
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 7: Relational Database DesignChapter 7: Relational Database Design

©Silberschatz, Korth and Sudarshan7.2Database System Concepts - 5th Edition, July 28, 2005.

Chapter 7: Relational Database DesignChapter 7: Relational Database Design

Features of Good Relational Design
Atomic Domains and First Normal Form
Decomposition Using Functional Dependencies
Functional Dependency Theory
Algorithms for Functional Dependencies
Decomposition Using Multivalued Dependencies
More Normal Form
Database-Design Process
Modeling Temporal Data

©Silberschatz, Korth and Sudarshan7.3Database System Concepts - 5th Edition, July 28, 2005.

The Banking SchemaThe Banking Schema
branch = (branch_name, branch_city, assets)
customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)
account = (account_number, balance)
employee = (employee_id. employee_name, telephone_number, start_date)
dependent_name = (employee_id, dname)
account_branch = (account_number, branch_name)
loan_branch = (loan_number, branch_name)
borrower = (customer_id, loan_number)
depositor = (customer_id, account_number)
cust_banker = (customer_id, employee_id, type)
works_for = (worker_employee_id, manager_employee_id)
payment = (loan_number, payment_number, payment_date, payment_amount)
savings_account = (account_number, interest_rate)
checking_account = (account_number, overdraft_amount)

©Silberschatz, Korth and Sudarshan7.4Database System Concepts - 5th Edition, July 28, 2005.

Combine Schemas?Combine Schemas?

Suppose we combine borrow and loan to get
bor_loan = (customer_id, loan_number, amount)

Result is possible repetition of information (L-100 in example below)

©Silberschatz, Korth and Sudarshan7.5Database System Concepts - 5th Edition, July 28, 2005.

A Combined Schema Without RepetitionA Combined Schema Without Repetition

Consider combining loan_branch and loan
loan_amt_br = (loan_number, amount, branch_name)

No repetition (as suggested by example below)

©Silberschatz, Korth and Sudarshan7.6Database System Concepts - 5th Edition, July 28, 2005.

What About Smaller Schemas?What About Smaller Schemas?

Suppose we had started with bor_loan. How would we know to split up
(decompose) it into borrower and loan?
Write a rule “if there were a schema (loan_number, amount), then
loan_number would be a candidate key”
Denote as a functional dependency:

loan_number → amount
In bor_loan, because loan_number is not a candidate key, the amount of a loan
may have to be repeated. This indicates the need to decompose bor_loan.
Not all decompositions are good. Suppose we decompose employee into
employee1 = (employee_id, employee_name)
employee2 = (employee_name, telephone_number, start_date)
The next slide shows how we lose information -- we cannot reconstruct the
original employee relation -- and so, this is a lossy decomposition.

©Silberschatz, Korth and Sudarshan7.7Database System Concepts - 5th Edition, July 28, 2005.

A A LossyLossy DecompositionDecomposition

©Silberschatz, Korth and Sudarshan7.8Database System Concepts - 5th Edition, July 28, 2005.

First Normal FormFirst Normal Form

Domain is atomic if its elements are considered to be indivisible units
Examples of non-atomic domains:

Set of names, composite attributes
Identification numbers like CS101 that can be broken up into
parts

A relational schema R is in first normal form if the domains of all
attributes of R are atomic
Non-atomic values complicate storage and encourage redundant
(repeated) storage of data

Example: Set of accounts stored with each customer, and set of
owners stored with each account
We assume all relations are in first normal form (and revisit this in
Chapter 9)

©Silberschatz, Korth and Sudarshan7.9Database System Concepts - 5th Edition, July 28, 2005.

First Normal Form (ContFirst Normal Form (Cont’’d)d)

Atomicity is actually a property of how the elements of the domain are
used.

Example: Strings would normally be considered indivisible
Suppose that students are given roll numbers which are strings of
the form CS0012 or EE1127
If the first two characters are extracted to find the department, the
domain of roll numbers is not atomic.
Doing so is a bad idea: leads to encoding of information in
application program rather than in the database.

