
Ordering Information: Advanced Java™ 2 Platform How to Program, 1/e

• View the complete Table of Contents

• Read the Preface

• Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUZZ ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html
To learn more about Deitel instructor-led corporate training delivered at your lo-
cation, visit www.deitel.com/training or contact Christi Kelsey at (978) 461-
5880 or e-mail: christi.kelsey@deitel.net.

Note from the Authors: This article is an excerpt from Chapter 2, Section 2.3 of
Advanced Java™ 2 Platform How to Program. This article discusses Java™
Swing actions of GUI components. Readers should be familiar with Swing and
event handling. The code examples included in this article show readers examples
using the DEITEL™ signature LIVE-CODE™ Approach, which presents all con-
cepts in the context of complete, working programs followed by the screen shots
of the actual inputs and outputs.

informITheaderpage.fm Page 39 Friday, April 5, 2002 9:20 AM

http://www.informit.com/content/index.asp?product_id={1321DA5B-6A24-4521-B4E1-1E33CFA5CC01}
http://www.deitel.com/training
http://www.deitel.com/books/advjHTP1/advjHTP1_toc.pdf
http://www.informIT.com/deitel
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/books/advjHTP1/advjHTP1_preface.pdf
http://www.deitel.com/books/downloads.html#java
mailto: christi.kelsey@deitel.net

Chapter 2 Advanced Swing Graphical User Interface Components 1

© Copyright 2002 by Prentice Hall. All Rights Reserved.

2.3 Swing Actions
Applications often provide users with several different ways to perform a given task. For
example, in a word processor there might be an Edit menu with menu items for cutting,
copying and pasting text. There also might be a toolbar that has buttons for cutting, copying
and pasting text. There also might be a pop-up menu to allow users to right click on a doc-
ument to cut, copy or paste text. The functionality the application provides is the same in
each case—the developer provides the various interface components for the user’s conve-
nience. However, the same GUI component instance (e.g., a JButton for cutting text)
cannot be used for menus and toolbars and pop-up menus, so the developer must code the
same functionality three times. If there were many such interface items, repeating this func-
tionality would become tedious and error-prone.

The Command design pattern solves this problem by enabling developers to define the
functionality (e.g., copying text) once in a reusable object that the developer then can add
to a menu, toolbar or pop-up menu. This design pattern is called Command because it
defines a user command or instruction. The Action interface defines required methods for
the Java Swing implementation of the Command design pattern.

An Action represents user-interface logic and properties for GUI components that
represent that logic, such as the label for a button, the text for a tool tip and the mnemonic
key for keyboard access. The logic takes the form of an actionPerformed method that
the event mechanism invokes in response to the user activating an interface component
(e.g., the user clicking a JButton). Interface Action extends interface Action-
Listener, which enables Actions to process ActionEvents generated by GUI com-
ponents. Once a developer defines an Action, the developer can add that Action to a
JMenu or JToolBar, just as if the Action were a JMenuItem or JButton. For
example, when a developer adds an Action to a JMenu, the JMenu creates a JMenu-
Item for the Action and uses the Action properties to configure the JMenuItem.

Actions provide an additional benefit in that the developer can enable or disable all
GUI components associated with an Action by enabling or disabling the Action itself.
For example, copying text from a document first requires that the user select the text to be
copied. If there is no selected text, the program should not allow the user to perform a copy
operation. If the application used a separate JMenuItem in a JMenu and JButton in a
JToolBar for copying text, the developer would need to disable each of these GUI com-
ponents individually. Using Actions, the developer could disable the Action for
copying text, which also would disable all associated GUI components.

ActionSample (Fig. 2.5) demonstrates two Actions. Lines 15–16 declare
Action references sampleAction and exitAction. Lines 24–35 create an anony-
mous inner class that extends class AbstractAction and assigns the instance to refer-
ence sampleAction. Class AbstractAction facilitates creating Action objects.
Class AbstractAction implements interface Action, but is marked abstract
because class AbstractAction does not provide an implementation for method
actionPerformed. Lines 26–34 implement method actionPerformed. The Swing
event mechanism invokes method actionPerformed when the user activates a GUI
component associated with sampleAction. We show how to create these GUI compo-
nents shortly. Lines 29–30 in method actionPerformed display a JOptionPane
message dialog to inform the user that sampleAction was invoked. Line 33 then

2 Advanced Swing Graphical User Interface Components Chapter 2

© Copyright 2002 by Prentice Hall. All Rights Reserved.

invokes method setEnabled of interface Action on the exitAction reference. This
enables the exitAction and its associated GUI components. Note that Actions are
enabled by default. We disabled the exitAction (line 80) to demonstrate that this dis-
ables the GUI components associated with that Action.

