
DIMS: Implementation of a Federated Information
Management System for PRODNET II

Cesar Garita,Yasemin Ugur,Anne Frenkel,Hamideh
Afsarmanesh,L.O.Hertzberger

University of Amsterdam, Faculty of Science
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{cesar, yasemin, annef, hamideh, bob}@wins.uva.nl

Abstract. The Esprit project PRODNET II1 (Production Planning and
Management in an Extended Enterprise) had as its main objective the
development of a reference architecture and a support infrastructure for
Industrial Virtual Enterprises (VEs). The Distributed Information
Management system (DIMS) component of the PRODNET architecture
supports the complex VE information management requirements and is based
on a federated database architecture. In the design of DIMS, general concepts
of federated database systems are specifically tailored and adapted to the
specificities of the VE paradigm. In previous work, the federated information
management requirements for industrial collaborative VE environments have
been systematically analyzed. This analysis has identified the required data
models and data manipulation operations for the PRODNET application
domain. Based on this analysis, the need for federated sharing and exchange of
information among the VE enterprises, while preserving their autonomy with
proper information visibility rights, are also reported in earlier documents. The
focus of this paper is on describing the internal kernel design and certain
implementation aspects of the DIMS federated database architecture for
PRODNET. In particular, the main components of the internal DIMS
architecture are described in details, such as the interoperable server agent, the
generic federated query processor, and the export schema manager among
other development issues.

1 Introduction

The Virtual Enterprise (VE) concept can be briefly defined as an interoperable
network of pre-existing enterprises collaborating towards the achievement of a
common goal. As a whole, these enterprises can function together and be regarded
as a single organization. Even though there are many definitions and ontologies

1 This research was partially supported by the ESPRIT project-22647 (1996-1999),

PRODNET II of the European Commission, and involved the following partners: New
University of Lisbon, University of Amsterdam, ESTEC, Uninova, Lichen Informatique,
ProSTEP, Federal University of Santa Catarina, Akros and CSIN.

around the VE paradigm, the fact is that any IT platform or infrastructure aimed at
the support of these virtual organizations will certainly face an extremely complex
and fractal-shaped problem domain. There already exist many software tools and
standards that are able to cope with parts of the related interoperability issues, but
there are a large number of challenges and open issues left unresolved. For instance,
there is still no common and widely accepted definition of a flexible reference
architecture for VEs that can properly support the VE coordination and
interoperability requirements.

In this context, it is clear that advanced mechanisms must be designed and
implemented in order to support the complex VE information management
requirements [22], [5]. In PRODNET, the Distributed Information Management
System (DIMS) is the component that encapsulates all the functionality to support
these requirements. In order to implement the DIMS component, two major pre-
development phases were carried out in terms of the requirement analysis and the
general system design. The results of these activities are documented in other papers
and briefly summarized in the next paragraphs (for more details see [7], [8], [15]).

First, in relation to the analysis phase, a profound study of the PRODNET VE
application domain was performed and an initial classification of the information
that needed to be modeled was defined. For this purpose, three main focus areas that
represent the main kinds of interaction and exchange of information between
different elements of the VE environment were delimited. Then, after further
modeling and classification of the information involved in the focus areas, it was
possible to identify which part of the information needed to be kept local, imported,
exported, and accessed in an integrated way among the different enterprise nodes.
Subsequently, the DIMS information management operations that were required for
the VE interoperation layer were described.

In order to support all the information management requirements identified
during the analysis phase, a federated database architecture was conceived during the
design phase of the DIMS module [4],[6],[9]. The design of the DIMS federated
layer is based on the definition of a PCL (PRODNET Cooperation Layer) integrated
schema that is represented and handled in all nodes. Data can be exchanged and
shared through this integrated schema, but the proper access rights are defined
locally at every enterprise in order to precisely specify the rights of external nodes on
the local information of every node. Therefore, the DIMS properly preserves the
federated information access and visibility constraints by means of well-determined
export schema definitions. The general design of the DIMS has also been influenced
by the PEER federated system architecture [2],[3],[24],[25].

After this general design phase, which mostly focused on the specification of the
federated schema integration approach, the internal DIMS kernel architecture itself
still needed to be designed and implemented. Namely, the specific internal DIMS
components needed to be conceptualized, designed, and implemented in order to
support the general federated schema architecture. The internal system design and
final implementation of the DIMS kernel represent the main focus of this paper.

The rest of this paper is organized as follows. Section 2 describes the general
DIMS reference architecture. Section 3 describes in details the main DIMS

functional components. Finally, Section 4 summarizes the achieved results after the
implementation of the DIMS module.

2 General DIMS Implementation Approach

In order to illustrate the role of the DIMS in the PRODNET architecture, it is
necessary to first introduce the general PRODNET node architecture (see Fig. 1).
This architecture has been extensively reported in other papers [10], and here only
the basic elements are described.