©Silberschatz, Korth and Sudarshan7.10Database System Concepts - 5th Edition, July 28, 2005.

Goal Goal —— Devise a Theory for the FollowingDevise a Theory for the Following

Decide whether a particular relation R is in “good” form.
In the case that a relation R is not in “good” form, decompose it into a
set of relations {R1, R2, ..., Rn} such that

each relation is in good form
the decomposition is a lossless-join decomposition

Our theory is based on:
functional dependencies
multivalued dependencies

©Silberschatz, Korth and Sudarshan7.11Database System Concepts - 5th Edition, July 28, 2005.

Functional DependenciesFunctional Dependencies

Constraints on the set of legal relations.
Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.
A functional dependency is a generalization of the notion of a key.

©Silberschatz, Korth and Sudarshan7.12Database System Concepts - 5th Edition, July 28, 2005.

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

Let R be a relation schema
α ⊆ R and β ⊆ R

The functional dependency
α → β

holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes α, they also agree
on the attributes β. That is,

t1[α] = t2 [α] ⇒ t1[β] = t2 [β]
Example: Consider r(A,B) with the following instance of r.

On this instance, A → B does NOT hold, but B → A does hold.

1 4
1 5
3 7

©Silberschatz, Korth and Sudarshan7.13Database System Concepts - 5th Edition, July 28, 2005.

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

K is a superkey for relation schema R if and only if K → R
K is a candidate key for R if and only if

K → R, and
for no α ⊂ K, α → R

Functional dependencies allow us to express constraints that cannot
be expressed using superkeys. Consider the schema:

bor_loan = (customer_id, loan_number, amount).
We expect this functional dependency to hold:

loan_number → amount
but would not expect the following to hold:

amount → customer_name

©Silberschatz, Korth and Sudarshan7.14Database System Concepts - 5th Edition, July 28, 2005.

Use of Functional DependenciesUse of Functional Dependencies

We use functional dependencies to:
test relations to see if they are legal under a given set of functional
dependencies.

If a relation r is legal under a set F of functional dependencies, we
say that r satisfies F.

specify constraints on the set of legal relations
We say that F holds on R if all legal relations on R satisfy the set of
functional dependencies F.

Note: A specific instance of a relation schema may satisfy a functional
dependency even if the functional dependency does not hold on all legal
instances.

For example, a specific instance of loan may, by chance, satisfy
amount → customer_name.

©Silberschatz, Korth and Sudarshan7.15Database System Concepts - 5th Edition, July 28, 2005.

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

A functional dependency is trivial if it is satisfied by all instances of a
relation

Example:
customer_name, loan_number → customer_name
customer_name → customer_name

In general, α → β is trivial if β ⊆ α

©Silberschatz, Korth and Sudarshan7.16Database System Concepts - 5th Edition, July 28, 2005.

Closure of a Set of Functional Closure of a Set of Functional
DependenciesDependencies

Given a set F set of functional dependencies, there are certain other
functional dependencies that are logically implied by F.

For example: If A → B and B → C, then we can infer that A → C
The set of all functional dependencies logically implied by F is the closure
of F.
We denote the closure of F by F+.
F+ is a superset of F.

©Silberschatz, Korth and Sudarshan7.17Database System Concepts - 5th Edition, July 28, 2005.

BoyceBoyce--CoddCodd Normal FormNormal Form

α → β is trivial (i.e., β ⊆ α)
α is a superkey for R

A relation schema R is in BCNF with respect to a set F of
functional dependencies if for all functional dependencies in F+ of
the form

α → β

where α ⊆ R and β ⊆ R, at least one of the following holds:

Example schema not in BCNF:

bor_loan = (customer_id, loan_number, amount)

because loan_number → amount holds on bor_loan but loan_number is
not a superkey

©Silberschatz, Korth and Sudarshan7.18Database System Concepts - 5th Edition, July 28, 2005.

