Ordering Information: Advanced Java™ 2 Platform How to Program, 1/e

¢ View the complete Table of Contents
¢ Read the Preface
¢ Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUzz ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html
To learn more about Deitel instructor-led corporate training delivered at your lo-
cation, visit www.deitel.com/training or contact Christi Kelsey at (978) 461-

5880 or e-mail: christi.kelsey @deitel.net.

Note from the Authors: This article is an excerpt from Chapter 2, Section 2.3 of
Advanced Java™ 2 Platform How to Program. This article discusses Java™
Swing actions of GUI components. Readers should be familiar with Swing and
event handling. The code examples included in this article show readers examples
using the DEITEL™ signature LiVE-CODE™ Approach, which presents all con-
cepts in the context of complete, working programs followed by the screen shots
of the actual inputs and outputs.

http://www.informit.com/content/index.asp?product_id={1321DA5B-6A24-4521-B4E1-1E33CFA5CC01}
http://www.deitel.com/training
http://www.deitel.com/books/advjHTP1/advjHTP1_toc.pdf
http://www.informIT.com/deitel
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/books/advjHTP1/advjHTP1_preface.pdf
http://www.deitel.com/books/downloads.html#java
mailto: christi.kelsey@deitel.net

Chapter 2 Advanced Swing Graphical User Interface Components 1

2.3 Swing Act i ons

Applications often provide users with several different ways to perform a given task. For
example, in aword processor there might be an Edit menu with menu items for cutting,
copying and pasting text. There also might be atoolbar that has buttonsfor cutting, copying
and pasting text. There a'so might be a pop-up menu to allow usersto right click on adoc-
ument to cut, copy or paste text. The functionality the application providesis the samein
each case—the developer provides the various interface components for the user’ s conve-
nience. However, the same GUI component instance (e.g., a JBut t on for cutting text)
cannot be used for menus and toolbars and pop-up menus, so the developer must code the
samefunctionality threetimes. If there were many such interface items, repeating thisfunc-
tionality would become tedious and error-prone.

The Command design pattern solves this problem by enabling developersto define the
functionality (e.g., copying text) once in areusable object that the developer then can add
to a menu, toolbar or pop-up menu. This design pattern is called Command because it
definesauser command or instruction. The Act i on interface definesrequired methodsfor
the Java Swing implementation of the Command design pattern.

An Act i on represents user-interface logic and properties for GUI components that
represent that logic, such as the label for abutton, the text for atool tip and the mnemonic
key for keyboard access. Thelogic takestheform of anact i onPer f or med method that
the event mechanism invokes in response to the user activating an interface component
(e.g., the user clicking a JBut t on). Interface Acti on extends interface Acti on-
Li st ener ,whichenablesAct i onsto processAct i onEvent sgenerated by GUI com-
ponents. Once a developer defines an Act i on, the developer can add that Act i on toa
JMenu or JTool Bar, just as if the Acti on were a JMenul t emor JBut t on. For
example, when a developer adds an Act i on to aJMenu, the JMenu creates a JMenu-
I t emfor the Act i on and usesthe Act i on propertiesto configurethe JMenul t em

Act i onsprovide an additional benefit in that the developer can enable or disable all
GUI components associated with an Act i on by enabling or disabling the Act i on itself.
For example, copying text from a document first requires that the user select the text to be
copied. If there is no selected text, the program should not allow the user to perform a copy
operation. If the application used a separate JMenul t eminaJMenu and JBut t on ina
JTool Bar for copying text, the developer would need to disable each of these GUI com-
ponents individually. Using Act i ons, the developer could disable the Acti on for
copying text, which also would disable all associated GUI components.

ActionSanpl e (Fig.2.5) demonstrates two Acti ons. Lines 15-16 declare
Act i on referencessanpl eAct i on and exi t Act i on. Lines 24-35 create an anony-
mous inner class that extends class Abst r act Act i on and assigns the instance to refer-
ence sanpl eAct i on. Class Abst ract Act i on facilitates creating Act i on objects.
Class Abstract Act i on implements interface Acti on, but is marked abstract
because class Abstract Acti on does not provide an implementation for method
acti onPer f or med. Lines 26-34 implement method act i onPer f or med. The Swing
event mechanism invokes method act i onPer f or med when the user activates a GUI
component associated with sanpl eAct i on. We show how to create these GUI compo-
nents shortly. Lines 29-30 in method act i onPer f or med display a JOpt i onPane
message dialog to inform the user that sanpl eActi on was invoked. Line 33 then

© Copyright 2002 by Prentice Hall. All Rights Reserved.

