableddagp handle global queries, and a
component layer at each participating databaseeraysd process the subqueries.
However, considering the VE peculiarities, thesaege approaches should be
tailored and extended such as has been done foSDIM

DIMS Federated Query Processing Internal Subtasks

The processing of federated queries in DIMS casummarized as follows: when
the query arrives at the DIMS, it is analyzed amdodnposed into a set of single-site
subqueries, each of which needs to be sent toamdysite (VE node) to be processed.
After that, the results of the sub-queries are gaith and merged into the final
result. If necessary, the FQP interacts with threesponding PPC to retrieve up-to-
date local production data, during this procesore specifically, the main subtasks
of FQP can be enumerated as follows: Query refaatiod and decomposition,
Subquery transmission, Local subquery rewriting @wdluation, Pull PPC data,
Subquery result transmission, and Subquery reseligen Each of these tasks is
depicted in Fig. 5 and described in details inrdst of this section.

Query Reformulation and Decomposition

DIMS supports a set dfigh-level service functions to be used by the other modules,
based on the PCL interface standards, to hidealwddvel database access details
from the query requesters. When one of these fomgtis called, FQP reformulates it
into an internal query format using the paramespecified for every function. This
reformulated query is then analyzed to determiresihecific VE partners involved
in the original query. Further, the query is decosga into a set of simpler
subqueries, so that each subquery involves thevatrof data from only one VE
node. Namely, each subquery needs to be senty@woa corresponding partner to
be processed locally at that side.

Subquery Transmission

This task sends subqueries to the necessary remades. The subqueries, which are
sent from one DIMS server to another DIMS serverafiother node), comply with a
specific format in order to facilitate the processiat the target node. A DIMS
subqguery request message format is composed byfiedds. In the first field, the
guery message contains a tag field that spectiiegyipe of message (e.g, subquery
request or answer). The second and third fieldsespond to the identifications of
the origin and target nodes, respectively. Sinoe enterprise may involve in more
than one VE at the same time, the node identiboashould contain VE identifier as
well as the enterprise identifier. Finally, thetléisld is reserved for the content of
the query itself. To transmit the query from onBB node to another one, the
DIMS exploits the facilities of the Local CoordioatModule (LCM) and the
PRODNET Communication Interface module (PCI) a$ bélillustrated later in this
section.

Local Subquery Rewriting and Evaluation

The evaluation of the subquery at the external nsd®ucial from the secure and
protected data access point of view. The PCL schaefiaition is the same in all
nodes as described earlier. Therefore, any nodeigsue a query against its
“imported” part of the schema. However, the accassts of every node to the data
that it can import from another node are precisglgcified in the individual export
schema defined for the origin node in the targetend herefore, the arriving query
will be carefully evaluated against the correspogdéxport schema of the sender
and all the visibility access constraints will egerved. For this aim, the subquery
needs to be rewritten by incorporating the openatithat are used to derive the
export schema. The FQP component operates on ffeeteschema definitions from
the Export Schema Manager, so that it can alwaflectethe updates in these
definitions.

Pull PPC Data

DIMS applications and end-users may need to getrib&t recently up-to-date data
from the local data sources inside the PPC systietheoenterprise. To meet this
need, DIMS communicates with PPC, through a spegifiplication Programming
Interface (API) developed to accomplish this ndges$he functions in this PPC
API allow the retrieval of data from the internadtdbase system, and convert the
result into the common data format defined by ti@ fhteroperability approach.
The DIMS-PPC interaction is carried out using therkffow activities coordinated
by LCM defined for data retrieval from legacy syste This workflow plan enables

DIMS Server Agent

NETWORK
query ﬂ Export
By Schema
Reformulation & " [~ Subquery (A2) Subquery Manager
Decomposition Transmission [IIE——>*{ Arrival
Subquery Request f
) R B (AT
Local \ & wAP|
Subguery Pull PPC Datd pull PPC
Evaluation _ Subgquery Data
A : Rewriting &
S oo I Evaluation H
Subq Resul A
uery Result 11 mm el
SubqueryResul oo Tt
Merge Subquery Answer
queryfresult
DIMS—Node A DIMS—-NodeB

Al: Workflow activities to retrieve data from legasystems A2: Workflow activities to send DIMS-to-DIMS message

Fig. 5.- FQP Subtasks and Interaction

DIMS to get data from legacy systems of the entegprand any change in the
activities can be easily adopted by using the wowkfmanager in LCM.
Consequently, the DIMS gets the up-to-date datanftocal production system
through the specific API and stores it in its imrdatabase temporarily during the
processing of the query. After this, the modifiedieenal subquery or local subquery
is executed on the data stored temporarily inriternal database. An example of
this functionality is included later in this sectio

SubQuery Result Transmission

This step is similar to the step of sending thegseby to the remote nodes, except
for minor differences in the format and the contefthe inter-DIMS message. The

first three fields of this DIMS subquery result re@ge are defined earlier in the
“SubQuery Transmission” task. The last field copesls to the result of the query,

which is composed of the identification of the sudxy, the return code for the

subquery evaluation, and the content of the assatiasult itself.