Decomposing a Schema into BCNFDecomposing a Schema into BCNF

Suppose we have a schema R and a non-trivial dependency α →β
causes a violation of BCNF.
We decompose R into:
• (α U β)

• (R - (β - α))

In our example,
α = loan_number
β = amount

and bor_loan is replaced by
(α U β) = (loan_number, amount)

(R - (β - α)) = (customer_id, loan_number)

©Silberschatz, Korth and Sudarshan7.19Database System Concepts - 5th Edition, July 28, 2005.

BCNF and Dependency PreservationBCNF and Dependency Preservation

Constraints, including functional dependencies, are costly to check in
practice unless they pertain to only one relation
If it is sufficient to test only those dependencies on each individual
relation of a decomposition in order to ensure that all functional
dependencies hold, then that decomposition is dependency
preserving.
Because it is not always possible to achieve both BCNF and
dependency preservation, we consider a weaker normal form, known
as third normal form.

©Silberschatz, Korth and Sudarshan7.20Database System Concepts - 5th Edition, July 28, 2005.

Third Normal FormThird Normal Form

A relation schema R is in third normal form (3NF) if for all:
α → β in F+

at least one of the following holds:
α → β is trivial (i.e., β ∈ α)
α is a superkey for R
Each attribute A in β – α is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)
If a relation is in BCNF it is in 3NF (since in BCNF one of the first two
conditions above must hold).
Third condition is a minimal relaxation of BCNF to ensure dependency
preservation (will see why later).

©Silberschatz, Korth and Sudarshan7.21Database System Concepts - 5th Edition, July 28, 2005.

Goals of NormalizationGoals of Normalization

Let R be a relation scheme with a set F of functional
dependencies.
Decide whether a relation scheme R is in “good” form.
In the case that a relation scheme R is not in “good” form,
decompose it into a set of relation scheme {R1, R2, ..., Rn} such
that

each relation scheme is in good form
the decomposition is a lossless-join decomposition
Preferably, the decomposition should be dependency
preserving.

©Silberschatz, Korth and Sudarshan7.22Database System Concepts - 5th Edition, July 28, 2005.

How good is BCNF?How good is BCNF?

There are database schemas in BCNF that do not seem to be
sufficiently normalized
Consider a database

classes (course, teacher, book)

such that (c, t, b) ∈ classes means that t is qualified to teach c, and b
is a required textbook for c
The database is supposed to list for each course the set of teachers
any one of which can be the course’s instructor, and the set of books,
all of which are required for the course (no matter who teaches it).

©Silberschatz, Korth and Sudarshan7.23Database System Concepts - 5th Edition, July 28, 2005.

There are no non-trivial functional dependencies and therefore the
relation is in BCNF
Insertion anomalies – i.e., if Marilyn is a new teacher that can teach
database, two tuples need to be inserted

(database, Marilyn, DB Concepts)
(database, Marilyn, Ullman)

course teacher book

database
database
database
database
database
database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi
Pete
Pete

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Stallings
OS Concepts
Stallings

classes

How good is BCNF? (Cont.)How good is BCNF? (Cont.)

©Silberschatz, Korth and Sudarshan7.24Database System Concepts - 5th Edition, July 28, 2005.

Therefore, it is better to decompose classes into:

course teacher

database
database
database
operating systems
operating systems

Avi
Hank
Sudarshan
Avi
Jim

teaches

course book

database
database
operating systems
operating systems

DB Concepts
Ullman
OS Concepts
Shaw

text

This suggests the need for higher normal forms, such as Fourth
Normal Form (4NF), which we shall see later.

How good is BCNF? (Cont.)How good is BCNF? (Cont.)

©Silberschatz, Korth and Sudarshan7.25Database System Concepts - 5th Edition, July 28, 2005.

FunctionalFunctional--Dependency TheoryDependency Theory

We now consider the formal theory that tells us which functional
dependencies are implied logically by a given set of functional
dependencies.
We then develop algorithms to generate lossless decompositions into
BCNF and 3NF
We then develop algorithms to test if a decomposition is dependency-
preserving

©Silberschatz, Korth and Sudarshan7.26Database System Concepts - 5th Edition, July 28, 2005.

Closure of a Set of Functional Closure of a Set of Functional
DependenciesDependencies

Given a set F set of functional dependencies, there are certain other
functional dependencies that are logically implied by F.