2.1 The PRODNET Node Architecture

Every enterprise in the PRODNET II network of potential VE-members is considered
as a node consisting of three major components: an Internal Module, a PRODNET
Cooperation Layer (PCL), and an Advanced VE Coordination Functionalities
(ACFs) module. The Internal Module of a node basically consists of the internal
information management systems of the company –such as its Production Planning
and Control systems (PPC)-, necessary to accomplish its regular operations. The
ACFs module provides some additional functionalities to extend the scope of the
PCL, including the coordination of VE-related activities, and supporting tools for
logistics operations. The Distributed Business Process Manager (DBPMS) module
represents one of these ACFs. Finally, the PCL component is responsible for the
actual functionalities for the inter-operation of nodes in the PRODNET network. The
PCL is the fundamental component that allows the enterprise to interoperate with
others in the context of the VE. The PCL itself consists of several internal
components described below:
− The Human Interface module: supports the end-users interactions with the PCL.

-PPC
(Production
Planni ng and
Control)

Advanced
Coordination

Functionalities

Workflow
Engine

Protocol
Handler

DIMS

STEP EDI
Prodnet
Cooperation
Layer (PCL)

LCM PCI

User
Interface

Configur.
Module

Federated
schema manag.

Federated
query proces.

Communicat.
Manager

Safety&
Authentication

Infor. handl ing & Coordination kernel

ACFs

- Other internal
modules

Internal Module

PRODNET Enterprise Node A
A
Inter

A
Inter

A
Inter

Node B

Node C

Node D

Fig. 1. Description of the PRODNET node architecture.

− The Configuration component: allows the set up of certain elements and
functionalities of the PCL, for every VE in which a given enterprise is involved.

− The STEP and EDI modules: primarily support the exchange of technical product
data and the commercial order-related data respectively.

− The Local Coordination Module (LCM): executes and controls the internal PCL
workflow, which specifies the desired cooperation behavior of each PCL [11].

− The PRODNET Communication Interface (PCI): is responsible for the actual
communication channel among nodes in the VE network [20].

− The Distributed Information Management System (DIMS): supports all the
distributed information management requirements for the PCL operation.
In the next two sections, the details of the DIMS reference architecture and its

internal components are described.

2.2 The DIMS three-tier architecture

In addition to the client-server kind of applications, some multi-threaded
applications are conveniently modeled using a three-tier architecture, also called
client-agent-server architecture. In this architecture the client is only concerned with
presentation services. The agent (or application server) processes the application
logic for the client tier, hiding the underlying implementation and access details of
the server tier and adding higher level support functionalities for the client. The
server tier includes the low-level implementation of the data management services
required by the agent tier.

In this sense, the DIMS implementation approach follows a three-tier architecture
of this type (please see Fig. 2). The client tier is represented by all the other PCL
components that request DIMS services via a DIMS client library. The applications
server (agent) is represented by the DIMS Server Agent, together with the other
DIMS internal operational components. The DIMS Sever Agent acts as a client of an
ORACLE database server, which in turn represents the server tier in this scenario.
Bearing in mind this general three-tier architecture will help understanding the
relationships among some DIMS components that will be addressed in coming
sections of this document.

DIMS Server Agent and
internal components

 DIMS Database Manager
(ORACLE server)

Server Agent Tier

Server Tier

Other PCL
components and
external modules

Client Tier

Fig. 2. General DIMS three-tier architecture.

2.3 The DIMS reference architecture

In this section, the main components of the DIMS applications server tier introduced
in the previous section are described. The general reference architecture of this tier
embodies the following components, as depicted in Fig. 3: the DIMS Server Agent,
the Federated Query Processor, the Export Schema Manager and Tool, the Internal
DIMS Database Manager, and the DIMS Kernel Configurator. A general
description for every component is given in the paragraphs below and in Section 3,
more details will be included:
• DIMS Server Agent: corresponds to the heart of the “agent tier” of the DIMS

architecture and is responsible for receiving and dispatching all the DIMS service
requests issued by the other PCL modules. The Server Agent determines the
nature of the service requests and activates of the involved DIMS internal
components.

• DIMS Federated Query Processor (FQP): its main objective is to transparently
support the access to data distributed over the nodes of the VE network, taking
into account the specific visibility access rights (represented by export schemas)
defined for every node. The FQP functionality of DIMS enables end users such as
the VE Coordinator to query the privileged proprietary VE related information for
which the coordinator is authorized, while hiding the data location details.

• Export Schema Manager (ESM) and Tool (ESMT): encloses the functionality to
create and maintain the hierarchy of export schemas that are defined on the PCL
local schema, based on the visibility access that are specified for a given node. The
ESM will ensure that the export schema hierarchy remains consistent, and that the
schema definitions for every dependent partner export schema are properly
created. The ESMT (Export Schema Manager Tool) developed for DIMS
provides a user inteface to support the definition and creation of the export
schemas.