Subquery Result Merge

Once the subquery results arrive at the originenetlich started the processing of
the federated query being executed, the resulssilaqueries are kept in a separate
FQP result-blob table. Each result blob has thatifier of the query that it belongs
to, as well as the other information, such as iitge.sWhen all the results have
arrived, the merging step starts and is achiewethe “union” operation of the
individual results.

Federated Query Processing Steps

The FQP mechanism is implemented using multi-thgg@adramming so that it can
receive multi-requests simultaneously via the DI8&Bver agent, and consequently it
can support the execution of different querieshatdame time. In the general case,
two kinds of federated queries may arrive at th®1®lof an enterprise, aimternal
query (a global query arriving from the VE coordinatoodule or an end-user) or an
external query (a subquery arriving from VE member’s DIMS). Whan internal
query is issued either by end-user or an applicatiothe DIMS, the FQP of the
DIMS involves the following simplified steps at thaery issuer site.

1. Identify all the nodes (internal/external) to whitte subquery must be sent
2. Decompose the query into subqueries where evegusuap involves only one partner
3. For every node to which the subquery must be sent
3.1.1f the receiving node is this node itself
3.1.1.If the query issuer asks the most up-to-date B&@rated data
Invoke the workflow activity to retrieve updatedtddrom PPC into the DIMS
3.1.2.Evaluate the subquery and prepare the result
3.2.1f the receiving node is external node
3.2.1.Prepare inter-DIMS query message (request)
3.2.2.Invoke the workflow activity to send the DIMS quengssage to the remote node
4. Wait for the results of all subqueries evaluafrmam the external nodes (timeout is considered)
5. Process the partial results and merge them ingd fesult
6. Return final result

When anexternal query arrives from another node, the query isuatad against
the export schema defined for the query sender.n¥deen the result is obtained, it
must be returned to the sender of the query. Tittisgss is described as follows.

1. Interpret the inter-DIMS query message
1.1. If the query issuer asks the most up-to-&@&R€E generated data
Invoke the workflow to ask PPC store most recenflgfated data into the DIMS
Otherwise, evaluate the rewritten subquery andgueefhe result
2. If the workflow to pull PPC up-to-date data is ikeal
2.1. Wait for the PPC to finish the task (timeout isgedy considered)
2.2. When the response arrives from PPC, evaluate thigtten subquery and prepare the result
3. Prepare the inter-DIMS message including the resfuthe subquery and invoke the workflow to send
the result back to the query issuer node

PCL modules interactions to support FQP

The activity of sending and receiving Inter-DIMS saages is performed through
both the workflow management mechanism providedthi®y Local Coordinator
Module (LCM), and the communication means provideg the PRODNET
Communication Interface module (PCI). With thisastgy, the LCM workflow
management mechanism is exploited to support fiexdefinition and changes in
the process of sending/receiving DIMS to DIMS (eptise to enterprise) messages
depending on the business processes and procexhpksd at every enterprise [11].
Besides, the advanced and safe communication tfesilare used from the PCI
module. In Fig. 6, the sequence diagrams of iobanmunication between several
PCL modules involved in federated query processnshown, for the case where a
subquery is sent to another remote node and wherenbst recently updated data
from the PPC is demanded. This scenario can badatiefor the general case that

Enterprise A : S N T — :

LcM [oms | e [pei | [tom | [oms] [ppc

guery

request __LCM-SendDimsOuervMessp

PClI-DeliverMessage

b
LCM-RecogniseN

ge
—| DIMS-ReceiveMes uie

LCM-ExtractDataFron|PPC
<

‘PPC-PuIUptoDateDa =3 _
¢ DIMS-PutData_
LCM-SendDimsQuenrjResult

;QI-DehverMessage:

Network

_LCM-RecogniseMessage

V' N

DIMS-ReceiveMessage |

P

aguery
result

Fig. 6. —PCL Module interactions to support FQP

involves a set of remote nodes and one sender fddesequences in this diagram
can be described as follows: at the sender nodeewtiee query is generated
(Enterprise A) DIMS processes the federated query and invokeswibrdflow
activity (SendDimsQueryMessage) to send an extesnhfjuery to Enterprise B.
This activity involves sending an inter-DIMS subgy message, embedded in the
PCl message format, to the remote node. When thHenR@ule at Enterprise B
receives this message, informs the DIMS at the samerprise through LCM. The
DIMS extracts the external subquery and rewritesg#inst export schema defined
for Enterprise A. After the execution of the wddd activity, which extracts PPC
up-to-date data, DIMS evaluates the rewritten quergt returns the result to the
sender by using a workflow activity (SendDimsQuiresult). The DIMS at
Enterpise A processes and merges the results ftbemr nodes and returns the final
result.