For example: If A → B and B → C, then we can infer that A → C
The set of all functional dependencies logically implied by F is the closure
of F.
We denote the closure of F by F+.
We can find all of F+ by applying Armstrong’s Axioms:

if β ⊆ α, then α → β (reflexivity)
if α → β, then γ α → γ β (augmentation)
if α → β, and β → γ, then α → γ (transitivity)

These rules are
sound (generate only functional dependencies that actually hold) and
complete (generate all functional dependencies that hold).

©Silberschatz, Korth and Sudarshan7.27Database System Concepts - 5th Edition, July 28, 2005.

ExampleExample

R = (A, B, C, G, H, I)
F = { A → B

A → C
CG → H
CG → I

B → H}
some members of F+

A → H
by transitivity from A → B and B → H

AG → I
by augmenting A → C with G, to get AG → CG

and then transitivity with CG → I
CG → HI

by augmenting CG → I to infer CG → CGI,
and augmenting of CG → H to infer CGI → HI,

and then transitivity

©Silberschatz, Korth and Sudarshan7.28Database System Concepts - 5th Edition, July 28, 2005.

Procedure for Computing FProcedure for Computing F++

To compute the closure of a set of functional dependencies F:

F + = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +
if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F +
until F + does not change any further

NOTE: We shall see an alternative procedure for this task later

©Silberschatz, Korth and Sudarshan7.29Database System Concepts - 5th Edition, July 28, 2005.

Closure of Functional Dependencies Closure of Functional Dependencies
(Cont.)(Cont.)

We can further simplify manual computation of F+ by using the
following additional rules.

If α → β holds and α → γ holds, then α → β γ holds (union)
If α → β γ holds, then α → β holds and α → γ holds
(decomposition)
If α → β holds and γ β → δ holds, then α γ → δ holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

©Silberschatz, Korth and Sudarshan7.30Database System Concepts - 5th Edition, July 28, 2005.

Closure of Attribute SetsClosure of Attribute Sets

Given a set of attributes α, define the closure of α under F (denoted by
α+) as the set of attributes that are functionally determined by α under
F

Algorithm to compute α+, the closure of α under F

result := α;
while (changes to result) do

for each β → γ in F do
begin

if β ⊆ result then result := result ∪ γ
end

©Silberschatz, Korth and Sudarshan7.31Database System Concepts - 5th Edition, July 28, 2005.

Example of Attribute Set ClosureExample of Attribute Set Closure

R = (A, B, C, G, H, I)
F = {A → B

A → C
CG → H
CG → I
B → H}

(AG)+

1. result = AG
2. result = ABCG (A → C and A → B)
3. result = ABCGH (CG → H and CG ⊆ AGBC)
4. result = ABCGHI (CG → I and CG ⊆ AGBCH)

Is AG a candidate key?
1. Is AG a super key?

1. Does AG → R? == Is (AG)+ ⊇ R
2. Is any subset of AG a superkey?

1. Does A → R? == Is (A)+ ⊇ R
2. Does G → R? == Is (G)+ ⊇ R

©Silberschatz, Korth and Sudarshan7.32Database System Concepts - 5th Edition, July 28, 2005.

Uses of Attribute ClosureUses of Attribute Closure

There are several uses of the attribute closure algorithm:
Testing for superkey:

To test if α is a superkey, we compute α+, and check if α+ contains
all attributes of R.

Testing functional dependencies
To check if a functional dependency α → β holds (or, in other
words, is in F+), just check if β ⊆ α+.
That is, we compute α+ by using attribute closure, and then check
if it contains β.
Is a simple and cheap test, and very useful

Computing closure of F
For each γ ⊆ R, we find the closure γ+, and for each S ⊆ γ+, we
output a functional dependency γ → S.

©Silberschatz, Korth and Sudarshan7.33Database System Concepts - 5th Edition, July 28, 2005.