• Internal DIMS Database Manager: the DBMS that was used as “construction
ground” for the DIMS is the Oracle DBMS (version 7.3). This component
represents the server tier of the DIMS which provides all the functionalities that
are expected from a database management system including: transaction
management, data storage and retrieval, stored procedures management, SQL
support, triggers, etc. The Oracle Server is used from the DIMS internal
components through a specific set of access mechanisms such as ODBC drivers,
stored procedures and packages. All the low-level details to access these Oracle-
specific tools are hidden from the PCL components, which do not access the
Oracle server directly.

• DIMS Kernel Configurator: allows the user to specify the values of certain DIMS
operation parameters, including the communication port number of DIMS server,
and the timeout duration for distributed queries.

3 DIMS internal implementation

This section addresses more specific design and implementation details regarding the
DIMS Server Agent, the Federated Query Processor and the Export Schema Manager
components of the DIMS architecture, that were introduced in Section 2.

3.1 The DIMS Server Agent

The Server Agent is the gateway to the internal DIMS architecture, which
encapsulates all the specific information management services for the PCL modules.
The agent can be seen as a bi-directional gateway, since it also provides a
mechanism that allows internal DIMS components to reach the service interface of
other PCL modules when required. To support this interoperation mechanism, both
the DIMS and the other PCL modules are extended (wrapped) with some kind of
interoperation layer, through which services can be reciprocally requested and
answered. This layer couples with the associated heterogenity problems among these
modules.

The interoperation layer is actually composed of two main parts (see Fig. 4): the
PCL Module Interoperation Layer and the DIMS Interoperation Layer. Each of these
layers is in turn decomposed into two major components: the client component and
the server (or proxy) component. This subdivision is due to the fact that the
interoperation between the PCL module and the DIMS is managed by a dual client-
server interaction, in which each interoperation layer needs to simultaneously act as
client and server of the other layer. For instance, the DIMS is able to request
services from the PCL module (PM) via the PM client interface. The PM client in

DIMS DIMS Server Agent

Export
Schema

Manager

Export
Schema

Tool

DIMS
Kernel
Config.

Federated
Query

Processor

Other PCL Components

export schema queries

export schema info.

federated queries

DIMS service requests/
PCL service answers

DIMS service answers/
PCL service requests

External Modules
(e.g. PPC, DBPMS)

DIMS service
requests/answers

DIMS service answers/
PPC service requests

query results/
PCL service requests

 Internal DIMS Database Manager

export schema config.

internal data access internal data access

internal data access

config. data access

Fig. 3. . General DIMS architecture approach.

turn will contact the PM server that will carry out the service request. Similarly, the
PM needs to be able to request services from the DIMS via the DIMS client. In this
way, the DIMS client will in turn contact the DIMS server (proxy) that will carry out
the service request, as shown in Fig. 4.

All PMs and DIMS client interfaces are provided as DLLs that are linked to the
corresponding main application. The DLL supports the interface to specific services
that must be implemented in the associated server. Each client DLL provider must
implement a mechanism in order to establish the communication with the
corresponding server. For the implementation of the communication mechanism for
each module, the PRODNET approach does not impose any constraints about it. In
the case of DIMS, the implementation was done using remote procedure calls (RPC)
[23].

Furthermore, please notice that the communication mechanism to implement the
functions provided in the client DLLs to request internal services, can be
implemented either synchronous or asynchronous. In the synchronous approach, the
requesting application program will not proceed with its execution until the request
is fulfilled. The service request can also be satisfied asynchronously, which means
that the issuing application will send the request and will be “released” to do other
tasks while the service is carried out. Once the service request is accomplished, the
answer is sent to the issuing application via a specific function. Both approaches can
supported by the general PRODNET model, however in this document the
asynchronous approach is assumed and described since it is the most commonly used
approach.

In order to support the asynchronous approach, a pre-requisite for each PM (and
the DIMS) is the implementation of an interface providing a pair of services required
for the bilateral interoperation mechanism. These interface services are included in
the client DLLs. The basic declaration for the PM interface services is as follows:

 <PM_ID>_ServiceRequest (parameters)
 <PM_ID>_ServiceAnswer (parameters)
The <PM_ID> is the PM unique identifier, an acronym used to uniquely

represent each PM within a certain enterprise environment, such as: “LCM”,
“STEP”, etc. For both of the request/answer functions, the parameters comply with a
generic type definition that allows the transmission of elements of all the necessary
types.

A basic interaction scenario of the general DIMS-PMs integration model using the
service request/answer functions is also depicted in Fig. 3. For instance, let us
suppose that the PM needs to request a DIMS service. Then the PM will
asynchronously call the DIMS_ServiceRequest function of the DIMS client interface.
After the invocation, the PM will be released to continue its regular execution, and
the request will be transparently transferred to the DIMS server at the DIMS
interoperation layer side. When the DIMS service request is fulfilled, the answer is
sent to the PM via the <PM_ID>_ServiceAnswer function of the PM client DLL.
This PM client interface will in turn seamlessly contact the PM server. It is also
possible that the DIMS request a service from the PM in an equivalent way.