2

invokesmethod set Enabl ed of interface Act i on ontheexi t Act i on reference. This
enables the exi t Act i on and its associated GUI components. Note that Act i ons are
enabled by default. We disabled the exi t Act i on (line 80) to demonstrate that this dis-

Advanced Swing Graphical User Interfface Components

ables the GUI components associated with that Act i on.

OCoO~NOUAWNE

package comdeitel.advjhtpl. gui.actions;

i mport java.aw.*;
i mport java.aw .event.*;

10 inport javax.sw ng.*;

12 public class ActionSanpl e extends JFrane {

private Action sanpl eActi on;
private Action exitAction;

public ActionSanpl e()
{

super ();

sanpl eAction = new AbstractAction() {

public void actionPerforned(ActionEvent event)

{
JOpt i onPane. showMessageDi al og(ActionSanpl e.this,

exi t Action. set Enabl ed(true);

sanpl eActi on. put Val ue(Action. ,);

sanpl eActi on. put Val ue(Action. , new | magel con(
get Cl ass() . get Resource()));

sanpl eActi on. put Val ue(Action. |
)

Acti onSanpl e application demonstrating the Command design
pattern with Swing Act | ons (part 1 of 4).

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Chapter 2

Chapter 2 Advanced Swing Graphical User Interface Components 3

49 sanpl eActi on. put Val ue(Action. ,
50 new | nt eger ())
53 exitAction = new AbstractAction() {

55| public void actionPerfornmed(ActionEvent event)
56 {

58 JOpt i onPane. showMessageDi al og(ActionSanpl e.this,
59)
60 System exi t();

61 }
62 E

65 exi t Acti on. put Val ue(Action. ,);

68 exi t Acti on. put Val ue(Acti on. , new | magel con(
69 get Cl ass() . get Resource()));

72 exi t Acti on. put Val ue(Acti on. L
73);

76 exi t Acti on. put Val ue(Acti on. ,
77 new | nteger())

80 exi t Acti on. set Enabl ed(fal se);

83 JMenu fileMenu = new JMenu();

87 fil eMenu. add(sanpl eAction);
88 fileMenu.add(exitAction);

90 fil eMenu. set Mhenoni c()

93 JMenuBar menuBar = new JMenuBar () ;
94 menuBar . add(fil eMenu);
95 set JMenuBar (menuBar);

98 JTool Bar tool Bar = new JTool Bar () ;

Fig.2.5 ActionSanpl e application demonstrating the Command design
pattern with Swing Act I ons (part 2 of 4).

© Copyright 2002 by Prentice Hall. All Rights Reserved.

4 Advanced Swing Graphical User Interfface Components Chapter 2
99
100
101
102 t ool Bar. add(sanpl eAction);
103 t ool Bar. add(exitAction);
104
105
106 JButton sanpl eButton = new JButton();
107 sanpl eButt on. set Acti on(sanpl eAction);
108
109
110 JButton exitButton = new JButton(exitAction);
111
112
113 JPanel buttonPanel = new JPanel ();
114 but t onPanel . add(sanpl eButton);
115 but t onPanel . add(exitButton);
116
117
118 Cont ai ner contai ner = get Cont ent Pane() ;
119 cont ai ner. add(tool Bar, BorderLayout.);
120 cont ai ner. add(buttonPanel, BorderLayout.)
121 }
122
123
124 public static void main(String args[])
125 {
126 Acti onSanpl e sanple = new Acti onSanpl e();
127 sanpl e. set Def aul t Cl oseQper at i on(;
128 sanpl e. pack();
129 sanpl e.setVisible(true);
130
131 }
[23 using Actions =10l =] [EiMessage x|
@ The sampleAction was imvoked
;Iglil E%gUsing Actions ;Iglil
. Sample Action
@ | 2 ® -
Fig. 2.5 Acti onSanpl e application demonstrating the Command design

pattern with Swing ACt i ons (part 3 of 4).

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Chapter 2 Advanced Swing Graphical User Interface Components 5

E%Message ll

ﬁ_ The exitAction was imvoked

Fig. 2.5 Act i onSanpl e application demonstrating the Command design
pattern with Swing Act | Ons (part 4 of 4).