3.3 DIMS Federated Export Schema Manager

In the Virtual Enterprise environment, every nodasimmbe able to give different
visibility levels and access rights to its locafoirmation to every other partner in
every particular VE that it is involved. The lew#l visibility and access that other
nodes have on the local information of a given naikebe determined by the role
these nodes are going to play in the VE. To actismphis objective following a
federated database approach, every node can pitsemtitonomy and privacy by
defining one detailedndividual export schema based on its local schema, for every
other node with which it shares information [7]].[8Another approach to export
and integrated schema management in the contefddefated databases can be
found for instance in [14]. This work defines angeal federated database approach,
which provides an ODMG interface to federate hegfen@ous DBMS. However, in
contrast to DIMS, this architecture does not ainw&tspecific support. In [21] and
[1], other approaches to view definitions basedunderlying database schemas are
described.

In DIMS, besides allowing the enterprise nodes &diné individual export
schema definition on the local schema for everyeredl “partner”, we have
generalized this basic idea to the definition ota@mplete hierarchy of export
schemas based on the role of a given company in a VE

The decision of every node in the federation, omtvwdart of its local information
to make available to the other nodes in the VH, vdlbased on the role that each of
these nodes is going to play. Every partner &f émterprise in a given VE, will be
associated with a role, and each role is relate@rtoindividual schema in the
hierarchy of export schemas handled at this nolis Aierarchy allows the grouping
and classification of common export schema chariatits, facilitating the control
and management of the individual export schemanitieins. The objective of this
approach is to avoid creating an export schemadoh one of the nodes involved in
the VE, since every node will give the same acciegds to two or more of these
nodes, e.g. these nodes will have the same raleeivE.

Partner has_role Role _EXI_ —

> roleType: string

roleName: string
roleParentld: string Export_Set based_on_dep_set
SchemalD: string
has_EXP_Schema l ‘
EXP_Schema Single_Export_Set Dependant_Export_Set
physicalSchemaName:string
selectSpec: string
whereSpec:string based_on_dep_schema
fromSpec:string <
I]
EXP Schema Dependant_EXP_Schem

Fig. 7. Schema definitions for partner export schemas gemant

For example, let us assume that for a VE theretaee different kinds of roles
that a given enterprise can play: tleeordinator, supervisor (subordinated to
coordinator but enabled to monitor certain VE dt#s), andregular VE partner
(subordinated to supervisor and enabled to perfmrain restricted VE activities).
Clearly, for every role, different information itsmmust be made accessible from
other nodes. For example, a VE coordinator needsiéav information, which for
another regular VE partner may even be a secrat. stipport for a fine-grained
visibility level mechanism is required to modelgtsituation. For more information
on the concept of role and its relation with exmmtiema definitions please see [8],
[15].

In Fig. 7 the design of the database schema relai¢ld export schema
management is presented. Through this schemagtiuesive definition of elements
of the export schema hierarchy and the role hiésaece supported. For every VE
role, an external schema set (Export_Set) is definaich at the end corresponds to
the partner’s export schema. Through the Expor{_tBetproper visibility levels for
the partners on the local schema of the enterpirisespecified. An Export_Set can
be either a single or a dependent export set dapgritithey are based on other
export sets or not. With this approach, on one hangport for the general export
schemas definition is provided, where not only fhre-defined export schema
definitions at the level of VE, coordinators, syisors, and partners, are considered,
but also other hierarchies can be defined and stggpas necessary. On the other
hand, an Export_Set consists of a set of schentdshwn turn can be single schema
(EXP) or dependent schema (Dependent-EXP) followlrigy definition strategy.

Besides the definition of the export schema hidrgrit is necessary to define the
hierarchy of roles. For every different functioraths going to be played in the VE a
role (ROLE) is defined. Every ROLE has as attrisutbe general type of the role
(e.g. coordinator, supervisor, regular), the naimet identifies the role and the
identification of the parent of the role in theaiechy.