About the parameters of the service request/answer functions, they consist of three
main predefined types: a token parameter, a list of PCL parameters of an abstract
PCL parameter type, and a result condition parameter. The token parameter type
supports the context definition for the execution of the service request, and specifies
for instance a unique service request identifier, the identifier of the specific service
that is being requested from the target module, and a timestamp, among other fields.
The PCL parameters list allows the specification of the actual parameters that the
specific module service demands. For this PCL parameters list, an abstract PCL data
type has been defined from which a large set of specific data types can be derived and
used in any module service. Through this mechanism, the DIMS can offer high-
level services involving the retrieval of distributed information along the VE
network. For instance, to support the VE monitoring and coordination, certain
DIMS services can be used by the DBPMS module to get specific information related
to the purchase orders and internal production orders, that have been assigned to a
given set of the VE partners.

3.2 DIMS Federated Query Processing

The PCL applications such as advanced coordination modules, and end users need
to access VE-related data without worrying about the physical data distribution. At
the same time, the owner of the data wants to share different parts of the local VE
level data for different groups of users and keep other part confidential. The
Federated Query Processor (FQP) component adds to DIMS the functionality to
provide authorized access to proprietary VE-related data distributed over the VE
network, depending on their visibility levels defined at the remote sites [7].

In this section, the main tasks of the FQP are detailed. Other approaches to the
global query processing design and development in federated and multi-database

(the DIMS service answer/requesttransparently transferred to theDIMS server)DIMS_ServiceRequest /DIMS_ServiceAnswer<PM>_ServiceRequest /<PM>_Service Answer(the PM service answer/request istransparently transferred to thePM server)(the PM server may in turncontact internal PM services) (the DIMS server directly interactswith the other DIMS components)DIMSPMClientInterface ServerDIMSDIMS Interop. LayerPM Interop. LayerPMServer InterfaceDIMSClientPCLModule (PM) DIMS-PCLmodulesInteroperationLayer

Fig. 4. – General DIMS - PCL module interaction.

systems can be found in [13], [16], [17], [18], [19] and [12]. Most of these works aim
at a query processing mechanism to support a general multi-database architecture
where normally there is a central interoperable layer to handle global queries, and a
component layer at each participating database system to process the subqueries.
However, considering the VE peculiarities, these generic approaches should be
tailored and extended such as has been done for DIMS.

DIMS Federated Query Processing Internal Subtasks
The processing of federated queries in DIMS can be summarized as follows: when
the query arrives at the DIMS, it is analyzed and decomposed into a set of single-site
subqueries, each of which needs to be sent to only one site (VE node) to be processed.
After that, the results of the sub-queries are gathered and merged into the final
result. If necessary, the FQP interacts with the corresponding PPC to retrieve up-to-
date local production data, during this process. More specifically, the main subtasks
of FQP can be enumerated as follows: Query reformulation and decomposition,
Subquery transmission, Local subquery rewriting and evaluation, Pull PPC data,
Subquery result transmission, and Subquery result merge. Each of these tasks is
depicted in Fig. 5 and described in details in the rest of this section.

Query Reformulation and Decomposition
DIMS supports a set of high-level service functions to be used by the other modules,
based on the PCL interface standards, to hide the low-level database access details
from the query requesters. When one of these functions is called, FQP reformulates it
into an internal query format using the parameters specified for every function. This
reformulated query is then analyzed to determine the specific VE partners involved
in the original query. Further, the query is decomposed into a set of simpler
subqueries, so that each subquery involves the retrieval of data from only one VE
node. Namely, each subquery needs to be sent to only one corresponding partner to
be processed locally at that side.

Subquery Transmission
This task sends subqueries to the necessary remote nodes. The subqueries, which are
sent from one DIMS server to another DIMS server (in another node), comply with a
specific format in order to facilitate the processing at the target node. A DIMS
subquery request message format is composed by four fields. In the first field, the
query message contains a tag field that specifies the type of message (e.g, subquery
request or answer). The second and third fields correspond to the identifications of
the origin and target nodes, respectively. Since one enterprise may involve in more
than one VE at the same time, the node identification should contain VE identifier as
well as the enterprise identifier. Finally, the last field is reserved for the content of
the query itself. To transmit the query from one DIMS node to another one, the
DIMS exploits the facilities of the Local Coordinator Module (LCM) and the
PRODNET Communication Interface module (PCI) as will be illustrated later in this
section.

Local Subquery Rewriting and Evaluation
The evaluation of the subquery at the external node is crucial from the secure and
protected data access point of view. The PCL schema definition is the same in all
nodes as described earlier. Therefore, any node can issue a query against its
“imported” part of the schema. However, the access rights of every node to the data
that it can import from another node are precisely specified in the individual export
schema defined for the origin node in the target node. Therefore, the arriving query
will be carefully evaluated against the corresponding export schema of the sender
and all the visibility access constraints will be preserved. For this aim, the subquery
needs to be rewritten by incorporating the operations that are used to derive the
export schema. The FQP component operates on the export schema definitions from
the Export Schema Manager, so that it can always reflect the updates in these
definitions.