Canonical CoverCanonical Cover

Sets of functional dependencies may have redundant dependencies
that can be inferred from the others

For example: A → C is redundant in: {A → B, B → C}
Parts of a functional dependency may be redundant

E.g.: on RHS: {A → B, B → C, A → CD} can be simplified
to

{A → B, B → C, A → D}
E.g.: on LHS: {A → B, B → C, AC → D} can be simplified
to

{A → B, B → C, A → D}
Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant dependencies or
redundant parts of dependencies

©Silberschatz, Korth and Sudarshan7.34Database System Concepts - 5th Edition, July 28, 2005.

Extraneous AttributesExtraneous Attributes

Consider a set F of functional dependencies and the functional
dependency α → β in F.

Attribute A is extraneous in α if A ∈ α
and F logically implies (F – {α → β}) ∪ {(α – A) → β}.

Attribute A is extraneous in β if A ∈ β
and the set of functional dependencies
(F – {α → β}) ∪ {α →(β – A)} logically implies F.

Note: implication in the opposite direction is trivial in each of the
cases above, since a “stronger” functional dependency always
implies a weaker one
Example: Given F = {A → C, AB → C }

B is extraneous in AB → C because {A → C, AB → C} logically
implies A → C (I.e. the result of dropping B from AB → C).

Example: Given F = {A → C, AB → CD}
C is extraneous in AB → CD since AB → C can be inferred even
after deleting C

©Silberschatz, Korth and Sudarshan7.35Database System Concepts - 5th Edition, July 28, 2005.

Testing if an Attribute is ExtraneousTesting if an Attribute is Extraneous

Consider a set F of functional dependencies and the functional
dependency α → β in F.
To test if attribute A ∈ α is extraneous in α

1. compute ({α} – A)+ using the dependencies in F
2. check that ({α} – A)+ contains A; if it does, A is extraneous

To test if attribute A ∈ β is extraneous in β
1. compute α+ using only the dependencies in

F’ = (F – {α → β}) ∪ {α →(β – A)},
2. check that α+ contains A; if it does, A is extraneous

©Silberschatz, Korth and Sudarshan7.36Database System Concepts - 5th Edition, July 28, 2005.

Canonical CoverCanonical Cover

A canonical cover for F is a set of dependencies Fc such that
F logically implies all dependencies in Fc, and
Fc logically implies all dependencies in F, and
No functional dependency in Fc contains an extraneous attribute, and

Each left side of functional dependency in Fc is unique.
To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
α1 → β1 and α1 → β2 with α1 → β1 β2

Find a functional dependency α → β with an
extraneous attribute either in α or in β

If an extraneous attribute is found, delete it from α → β
until F does not change
Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

©Silberschatz, Korth and Sudarshan7.37Database System Concepts - 5th Edition, July 28, 2005.

Computing a Canonical CoverComputing a Canonical Cover

R = (A, B, C)
F = {A → BC

B → C
A → B

AB → C}
Combine A → BC and A → B into A → BC

Set is now {A → BC, B → C, AB → C}
A is extraneous in AB → C

Check if the result of deleting A from AB → C is implied by the other
dependencies

Yes: in fact, B → C is already present!
Set is now {A → BC, B → C}

C is extraneous in A → BC
Check if A → C is logically implied by A → B and the other dependencies

Yes: using transitivity on A → B and B → C.
– Can use attribute closure of A in more complex cases

The canonical cover is: A → B
B → C

©Silberschatz, Korth and Sudarshan7.38Database System Concepts - 5th Edition, July 28, 2005.

LosslessLossless--join Decompositionjoin Decomposition

For the case of R = (R1, R2), we require that for all possible
relations r on schema R

r = ∏R1 (r) ∏R2 (r)
A decomposition of R into R1 and R2 is lossless join if and
only if at least one of the following dependencies is in F+:

R1 ∩ R2 → R1

R1 ∩ R2 → R2

©Silberschatz, Korth and Sudarshan7.39Database System Concepts - 5th Edition, July 28, 2005.