To operate on the described schema, an “ExportrziManager” (ESM) module
has been developed. The ESM is used to createi@égmrt schema, and then, to
define dependent partner export schemas based, as dlso used to create the
hierarchy of roles. The ESM will ensure that thep@x schema and the role
hierarchies remain consistent, and that the schafinitions for every dependent
partner export schema are properly created.

The Export Schema Manager Tool (ESMT) is a grahicat-friendly application
developed on top of the ESM that helps the humaeratpr of PCL to define and
create the export schemas, during the configurapioase of the VE. The main
window of the ESMT interface tool contains a merau that enables the user to
perform different operations, such as create aroréxgchema for every database
table, define the EXP/Dependent-EXP set, definerthe export schema hierarchy,
and create the export schema for an enterprise qmoibrers. For a more detailed
description of the ESMT, please see [8].

In relation to the DIMS implementation environmertd tools, the DIMS was
implemented on Windows NT using Microsoft Visual €C4Professional Edition
5.0.) Other tools used to support the DIMS impletagon include: Microsoft
Foundation Classes (MFC), MFC Database classes,Cofbers, and RPC support
tools.

4 Conclusions

The implementation of the distributed/federated hdaecture of the DIMS in
PRODNET, has proven to properly support the codperanformation sharing and
exchange, node autonomy, information visibility disv and access rights for
exchanged data among the VE nodes. The DIMS, edsisy the workflow
management engine of LCM, acts as a real backbomeder to support the entire
PCL operation and as a result, as a backbone fduihe VE operation itself.

The implemented DIMS server represents a threeaiehitecture with multi-
threading capabilities, which efficiently suppohietinteraction between the DIMS
kernel and the other PCL modules. The DIMS SeAgent design provides a high
degree of flexibility for future extensions, and #te same time it allows the
invokation of the DIMS services from phisically tlibuted machines.

The DIMS Federated Query Processor that has beetoged provides access to
the proprietary VE information for the authorizewteprises, while hiding the data
location details from the end user. The definedriopieration scenarios between the
FQP and the workflow management engine of LCM regme one of the novel
implementation strategies of the DIMS.

The DIMS Export Schema Manager properly supporgsdéfinition of visibility
levels and access rights for the information aez$som other VE nodes. The
Export Schema Management tool incorporates advamsed interface graphic
elements and provides a comprehensive and fri@mliyonment for the end users.

Finally, the implemented DIMS module satisfiesthl information management
requirements that were identified within the comteikthe PRODNET project, and
provides a solid platform that can be extendedroeinto address future VE life-
cycle support enhancements to the current PCL imeateéation.

References

1. Abiteboul, S; Bonner, A. - Objects and Views,Rrmoceedings ACM SIGMOD91, pages
238-247, May 1991.

2. Afsarmanesh, H; Tuijnman, F.; Wiedijk, M.; Hdré&zger, L.O.- Distributed Schema
Management in a Cooperation Network of Autonomougeris. Proceedings of the 4th
International Conference on Database and Experte®gs Applications (DEXA'93),
Lecture Notes in Computer Science 720, pages 565&ringer-Verlag, Sept 93.

3. Afsarmanesh, H. et al. Flexible and Dynamicdraéion of Multiple Information Bases,
Proceedings of the 5th IEEE International Confeeeoo "Database and Expert Systems
Applications DEXA'94", Athens, Greece, Lecture Note Computer Science (LNCS) 856,
Springer Verlag, p. 744-753, Sep. 1994.

4. Afsarmanesh, H; Camarinha, L. - Federated Indbion Management for Cooperative
Information - in proceedings of thé"8nternational Conference on Database and Expert
Systems Applications (DEXA'97), September 97.

5. Afsarmanesh, H; Garita, C; Hertzberger, L.O.nt8s V. - Management of Distributed
Information in Virtual Enterprises:The PRODNET Appch —in proceedings of the
International Conference on Concurrent Enterprigi@E’97), Nottingham,UK, October
97.

6. Afsarmanesh, H., Garita, C., Hertzberger, L.Wirtual Enterprises and Federated
Information Sharing. Proceedings of th® EEEE International Conference on “Database
and Expert Systems Applications”, DEXA'98, LectuMotes in Computer Science,
Vienna, Austria, August 1998.

7. H. Afsarmanesh, C. Garita, Y. Ugur, A. Frenkehd L.O. Hertzberger. "Federated
Information Management Requirements for Virtual éfptises". In Infrastructures for
Virtual Enterprises - Networking Industrial Entdg@s (L.M. Camarinha-Matos and H.
Afsarmanesh, Editors), Kluwer Academic Publishé&38N 0-7923-8639-6, 1999.