Pull PPC Data
DIMS applications and end-users may need to get the most recently up-to-date data
from the local data sources inside the PPC system of the enterprise. To meet this
need, DIMS communicates with PPC, through a specific Application Programming
Interface (API) developed to accomplish this necessity. The functions in this PPC
API allow the retrieval of data from the internal database system, and convert the
result into the common data format defined by the PCL interoperability approach.
The DIMS-PPC interaction is carried out using the workflow activities coordinated
by LCM defined for data retrieval from legacy systems. This workflow plan enables

SSuubbqquueerryy RReessuull tt
TTrraannssmmii ssssiioonn

Pull PPC DataPull PPC Data

SubquerySubquery Result Result
MergeMerge

SSuubbqquueerryy
TTrraannssmmiissssii oonn

SSuubbqquueerryy
AArrrriivvaall

Export
Schema
Manager

SSuubbqquueerryy
RReewwrrii tt ii nngg &&
EEvvaalluuaattii oonn

 LLooccaall
SSuubbqquueerryy
EEvvaalluuaattii oonn

Pull PPC
Data

API
API

query

query result

SSuubbqquueerryy AAnnsswweerr

DDII MM SS –– NNooddee AA DDII MM SS –– NNooddee BB

1 to n

NETWORK

Query
Reformulation &
Decomposition

DIMS Server Agent

SSuubbqquueerryy RReeqquueesstt

(A1)

(A2)

(A1)

A1: Workflow activities to retrieve data from legacy systems A2: Workflow activities to send DIMS-to-DIMS message

Fig. 5. - FQP Subtasks and Interaction

DIMS to get data from legacy systems of the enterprise, and any change in the
activities can be easily adopted by using the workflow manager in LCM.
Consequently, the DIMS gets the up-to-date data from local production system
through the specific API and stores it in its internal database temporarily during the
processing of the query. After this, the modified external subquery or local subquery
is executed on the data stored temporarily in its internal database. An example of
this functionality is included later in this section.

SubQuery Result Transmission
This step is similar to the step of sending the subquery to the remote nodes, except
for minor differences in the format and the content of the inter-DIMS message. The
first three fields of this DIMS subquery result message are defined earlier in the
“SubQuery Transmission” task. The last field corresponds to the result of the query,
which is composed of the identification of the subquery, the return code for the
subquery evaluation, and the content of the associated result itself.

Subquery Result Merge
Once the subquery results arrive at the origin node which started the processing of
the federated query being executed, the results of subqueries are kept in a separate
FQP result-blob table. Each result blob has the identifier of the query that it belongs
to, as well as the other information, such as its size. When all the results have
arrived, the merging step starts and is achieved by the “union” operation of the
individual results.

Federated Query Processing Steps
The FQP mechanism is implemented using multi-thread programming so that it can
receive multi-requests simultaneously via the DIMS server agent, and consequently it
can support the execution of different queries at the same time. In the general case,
two kinds of federated queries may arrive at the DIMS of an enterprise, an internal
query (a global query arriving from the VE coordinator module or an end-user) or an
external query (a subquery arriving from VE member’s DIMS). When an internal
query is issued either by end-user or an application to the DIMS, the FQP of the
DIMS involves the following simplified steps at the query issuer site.

1. Identify all the nodes (internal/external) to which the subquery must be sent
2. Decompose the query into subqueries where every subquery involves only one partner
3. For every node to which the subquery must be sent

3.1. If the receiving node is this node itself
3.1.1. If the query issuer asks the most up-to-date PPC generated data

Invoke the workflow activity to retrieve updated data from PPC into the DIMS
3.1.2. Evaluate the subquery and prepare the result

3.2. If the receiving node is external node
3.2.1. Prepare inter-DIMS query message (request)
3.2.2. Invoke the workflow activity to send the DIMS query message to the remote node

4. Wait for the results of all subqueries evaluation from the external nodes (timeout is considered)
5. Process the partial results and merge them into final result
6. Return final result

When an external query arrives from another node, the query is evaluated against
the export schema defined for the query sender node. When the result is obtained, it
must be returned to the sender of the query. This process is described as follows.