ExampleExample

R = (A, B, C)
F = {A → B, B → C)

Can be decomposed in two different ways
R1 = (A, B), R2 = (B, C)

Lossless-join decomposition:
R1 ∩ R2 = {B} and B → BC

Dependency preserving
R1 = (A, B), R2 = (A, C)

Lossless-join decomposition:
R1 ∩ R2 = {A} and A → AB

Not dependency preserving
(cannot check B → C without computing R1 R2)

©Silberschatz, Korth and Sudarshan7.40Database System Concepts - 5th Edition, July 28, 2005.

Dependency PreservationDependency Preservation

Let Fi be the set of dependencies F + that include only attributes in
Ri.

A decomposition is dependency preserving, if
(F1 ∪ F2 ∪ … ∪ Fn)+ = F +

If it is not, then checking updates for violation of functional
dependencies may require computing joins, which is
expensive.

©Silberschatz, Korth and Sudarshan7.41Database System Concepts - 5th Edition, July 28, 2005.

Testing for Dependency PreservationTesting for Dependency Preservation

To check if a dependency α → β is preserved in a decomposition of R into
R1, R2, …, Rn we apply the following test (with attribute closure done with
respect to F)

result = α
while (changes to result) do

for each Ri in the decomposition
t = (result ∩ Ri)+ ∩ Ri
result = result ∪ t

If result contains all attributes in β, then the functional dependency
α → β is preserved.

We apply the test on all dependencies in F to check if a decomposition is
dependency preserving
This procedure takes polynomial time, instead of the exponential time
required to compute F+ and (F1 ∪ F2 ∪ … ∪ Fn)+

©Silberschatz, Korth and Sudarshan7.42Database System Concepts - 5th Edition, July 28, 2005.

ExampleExample

R = (A, B, C)
F = {A → B

B → C}
Key = {A}
R is not in BCNF
Decomposition R1 = (A, B), R2 = (B, C)

R1 and R2 in BCNF
Lossless-join decomposition
Dependency preserving

©Silberschatz, Korth and Sudarshan7.43Database System Concepts - 5th Edition, July 28, 2005.

Testing for BCNFTesting for BCNF

To check if a non-trivial dependency α →β causes a violation of BCNF
1. compute α+ (the attribute closure of α), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

Simplified test: To check if a relation schema R is in BCNF, it suffices to
check only the dependencies in the given set F for violation of BCNF,
rather than checking all dependencies in F+.

If none of the dependencies in F causes a violation of BCNF, then
none of the dependencies in F+ will cause a violation of BCNF either.

However, using only F is incorrect when testing a relation in a
decomposition of R

Consider R = (A, B, C, D, E), with F = { A → B, BC → D}
Decompose R into R1 = (A,B) and R2 = (A,C,D, E)
Neither of the dependencies in F contain only attributes from
(A,C,D,E) so we might be mislead into thinking R2 satisfies BCNF.
In fact, dependency AC → D in F+ shows R2 is not in BCNF.

©Silberschatz, Korth and Sudarshan7.44Database System Concepts - 5th Edition, July 28, 2005.

Testing Decomposition for BCNFTesting Decomposition for BCNF

To check if a relation Ri in a decomposition of R is in BCNF,
Either test Ri for BCNF with respect to the restriction of F to Ri (that
is, all FDs in F+ that contain only attributes from Ri)

or use the original set of dependencies F that hold on R, but with the
following test:

– for every set of attributes α ⊆ Ri, check that α+ (the attribute
closure of α) either includes no attribute of Ri- α, or includes all
attributes of Ri.

If the condition is violated by some α → β in F, the dependency
α → (α+ - α) ∩ Ri

can be shown to hold on Ri, and Ri violates BCNF.
We use above dependency to decompose Ri

©Silberschatz, Korth and Sudarshan7.45Database System Concepts - 5th Edition, July 28, 2005.

BCNF Decomposition AlgorithmBCNF Decomposition Algorithm

result := {R };
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional dependency that holds on Ri
such that α → Ri is not in F +,
and α ∩ β = ∅;

result := (result – Ri) ∪ (Ri – β) ∪ (α, β);
end

else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

©Silberschatz, Korth and Sudarshan7.46Database System Concepts - 5th Edition, July 28, 2005.

