
19

Java GUI Components: Details

 Swing Overview
 JLabel
 Event Handling Model
 JTextField and

JPasswordField
 JTextArea
 JButton
 JCheckBox
 JComboBox

 Mouse Event Handling
 Layout Managers

 FlowLayout
 BorderLayout
 GridLayout

 Panels
 Creating a Self-Contained

Subclass of JPanel
 Windows
 Using Menus with Frames

20

Swing Overview
 Swing GUI components

 Defined in package javax.swing
 Original GUI components from Abstract Windowing Toolkit in
java.awt

 Heavyweight components - rely on local platform's windowing
system for look and feel

 Swing components are lightweight
 Written in Java, not weighed down by complex GUI

capabilities of platform
 More portable than heavyweight components

 Swing components allow programmer to specify look and feel
 Can change depending on platform
 Can be the same across all platforms

21

Swing Overview

java.awt.Component

java.awt.Container

java.lang.Object

javax.swing.JComponent

22

Swing Overview
 Swing component inheritance hierarchy

 Component defines methods that can be used in
its subclasses

 Container - collection of related components
 When using JFrames, attach components to the content

panel (a Container)
 Method add to add components to content pane

 JComponent - superclass to most Swing
components

 Much of a component's functionality inherited from
these classes

23

JLabel
 Labels

 Provide text instructions on a GUI
 Read-only text
 Programs rarely change a label's contents
 Class JLabel (subclass of JComponent)

 Methods
 Can declare label text in constructor
 myLabel.setToolTipText("Text"

 Displays "Text"in a tool tip when mouse over label
 myLabel.setText("Text")
 myLabel.getText()

24

Event Handling Model
 GUIs are event driven

 Generate events when user interacts with GUI
 Mouse movements, mouse clicks, typing in a text field,

etc.
 Event information stored in object that extends AWTEvent

 To process an event
 Register an event listener

 Object from a class that implements an event-listener
interface (from java.awt.event or javax.swing.event)

 "Listens" for events
 Implement event handler

 Method that is called in response to an event
 Each event handling interface has one or more event

handling methods that must be defined

25

Event Handling Model
 Delegation event model

 Use of event listeners in event handling
 Processing of event delegated to particular object

 When an event occurs
 GUI component notifies its listeners
 Calls listener's event handling method

 Example:
 Enter pressed in a JTextField
 Method actionPerformed called for registered listener

26

TextField and JPasswordField
 JTextFields and JPasswordFields

 Single line areas in which text can be entered or displayed
 JPasswordFields show inputted text as *
 JTextField extends JTextComponent

 JPasswordField extends JTextField
 When Enter pressed

 ActionEvent occurs
 Currently active field "has the focus"

 Methods
 Constructor

 JTextField(10) - sets textfield with 10 columns of text
 JTextField("Hi") - sets text, width determined automatically

27

JTextField and JPasswordField

 Methods (continued)
 setEditable(boolean)

 If true, user can edit text
 getPassword

 Class JPasswordField
 Returns password as an array of type char

 Example
 Create JTextFields and a JPasswordField
 Create and register an event handler

 Displays a dialog box when Enter pressed

28

JTextArea
 Area for manipulating multiple lines of text

 Like JTextField, inherits from JTextComponent
 Many of the same methods

 JScrollPane
 Provides scrolling
 Initialize with component

 new JScrollPane(myComponent)
 Can set scrolling policies (always, as needed, never)

 Box container
 Uses BoxLayout layout manager
 Arrange GUI components horizontally or vertically
 Box b = Box.createHorizontalbox();

 Arranges components attached to it from left to right, in order
attached

29

JButton
 Button

 Component user clicks to trigger an action
 Several types of buttons

 Command buttons, toggle buttons, check boxes, radio
buttons

 Command button
 Generates ActionEvent when clicked
 Created with class JButton

 Inherits from class AbstractButton
 Jbutton

 Text on face called button label
 Each button should have a different label
 Support display of Icons

30

JButton
 Constructors

Jbutton myButton = new JButton("Button");
Jbutton myButton = new JButton("Button",
myIcon);

 Method
 setRolloverIcon(myIcon)

 Sets image to display when mouse over button

31

JCheckBox
 State buttons

 JToggleButton
 Subclasses JCheckBox, JRadioButton

 Have on/off (true/false) values
 We discuss JCheckBox in this section

 Initialization
 JCheckBox myBox = new JCheckBox("Title");