1. Interpret the inter-DIMS query message

1.1. If the query issuer asks the most up-to-date PPC generated data
Invoke the workflow to ask PPC store most recently updated data into the DIMS

Otherwise, evaluate the rewritten subquery and prepare the result
2. If the workflow to pull PPC up-to-date data is invoked

2.1. Wait for the PPC to finish the task (timeout is properly considered)
2.2. When the response arrives from PPC, evaluate the rewritten subquery and prepare the result

3. Prepare the inter-DIMS message including the result of the subquery and invoke the workflow to send
the result back to the query issuer node

PCL modules interactions to support FQP
The activity of sending and receiving Inter-DIMS messages is performed through
both the workflow management mechanism provided by the Local Coordinator
Module (LCM), and the communication means provided by the PRODNET
Communication Interface module (PCI). With this strategy, the LCM workflow
management mechanism is exploited to support flexible definition and changes in
the process of sending/receiving DIMS to DIMS (enterprise to enterprise) messages
depending on the business processes and procedures applied at every enterprise [11].
Besides, the advanced and safe communication facilities are used from the PCI
module. In Fig. 6, the sequence diagrams of inter-communication between several
PCL modules involved in federated query processing is shown, for the case where a
subquery is sent to another remote node and where the most recently updated data
from the PPC is demanded. This scenario can be extended for the general case that

query
request

Enterprise A

LCM DIMS

PCI-DeliverMessage

PCI

LCM-RecogniseMessage

LCM DIMS

LCM-RecogniseMessage
DIMS-ReceiveMessage

DIMS-PutData

PPCPCI

LCM-ExtractDataFromPPC

PPC-PutUptoDateData

LCM-SendDimsQueryResult

 PCI-DeliverMessage

DIMS-ReceiveMessage

Enterprise B

query
result

LCM-SendDimsQueryMessage

NNeettwwoorrkk

Fig. 6. –PCL Module interactions to support FQP

involves a set of remote nodes and one sender node. The sequences in this diagram
can be described as follows: at the sender node where the query is generated
(Enterprise A), DIMS processes the federated query and invokes the workflow
activity (SendDimsQueryMessage) to send an external subquery to Enterprise B.
This activity involves sending an inter-DIMS subquery message, embedded in the
PCI message format, to the remote node. When the PCI module at Enterprise B
receives this message, informs the DIMS at the same enterprise through LCM. The
DIMS extracts the external subquery and rewrites it against export schema defined
for Enterprise A. After the execution of the workflow activity, which extracts PPC
up-to-date data, DIMS evaluates the rewritten query and returns the result to the
sender by using a workflow activity (SendDimsQueryResult). The DIMS at
Enterpise A processes and merges the results from other nodes and returns the final
result.

3.3 DIMS Federated Export Schema Manager

In the Virtual Enterprise environment, every node must be able to give different
visibility levels and access rights to its local information to every other partner in
every particular VE that it is involved. The level of visibility and access that other
nodes have on the local information of a given node will be determined by the role
these nodes are going to play in the VE. To accomplish this objective following a
federated database approach, every node can protect its autonomy and privacy by
defining one detailed individual export schema based on its local schema, for every
other node with which it shares information [7], [8]. Another approach to export
and integrated schema management in the context of federated databases can be
found for instance in [14]. This work defines a general federated database approach,
which provides an ODMG interface to federate heterogeneous DBMS. However, in
contrast to DIMS, this architecture does not aim at VE specific support. In [21] and
[1], other approaches to view definitions based on underlying database schemas are
described.

In DIMS, besides allowing the enterprise nodes to define individual export
schema definition on the local schema for every external “partner”, we have
generalized this basic idea to the definition of a complete hierarchy of export
schemas based on the role of a given company in a VE.

The decision of every node in the federation, on what part of its local information
to make available to the other nodes in the VE, will be based on the role that each of
these nodes is going to play. Every partner of this enterprise in a given VE, will be
associated with a role, and each role is related to an individual schema in the
hierarchy of export schemas handled at this node. This hierarchy allows the grouping
and classification of common export schema characteristics, facilitating the control
and management of the individual export schema definitions. The objective of this
approach is to avoid creating an export schema for each one of the nodes involved in
the VE, since every node will give the same access rights to two or more of these
nodes, e.g. these nodes will have the same role in the VE.

For example, let us assume that for a VE there are three different kinds of roles
that a given enterprise can play: the coordinator, supervisor (subordinated to
coordinator but enabled to monitor certain VE activities), and regular VE partner
(subordinated to supervisor and enabled to perform certain restricted VE activities).
Clearly, for every role, different information items must be made accessible from
other nodes. For example, a VE coordinator needs to know information, which for
another regular VE partner may even be a secret. The support for a fine-grained
visibility level mechanism is required to model this situation. For more information
on the concept of role and its relation with export schema definitions please see [8],
[15].

In Fig. 7 the design of the database schema related with export schema
management is presented. Through this schema, the recursive definition of elements
of the export schema hierarchy and the role hierarchy are supported. For every VE
role, an external schema set (Export_Set) is defined, which at the end corresponds to
the partner’s export schema. Through the Export_Set, the proper visibility levels for
the partners on the local schema of the enterprise are specified. An Export_Set can
be either a single or a dependent export set depending if they are based on other
export sets or not. With this approach, on one hand, support for the general export
schemas definition is provided, where not only the pre-defined export schema
definitions at the level of VE, coordinators, supervisors, and partners, are considered,
but also other hierarchies can be defined and supported as necessary. On the other
hand, an Export_Set consists of a set of schemas, which in turn can be single schema
(EXP) or dependent schema (Dependent-EXP) following this definition strategy.