1 // ActionSample.java
2 // Demonstrating the Command design pattern with Swing Actions.
3 package com.deitel.advjhtp1.gui.actions;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class ActionSample extends JFrame {
13
14 // Swing Actions
15 private Action sampleAction;
16 private Action exitAction;
17
18 // ActionSample constructor
19 public ActionSample()
20 {
21 super("Using Actions");
22
23 // create AbstractAction subclass for sampleAction
24 sampleAction = new AbstractAction() {
25
26 public void actionPerformed(ActionEvent event)
27 {
28 // display message indicating sampleAction invoked
29 JOptionPane.showMessageDialog(ActionSample.this,
30 "The sampleAction was invoked");
31
32 // enable exitAction and associated GUI components
33 exitAction.setEnabled(true);
34 }
35 };
36
37 // set Action name
38 sampleAction.putValue(Action.NAME, "Sample Action");
39
40 // set Action Icon
41 sampleAction.putValue(Action.SMALL_ICON, new ImageIcon(
42 getClass().getResource("images/Help24.gif")));
43
44 // set Action short description (tooltip text)
45 sampleAction.putValue(Action.SHORT_DESCRIPTION,
46 "A Sample Action");

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 1 of 4).

Chapter 2 Advanced Swing Graphical User Interface Components 3

© Copyright 2002 by Prentice Hall. All Rights Reserved.

47
48 // set Action mnemonic key
49 sampleAction.putValue(Action.MNEMONIC_KEY,
50 new Integer('S'));
51
52 // create AbstractAction subclass for exitAction
53 exitAction = new AbstractAction() {
54
55 public void actionPerformed(ActionEvent event)
56 {
57 // display message indicating exitAction invoked
58 JOptionPane.showMessageDialog(ActionSample.this,
59 "The exitAction was invoked");
60 System.exit(0);
61 }
62 };
63
64 // set Action name
65 exitAction.putValue(Action.NAME, "Exit");
66
67 // set Action icon
68 exitAction.putValue(Action.SMALL_ICON, new ImageIcon(
69 getClass().getResource("images/EXIT.gif")));
70
71 // set Action short description (tooltip text)
72 exitAction.putValue(Action.SHORT_DESCRIPTION,
73 "Exit Application");
74
75 // set Action mnemonic key
76 exitAction.putValue(Action.MNEMONIC_KEY,
77 new Integer('x'));
78
79 // disable exitAction and associated GUI components
80 exitAction.setEnabled(false);
81
82 // create File menu
83 JMenu fileMenu = new JMenu("File");
84
85 // add sampleAction and exitAction to File menu to
86 // create a JMenuItem for each Action
87 fileMenu.add(sampleAction);
88 fileMenu.add(exitAction);
89
90 fileMenu.setMnemonic('F');
91
92 // create JMenuBar and add File menu
93 JMenuBar menuBar = new JMenuBar();
94 menuBar.add(fileMenu);
95 setJMenuBar(menuBar);
96
97 // create JToolBar
98 JToolBar toolBar = new JToolBar();

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 2 of 4).

4 Advanced Swing Graphical User Interface Components Chapter 2

© Copyright 2002 by Prentice Hall. All Rights Reserved.

99
100 // add sampleAction and exitAction to JToolBar to create
101 // JButtons for each Action
102 toolBar.add(sampleAction);
103 toolBar.add(exitAction);
104
105 // create JButton and set its Action to sampleAction
106 JButton sampleButton = new JButton();
107 sampleButton.setAction(sampleAction);
108
109 // create JButton and set its Action to exitAction
110 JButton exitButton = new JButton(exitAction);
111
112 // lay out JButtons in JPanel
113 JPanel buttonPanel = new JPanel();
114 buttonPanel.add(sampleButton);
115 buttonPanel.add(exitButton);
116
117 // add toolBar and buttonPanel to JFrame's content pane
118 Container container = getContentPane();
119 container.add(toolBar, BorderLayout.NORTH);
120 container.add(buttonPanel, BorderLayout.CENTER);
121 }
122
123 // execute application
124 public static void main(String args[])
125 {
126 ActionSample sample = new ActionSample();
127 sample.setDefaultCloseOperation(EXIT_ON_CLOSE);
128 sample.pack();
129 sample.setVisible(true);
130 }
131 }

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 3 of 4).

Chapter 2 Advanced Swing Graphical User Interface Components 5

© Copyright 2002 by Prentice Hall. All Rights Reserved.