8. H. Afsarmanesh, C. Garita, Y. Ugur, A. Frenkaitd L. O. Hertzberger. "Design of the
DIMS Architecture in PRODNET". In Infrastructuresr fVirtual Enterprises - Networking
Industrial Enterprises (L.M. Camarinha-Matos and Adsarmanesh, Editors), Kluwer
Academic Publishers, ISBN 0-7923-8639-6, 1999.

9. Camarinha-Matos, L; Afsarmanesh, H; Garita,Ll@na, C - Towards an Architecture for
Virtual Enterprises. Special issue of the jourrfdhtelligent Manufacturing with the focus
on Agent-based Manufacturing, Volume 9, Number &ge® 189-199, Chapman and Hall
publications, March 1998.

10. Camarinha-Matos, L; Afsarmanesh, H. "The PRODM#Erastructure”. In Infrastructures
for Virtual Enterprises - Networking Industrial Enprises (L.M. Camarinha-Matos and H.
Afsarmanesh, Editors), Kluwer Academic Publishé&38N 0-7923-8639-6, 1999.

11. Camarinha-Matos, L; Lima, C.P. "PRODNET cooatiion module”. In Infrastructures for
Virtual Enterprises - Networking Industrial Entdg@s (L.M. Camarinha-Matos and H.
Afsarmanesh, Editors), Kluwer Academic Publishé&38N 0-7923-8639-6, 1999.

12. Dayal, U. “Query Processing in a Multidatab&gstem”. In “Query Processing in
Database Systems” (W. Kim, D. S. Reiner and B&8ory, Editors), Springer 1985.

13. Elmagarmid, A; Rusinkiewicz, M; Sheth, A. "Maement Of Heterogeneous and
Autonomous Database Systems”, Morgan Kaufmann &hanls, 1999.

14. Fankhauser, F. et al. Experiences in Fede#&dbases: From IRO-DB to MIRO-Web.
Proceedings of 4International Conference on Very Large Data Bablesy York, USA,
pages 655-658, Morgan Kaufmann, August 1998.

15. Garita, C.; Afsarmanesh, H.; Hertzberger, L©.“The PRODNET Cooperative
Information Management for Industrial Virtual Eréses”, submitted to the International
Journal of Intelligent Manufacturing, February, 200

16. Jonscher, D. and Dittrich, K.R. An Approach Bwoilding Secure Database Federations.
Proceedings of 20th International Conference onyMerge Data Bases, Santiago de
Chile, Chile, pages 24-35, Morgan Kaufmann, Septm94.

17. Kapsammer, E; Wagner, R.R. “The IRO-DB Appro&chcessing Queries in Federated
Database Systems”, in Proc. of Eight Internation&drkshop on Database and Expert
Systems Applications DEXA'97, IEEE Computer Societgss, Toulouse, France, 1997.

18. Meng, W.; Yu C. T. “Principles of Database Quérocessing for Advanced
Applications”, Morgan Kaufmann Publishers, 1998.

19. Nural, S; Koksal, P; Ozcan, F; Dogac, A. "Qué&gcomposition and Processing in
Multidatabase Systems", in Proceedings of OODBM8&sium of the European Joint
Conference on Engineering Systems Design and Asalyontpellier, 1996.

20. Osorio, L.; Antunes, C.; Barata, M. "Communimatinfrastructure”. In Infrastructures for
Virtual Enterprises - Networking Industrial Entdg@s (L.M. Camarinha-Matos and H.
Afsarmanesh, Editors), Kluwer Academic Publishé&38N 0-7923-8639-6, 1999.

21. Rosenthal, A.; Sciore, E.; First-Class ViewsKdy to User-Centered Computing, ACM
Sigmod Record, Volume 28, Number 3, September 1999

22. Silberschatz, A.; Zdonik, S. — Database Syst&meaking out the box, SIGMOD Record,
v. 26, n. 3, September 97.

23. Sinha, Alok. Network Programming in Windows MWdison Wesley, 1996.

24. Tuijnman, F.; Afsarmanesh, H. - Managementhafred data in federated cooperative
PEER environment. International Journal of Intelliy and Cooperative Information
Systems (IJICIS), 2(4): 451-473, December 1993.

25. Wiedijk, M.; Afsarmanesh, H.; Hertzberger, L.©.Co-working and Management of
Federated Information-Clusters. Proceedings of Thie International Conference on
Database and Expert Systems (DEXA'96), Lecture sNateComputer Science 1134, pp
446-455. Springer Verlag, September 1996.