Besides the definition of the export schema hierarchy, it is necessary to define the
hierarchy of roles. For every different function that is going to be played in the VE a
role (ROLE) is defined. Every ROLE has as attributes: the general type of the role
(e.g. coordinator, supervisor, regular), the name that identifies the role and the
identification of the parent of the role in the hierarchy.

To operate on the described schema, an “Export Schema Manager” (ESM) module
has been developed. The ESM is used to create a basic export schema, and then, to
define dependent partner export schemas based on it, is also used to create the
hierarchy of roles. The ESM will ensure that the export schema and the role
hierarchies remain consistent, and that the schema definitions for every dependent
partner export schema are properly created.

EXP_Schema

EXP_Schema

physicalSchemaName:string
selectSpec: string
whereSpec:string
fromSpec:string

Dependant_EXP_Schema

SchemaID: string

Export_Set

Dependant_Export_Set

based_on_dep_schema

has_EXP_Schema

based_on_dep_set

Single_Export_Set

roleType: string
roleName: string
roleParentId: string

Role has_exp_schema_setPartner has_role

Fig. 7. Schema definitions for partner export schemas management

The Export Schema Manager Tool (ESMT) is a grahical user-friendly application
developed on top of the ESM that helps the human operator of PCL to define and
create the export schemas, during the configuration phase of the VE. The main
window of the ESMT interface tool contains a menu bar that enables the user to
perform different operations, such as create an export schema for every database
table, define the EXP/Dependent-EXP set, define the role export schema hierarchy,
and create the export schema for an enterprise among others. For a more detailed
description of the ESMT, please see [8].

In relation to the DIMS implementation environment and tools, the DIMS was
implemented on Windows NT using Microsoft Visual C++ (Professional Edition
5.0.) Other tools used to support the DIMS implementation include: Microsoft
Foundation Classes (MFC), MFC Database classes, ODBC drivers, and RPC support
tools.

4 Conclusions

The implementation of the distributed/federated architecture of the DIMS in
PRODNET, has proven to properly support the cooperative information sharing and
exchange, node autonomy, information visibility levels and access rights for
exchanged data among the VE nodes. The DIMS, assisted by the workflow
management engine of LCM, acts as a real backbone in order to support the entire
PCL operation and as a result, as a backbone to support the VE operation itself.

The implemented DIMS server represents a three-tier architecture with multi-
threading capabilities, which efficiently support the interaction between the DIMS
kernel and the other PCL modules. The DIMS Server Agent design provides a high
degree of flexibility for future extensions, and at the same time it allows the
invokation of the DIMS services from phisically distributed machines.

The DIMS Federated Query Processor that has been developed provides access to
the proprietary VE information for the authorized enterprises, while hiding the data
location details from the end user. The defined interoperation scenarios between the
FQP and the workflow management engine of LCM represent one of the novel
implementation strategies of the DIMS.

The DIMS Export Schema Manager properly supports the definition of visibility
levels and access rights for the information accesses from other VE nodes. The
Export Schema Management tool incorporates advanced user interface graphic
elements and provides a comprehensive and friendly environment for the end users.

Finally, the implemented DIMS module satisfies all the information management
requirements that were identified within the context of the PRODNET project, and
provides a solid platform that can be extended in order to address future VE life-
cycle support enhancements to the current PCL implementation.

References

1. Abiteboul, S; Bonner, A. - Objects and Views, in Proceedings ACM SIGMOD91, pages
238-247, May 1991.

2. Afsarmanesh, H; Tuijnman, F.; Wiedijk, M.; Hertzberger, L.O.- Distributed Schema
Management in a Cooperation Network of Autonomous Agents. Proceedings of the 4th
International Conference on Database and Expert Systems Applications (DEXA'93),
Lecture Notes in Computer Science 720, pages 565-576, Springer-Verlag, Sept 93.

3. Afsarmanesh, H. et al. Flexible and Dynamic Integration of Multiple Information Bases,
Proceedings of the 5th IEEE International Conference on "Database and Expert Systems
Applications DEXA'94", Athens, Greece, Lecture Notes in Computer Science (LNCS) 856,
Springer Verlag, p. 744-753, Sep. 1994.

4. Afsarmanesh, H; Camarinha, L. - Federated Information Management for Cooperative
Information - in proceedings of the 8th International Conference on Database and Expert
Systems Applications (DEXA’97), September 97.

5. Afsarmanesh, H; Garita, C; Hertzberger, L.O.; Santos, V. - Management of Distributed
Information in Virtual Enterprises:The PRODNET Approach –in proceedings of the
International Conference on Concurrent Enterprising (ICE’97), Nottingham,UK, October
97.

6. Afsarmanesh, H., Garita, C., Hertzberger, L.O., Virtual Enterprises and Federated
Information Sharing. Proceedings of the 9th IEEE International Conference on “Database
and Expert Systems Applications”, DEXA’98, Lecture Notes in Computer Science,
Vienna, Austria, August 1998.