After instantiating an Abst r act Act i on subclassto create sanpl eAct i on, lines
38-50 repeatedly invoke method put Val ue of interface Acti on to configure sam
pl eAct i on properties. Each property has a key and avalue. Interface Act i on defines
thekeysaspubl i ¢ constants, which welist in Fig. 2.6. GUI components associated with
sanpl eAct i on usethe property valueswe assign for GUI component labels, icons, tool-
tips and so on. Line 38 invokes method put Val ue of interface Act i on with arguments
Action. NAMEand" Sanpl e Acti on".Thisassignssanpl eAct i on’sname, which
GUI components use as their label. Lines 4142 invoke method put Val ue of interface
Act i on withkey Acti on. SMALL | CONandan| magel con vaue, which GUI com-
ponents use as their | con. Lines 4546 set the Action’s tool tip using key
Act i on. SHORT_DESCRI PTI ON. Lines 49-50 set the Act i on’s mnemonic key using
key Acti on. MNEMONI C_KEY. Whenthe Act i on isplacedinaJMenu, the mnemonic
key provides keyboard accessto the Act i on. Lines 53-80 createtheexi t Acti onina
similar way to sanpl eAct i on, with an appropriate name, icon, description and mne-
monic key. Line 80 invokes method set Enabl ed of interface Act i on with argument
fal se to disable the exi t Acti on. We use this to demonstrate that disabling an
Act i on aso disablesthe Act i on’sassociated GUI components.

Line 83 createsthef i | eMenu JMenu, which contains JMenul t ens corresponding
tosanpl eActi onandexi t Acti on. Class JMenu overloads method add with aver-
sion that takesan Act i on argument. This overloaded add method returns a reference to
the IMenul t emthat it creates. Lines 87-88 invoke method add of class JMenu to add
sanpl eActi on and exi t Act i on tothe menu. We have no need for the JMenul t em
references that method add returns, so we ignore them. Line 90 setsthef i | eMenu mne-
monic key, and lines 93-95 add thef i | eMenu toaJMenuBar andinvoke methodset -
JMenuBar of classJFr ane to add the JMenuBar to the application.

Line98 createsanew JTool Bar . LikeJMenu,JTool Bar also providesoverloaded
method add for adding Act i ons to JTool Bars. Method add of class JTool Bar
returns areference to the JBut t on created for the given Act i on. Lines 102-103 invoke
method add of class JTool Bar to add the sanpl eActi on and exi t Acti on to the
JTool Bar . We have no need for the JBut t on references that method add returns, so
we ignore them.

Class JBut t on provides method set Acti on for configuring a JBut t on with
propertiesof anAct i on. Line106 createsJBut t on sanpl eBut t on. Line107 invokes
method set Act i on of class JBut t on with asanpl eAct i on argument to configure
sanpl eBut t on. Line 110 demonstrates an alternative way to configureaJBut t on with
properties from an Acti on. The JButt on constructor is overloaded to accept an

© Copyright 2002 by Prentice Hall. All Rights Reserved.

6 Advanced Swing Graphical User Interfface Components Chapter 2

Act i on argument. The constructor configures the JBut t on using properties from the
given Act i on.

According to the Java 2 SDK documentation, it is preferable to create JBut t ons and
JMenul t ens, invoke method set Act i on then add the JBut t on or IMenul t emto its
container, rather than adding the Act i on to the container directly. This is because most
GUI-building tools do not support adding Act i onsto containersdirectly.

Lines 113-120 add the newly created JButt ons to a JPanel and lay out the
JTool Bar andJPanel intheJFr anme’scontent pane. Notethat in thefirst screen capture
of Fig. 2.5, the JBut t onsfor exi t Act i on appear grayed-out. Thisis because the exi -
t Act i onisdisabled. Afterinvokingthesanpl eAct i on,theexi t Acti onisenabl ed
and appears in full color. Note also the tool tips, icons and labels on each GUI component.
Each of these items was configured using properties of the respective Act i on object.

Figure 2.6 summarizes Act i on properties. Each property nameisast at i ¢ constant
ininterface Act i on and acts as akey for setting or retrieving the property value.

Subsequent sections of this chapter in Advanced Java 2 Platform How to Program
demonstrate two alternative waysto create Swing Act i on instances. Thefirst uses named
inner classes. The second defines a generic Abst r act Act i on subclass that provides a
constructor for commonly used properties and set methods for each individual Acti on

property.

Name Description

Name to be used for GUI-component labels.
Descriptive text for usein tooltips.
| con for displaying in GUI-component |abels.

Mnemonic key for keyboard access (e.g., for accessing menus and
menu items using the keyboard).

Accelerator key for keyboard access (e.g., using the Ctrl key).
Key for retrieving command string to beused in Act i onEvent s.
Descriptive text, e.g., for application help.

Fig.2.6 Actionclassst ati c keysfor Act i on properties.

© Copyright 2002 by Prentice Hall. All Rights Reserved.