After instantiating an AbstractAction subclass to create sampleAction, lines
38–50 repeatedly invoke method putValue of interface Action to configure sam-
pleAction properties. Each property has a key and a value. Interface Action defines
the keys as public constants, which we list in Fig. 2.6. GUI components associated with
sampleAction use the property values we assign for GUI component labels, icons, tool-
tips and so on. Line 38 invokes method putValue of interface Action with arguments
Action.NAME and "Sample Action". This assigns sampleAction’s name, which
GUI components use as their label. Lines 41–42 invoke method putValue of interface
Action with key Action.SMALL_ICON and an ImageIcon value, which GUI com-
ponents use as their Icon. Lines 45–46 set the Action’s tool tip using key
Action.SHORT_DESCRIPTION. Lines 49–50 set the Action’s mnemonic key using
key Action.MNEMONIC_KEY. When the Action is placed in a JMenu, the mnemonic
key provides keyboard access to the Action. Lines 53–80 create the exitAction in a
similar way to sampleAction, with an appropriate name, icon, description and mne-
monic key. Line 80 invokes method setEnabled of interface Action with argument
false to disable the exitAction. We use this to demonstrate that disabling an
Action also disables the Action’s associated GUI components.

Line 83 creates the fileMenu JMenu, which contains JMenuItems corresponding
to sampleAction and exitAction. Class JMenu overloads method add with a ver-
sion that takes an Action argument. This overloaded add method returns a reference to
the JMenuItem that it creates. Lines 87–88 invoke method add of class JMenu to add
sampleAction and exitAction to the menu. We have no need for the JMenuItem
references that method add returns, so we ignore them. Line 90 sets the fileMenu mne-
monic key, and lines 93–95 add the fileMenu to a JMenuBar and invoke method set-
JMenuBar of class JFrame to add the JMenuBar to the application.

Line 98 creates a new JToolBar. Like JMenu, JToolBar also provides overloaded
method add for adding Actions to JToolBars. Method add of class JToolBar
returns a reference to the JButton created for the given Action. Lines 102–103 invoke
method add of class JToolBar to add the sampleAction and exitAction to the
JToolBar. We have no need for the JButton references that method add returns, so
we ignore them.

Class JButton provides method setAction for configuring a JButton with
properties of an Action. Line 106 creates JButton sampleButton. Line 107 invokes
method setAction of class JButton with a sampleAction argument to configure
sampleButton. Line 110 demonstrates an alternative way to configure a JButton with
properties from an Action. The JButton constructor is overloaded to accept an

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 4 of 4).

6 Advanced Swing Graphical User Interface Components Chapter 2

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Action argument. The constructor configures the JButton using properties from the
given Action.

Software Engineering Observation 2.1
According to the Java 2 SDK documentation, it is preferable to create JButtons and
JMenuItems, invoke method setAction then add the JButton or JMenuItem to its
container, rather than adding the Action to the container directly. This is because most
GUI-building tools do not support adding Actions to containers directly. 2.1

Lines 113–120 add the newly created JButtons to a JPanel and lay out the
JToolBar and JPanel in the JFrame’s content pane. Note that in the first screen capture
of Fig. 2.5, the JButtons for exitAction appear grayed-out. This is because the exi-
tAction is disabled. After invoking the sampleAction, the exitAction is enabled
and appears in full color. Note also the tool tips, icons and labels on each GUI component.
Each of these items was configured using properties of the respective Action object.

Figure 2.6 summarizes Action properties. Each property name is a static constant
in interface Action and acts as a key for setting or retrieving the property value.

Subsequent sections of this chapter in Advanced Java 2 Platform How to Program
demonstrate two alternative ways to create Swing Action instances. The first uses named
inner classes. The second defines a generic AbstractAction subclass that provides a
constructor for commonly used properties and set methods for each individual Action
property.

Name Description

NAME Name to be used for GUI-component labels.

SHORT_DESCRIPTION Descriptive text for use in tooltips.

SMALL_ICON Icon for displaying in GUI-component labels.

MNEMONIC_KEY Mnemonic key for keyboard access (e.g., for accessing menus and
menu items using the keyboard).

ACCELERATOR_KEY Accelerator key for keyboard access (e.g., using the Ctrl key).

ACTION_COMMAND_KEY Key for retrieving command string to be used in ActionEvents.

LONG_DESCRIPTION Descriptive text, e.g., for application help.

Fig. 2.6Fig. 2.6Fig. 2.6Fig. 2.6 Action class static keys for Action properties.