 When JCheckBox changes
 ItemEvent generated

 Handled by an ItemListener, which must define
itemStateChanged

 Register with addItemListener

32

JCheckBox
 ItemEvent methods

 getStateChange
 Returns ItemEvent.SELECTED or

ItemEvent.DESELECTED

33

JComboBox
 Combo box (drop down list)

 List of items, user makes a selection
 Class JComboBox

 Generate ItemEvents
 JComboBox

 Numeric index keeps track of elements
 First element added at index 0
 First item added is appears as currently selected item when

combo box appears

34

JComboBox
 Methods

 getSelectedIndex
 Returns the index of the currently selected item

 setMaximumRowCount(n)
 Set the maximum number of elements to display

when user clicks combo box
 Scrollbar automatically provided

35

Mouse Event Handling
 Mouse events

 Can be trapped for any GUI component derived from
java.awt.Component

 Mouse event handling methods
 Take a MouseEvent object

 Contains info about event, including x and y coordinates
 Methods getX and getY

 MouseListener and MouseMotionListener methods called
automatically (if component is registered)

 addMouseListener
 addMouseMotionListener

36

Layout Managers

 Layout managers
 Arrange GUI components on a container
 Provide basic layout capabilities

 Easier to use than determining exact size and
position of every component

 Programmer concentrates on "look and feel" rather
than details

37

FlowLayout
 Most basic layout manager

 Components placed left to right in order added
 When edge of container reached, continues on next line
 Components can be left-aligned, centered (default), or right-

aligned
 Method

 setAlignment
 FlowLayout.LEFT, FlowLayout.CENTER,

FlowLayout.RIGHT
 layoutContainer(Container)

 Update Container specified with layout

38

BorderLayout
 BorderLayout

 Default manager for content pane
 Arrange components into 5 regions

 North, south, east, west, center
 Up to 5 components can be added directly

 One for each region
 Components placed in

 North/South - Region is as tall as component
 East/West - Region is as wide as component
 Center - Region expands to take all remaining space

39

BorderLayout
 Methods

 Constructor: BorderLayout(hGap, vGap);
 hGap - horizontal gap space between regions
 vGap - vertical gap space between regions
 Default is 0 for both

 Adding components
 myLayout.add(component, position)
 component - component to add
 position - BorderLayout.NORTH

 SOUTH, EAST, WEST, CENTER similar
 setVisible(boolean) (in class Jbutton)

 If false, hides component
 layoutContainer(container) - updates container, as before

40

GridLayout
 GridLayout

 Divides container into a grid
 Components placed in rows and columns
 All components have same width and height

 Added starting from top left, then from left to right
 When row full, continues on next row, left to right

 Constructors
 GridLayout(rows, columns, hGap, vGap)

 Specify number of rows and columns, and horizontal and
vertical gaps between elements (in pixels)

 GridLayout(rows, columns)
 Default 0 for hGap and vGap

41

GridLayout
 Updating containers

 Container method validate
 Re-layouts a container for which the layout has changed

 Example:
Container c = getContentPane;
c.setLayout(myLayout);
if (x = 3){

c.setLayout(myLayout2);
c.validate();

}
 Changes layout and updates c if condition met

42

Panels
 Complex GUIs

 Each component needs to be placed in an exact location
 Can use multiple panels

 Each panel's components arranged in a specific layout
 Panels

 Class JPanel inherits from JComponent, which inherits
from java.awt.Container

 Every JPanel is a Container
 JPanels can have components (and other JPanels) added

to them
 JPanel sized to components it contains
 Grows to accommodate components as they are added

43

Panels

 Usage
 Create panels, and set the layout for each
 Add components to the panels as needed
 Add the panels to the content pane (default

BorderLayout)

44

Creating a Self-Contained Subclass of
JPanel -1-

 JPanel
 Can be used as a dedicated drawing area

 Receive mouse events
 Can extend to create new components

 Combining Swing GUI components and drawing can lead to
improper display

 GUI may cover drawing, or may be able to draw over GUI
components

 Solution: separate the GUI and graphics
 Create dedicated drawing areas as subclasses of JPanel

45

Creating a Self-Contained Subclass of
JPanel -2-

 Swing components inheriting from JComponent
 Contain method paintComponent

 Helps to draw properly in a Swing GUI
 When customizing a JPanel, override paintComponent
public void paintComponent(Graphics g)
 {
 super.paintComponent(g);