7. H. Afsarmanesh, C. Garita, Y. Ugur, A. Frenkel, and L.O. Hertzberger. "Federated
Information Management Requirements for Virtual Enterprises". In Infrastructures for
Virtual Enterprises - Networking Industrial Enterprises (L.M. Camarinha-Matos and H.
Afsarmanesh, Editors), Kluwer Academic Publishers, ISBN 0-7923-8639-6, 1999.

8. H. Afsarmanesh, C. Garita, Y. Ugur, A. Frenkel, and L. O. Hertzberger. "Design of the
DIMS Architecture in PRODNET". In Infrastructures for Virtual Enterprises - Networking
Industrial Enterprises (L.M. Camarinha-Matos and H. Afsarmanesh, Editors), Kluwer
Academic Publishers, ISBN 0-7923-8639-6, 1999.

9. Camarinha-Matos, L; Afsarmanesh, H; Garita, C.; Lima, C - Towards an Architecture for
Virtual Enterprises. Special issue of the journal of Intelligent Manufacturing with the focus
on Agent-based Manufacturing, Volume 9, Number 2, Pages 189-199, Chapman and Hall
publications, March 1998.

10. Camarinha-Matos, L; Afsarmanesh, H. "The PRODNET Infrastructure". In Infrastructures
for Virtual Enterprises - Networking Industrial Enterprises (L.M. Camarinha-Matos and H.
Afsarmanesh, Editors), Kluwer Academic Publishers, ISBN 0-7923-8639-6, 1999.

11. Camarinha-Matos, L; Lima, C.P. "PRODNET coordination module". In Infrastructures for
Virtual Enterprises - Networking Industrial Enterprises (L.M. Camarinha-Matos and H.
Afsarmanesh, Editors), Kluwer Academic Publishers, ISBN 0-7923-8639-6, 1999.

12. Dayal, U. “Query Processing in a Multidatabase System”. In “Query Processing in
Database Systems” (W. Kim, D. S. Reiner and D. S. Batory, Editors), Springer 1985.

13. Elmagarmid, A; Rusinkiewicz, M; Sheth, A. "Management Of Heterogeneous and
Autonomous Database Systems”, Morgan Kaufmann Publishers, 1999.

14. Fankhauser, F. et al. Experiences in Federated Databases: From IRO-DB to MIRO-Web.
Proceedings of 24th International Conference on Very Large Data Bases, New York, USA,
pages 655-658, Morgan Kaufmann, August 1998.

15. Garita, C.; Afsarmanesh, H.; Hertzberger, L.O. – “The PRODNET Cooperative
Information Management for Industrial Virtual Enterprises”, submitted to the International
Journal of Intelligent Manufacturing, February, 2000.

16. Jonscher, D. and Dittrich, K.R. An Approach For Building Secure Database Federations.
Proceedings of 20th International Conference on Very Large Data Bases, Santiago de
Chile, Chile, pages 24-35, Morgan Kaufmann, September 1994.

17. Kapsammer, E; Wagner, R.R. “The IRO-DB Approach Processing Queries in Federated
Database Systems”, in Proc. of Eight International Workshop on Database and Expert
Systems Applications DEXA’97, IEEE Computer Society Press, Toulouse, France, 1997.

18. Meng, W.; Yu C. T. “Principles of Database Query Processing for Advanced
Applications”, Morgan Kaufmann Publishers, 1998.

19. Nural, S; Koksal, P; Ozcan, F; Dogac, A. "Query Decomposition and Processing in
Multidatabase Systems", in Proceedings of OODBMS Symposium of the European Joint
Conference on Engineering Systems Design and Analysis, Montpellier, 1996.

20. Osorio, L.; Antunes, C.; Barata, M. "Communication Infrastructure". In Infrastructures for
Virtual Enterprises - Networking Industrial Enterprises (L.M. Camarinha-Matos and H.
Afsarmanesh, Editors), Kluwer Academic Publishers, ISBN 0-7923-8639-6, 1999.

21. Rosenthal, A.; Sciore, E.; First-Class Views: A Key to User-Centered Computing, ACM
Sigmod Record, Volume 28, Number 3, September 1999.

22. Silberschatz, A.; Zdonik, S. – Database Systems: Breaking out the box, SIGMOD Record,
v. 26, n. 3, September 97.

23. Sinha, Alok. Network Programming in Windows NT. Addison Wesley, 1996.
24. Tuijnman, F.; Afsarmanesh, H. - Management of shared data in federated cooperative

PEER environment. International Journal of Intelligent and Cooperative Information
Systems (IJICIS), 2(4): 451-473, December 1993.

25. Wiedijk, M.; Afsarmanesh, H.; Hertzberger, L.O. - Co-working and Management of
Federated Information-Clusters. Proceedings of the 7th International Conference on
Database and Expert Systems (DEXA'96), Lecture Notes in Computer Science 1134, pp
446-455. Springer Verlag, September 1996.