 //additional drawing code
 }
 Call to superclass paintComponent ensures painting occurs in

proper order
 The call should be the first statement - otherwise, it will erase any

drawings before it

46

Creating a Self-Contained Subclass of
JPanel -3-

 JFrame and JApplet
 Not subclasses of JComponent

 Do not contain paintComponent
 Override paint to draw directly on subclasses

 Events
 JPanels do not create events like buttons
 Can recognize lower-level events

 Mouse and key events

47

Creating a Self-Contained Subclass of
JPanel-4-

 Example
 Create a subclass of JPanel named SelfContainedPanel that

listens for its own mouse events
 Draws an oval on itself (overrides paintComponent)

 Import SelfContainedPanel into another class
 The other class contains its own mouse handlers

 Add an instance of SelfContainedPanel to the content panel

48

Windows
 JFrame

 Inherits from java.awt.Frame, which inherits from
java.awt.Window

 JFrame is a window with a title bar and a border
 Not a lightweight component - not written completely in

Java
 Window part of local platform's GUI components

 Different for Windows, Macintosh, and UNIX
 JFrame operations when user closes window

 Controlled with method setDefaultCloseOperation
 Interface WindowConstants (javax.swing) has three

constants to use
 DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE,
HIDE_ON_CLOSE (default)

49

Windows -2-

 Windows take up valuable resources
 Explicitly remove windows when not needed with method

dispose (of class Window, indirect superclass of JFrame)
 Or, use setDefaultCloseOperation

 DO_NOTHING_ON_CLOSE - you determine what happens
when user wants to close window

 Display
 By default, window not displayed until method show called
 Can display by calling method setVisible(true)
 Method setSize - make sure to set a window's size,

otherwise only the title bar will appear

50

Windows -3-
 All windows generate window events

 addWindowListener
 WindowListener interface has 7 methods

 windowActivated
 windowClosed (called after window closed)
 windowClosing (called when user initiates closing)
 windowDeactivated
 windowIconified (minimized)
 windowDeiconified
 windowOpened

51

Using Menus with Frames

 Menus
 Important part of GUIs
 Perform actions without cluttering GUI
 Attached to objects of classes that have method

setJMenuBar
 JFrame and JApplet

 Classes used to define menus
 JMenuBar - container for menus, manages menu bar
 JMenuItem - manages menu items

 Menu items - GUI components inside a menu
 Can initiate an action or be a submenu

52

Using Menus with Frames -2-

 Classes used to define menus (continued)
 JMenu - manages menus

 Menus contain menu items, and are added to menu bars
 Can be added to other menus as submenus
 When clicked, expands to show list of menu items

 JCheckBoxMenuItem
 Manages menu items that can be toggled
 When selected, check appears to left of item

 JRadioButtonMenuItem
 Manages menu items that can be toggled
 When multiple JRadioButtonMenuItems are part of a

group, only one can be selected at a time
 When selected, filled circle appears to left of item

53

Using Menus with Frames -3-

 Mnemonics
 Provide quick access to menu items (File)

 Can be used with classes that have subclass
javax.swing.AbstractButton

 Use method setMnemonic
JMenu fileMenu = new JMenu("File")
fileMenu.setMnemonic('F');
 Press Alt + F to access menu

 Methods
 setSelected(true)

 Of class AbstractButton
 Sets button/item to selected state

54

Using Menus with Frames -3-

 Methods (continued)
 addSeparator()

 Class JMenu
 Inserts separator line into menu

 Dialog boxes
 Modal - No other window can be accessed while it is open (default)

 Modeless - other windows can be accessed
 JOptionPane.showMessageDialog(parentWindow, String, title,

messageType)
 parentWindow - determines where dialog box appears

 null - displayed at center of screen
 window specified - dialog box centered horizontally over parent

55

Using Menus with Frames-4-
 Using menus

 Create menu bar
 Set menu bar for JFrame (setJMenuBar(myBar);)

 Create menus
 Set Mnemonics

 Create menu items
 Set Mnemonics
 Set event handlers

 If using JRadioButtonMenuItems
 Create a group: myGroup = new ButtonGroup();
 Add JRadioButtonMenuItems to the group

56

 Using Menus with Frames-5-
 Using menus (continued)

 Add menu items to appropriate menus
 myMenu.add(myItem);
 Insert separators if necessary: myMenu.addSeparator();

 If creating submenus, add submenu to menu
 myMenu.add(mySubMenu);

 Add menus to menu bar
 myMenuBar.add(myMenu);

 Example
 Use menus to alter text in a JLabel
 Change color, font, style
 Have a "File" menu with a "About" and "Exit" items