Example of BCNF DecompositionExample of BCNF Decomposition

R = (A, B, C)
F = {A → B

B → C}
Key = {A}
R is not in BCNF (B → C but B is not superkey)
Decomposition

R1 = (B, C)
R2 = (A,B)

©Silberschatz, Korth and Sudarshan7.47Database System Concepts - 5th Edition, July 28, 2005.

Example of BCNF DecompositionExample of BCNF Decomposition

Original relation R and functional dependency F
R = (branch_name, branch_city, assets,

customer_name, loan_number, amount)
F = {branch_name → assets branch_city

loan_number → amount branch_name }
Key = {loan_number, customer_name}

Decomposition
R1 = (branch_name, branch_city, assets)
R2 = (branch_name, customer_name, loan_number, amount)
R3 = (branch_name, loan_number, amount)
R4 = (customer_name, loan_number)

Final decomposition
R1, R3, R4

©Silberschatz, Korth and Sudarshan7.48Database System Concepts - 5th Edition, July 28, 2005.

BCNF and Dependency PreservationBCNF and Dependency Preservation

R = (J, K, L)
F = {JK → L

L → K }
Two candidate keys = JK and JL
R is not in BCNF
Any decomposition of R will fail to preserve

JK → L
This implies that testing for JK → L requires a join

It is not always possible to get a BCNF decomposition that is
dependency preserving

©Silberschatz, Korth and Sudarshan7.49Database System Concepts - 5th Edition, July 28, 2005.

Third Normal Form: MotivationThird Normal Form: Motivation

There are some situations where
BCNF is not dependency preserving, and
efficient checking for FD violation on updates is important

Solution: define a weaker normal form, called Third
Normal Form (3NF)

Allows some redundancy (with resultant problems; we will
see examples later)
But functional dependencies can be checked on individual
relations without computing a join.
There is always a lossless-join, dependency-preserving
decomposition into 3NF.

©Silberschatz, Korth and Sudarshan7.50Database System Concepts - 5th Edition, July 28, 2005.

3NF Example3NF Example

Relation R:
R = (J, K, L)
F = {JK → L, L → K }
Two candidate keys: JK and JL
R is in 3NF

JK → L JK is a superkey
L → K K is contained in a candidate key

©Silberschatz, Korth and Sudarshan7.51Database System Concepts - 5th Edition, July 28, 2005.

Redundancy in 3NFRedundancy in 3NF

J
j1
j2
j3

null

L

l1
l1
l1
l2

K

k1

k1

k1

k2

repetition of information (e.g., the relationship l1, k1)
need to use null values (e.g., to represent the relationship

l2, k2 where there is no corresponding value for J).

There is some redundancy in this schema
Example of problems due to redundancy in 3NF

R = (J, K, L)
F = {JK → L, L → K }

©Silberschatz, Korth and Sudarshan7.52Database System Concepts - 5th Edition, July 28, 2005.

Testing for 3NFTesting for 3NF

Optimization: Need to check only FDs in F, need not check all FDs in
F+.
Use attribute closure to check for each dependency α → β, if α is a
superkey.
If α is not a superkey, we have to verify if each attribute in β is
contained in a candidate key of R

this test is rather more expensive, since it involve finding
candidate keys
testing for 3NF has been shown to be NP-hard
Interestingly, decomposition into third normal form (described
shortly) can be done in polynomial time

©Silberschatz, Korth and Sudarshan7.53Database System Concepts - 5th Edition, July 28, 2005.

3NF Decomposition Algorithm3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency α → β in Fc do
if none of the schemas Rj, 1 ≤ j ≤ i contains α β

then begin
i := i + 1;
Ri := α β

end
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end
return (R1, R2, ..., Ri)

©Silberschatz, Korth and Sudarshan7.54Database System Concepts - 5th Edition, July 28, 2005.

3NF Decomposition Algorithm (Cont.)3NF Decomposition Algorithm (Cont.)

Above algorithm ensures:

each relation schema Ri is in 3NF

decomposition is dependency preserving and lossless-join

Proof of correctness is at end of this file (click here)

©Silberschatz, Korth and Sudarshan7.55Database System Concepts - 5th Edition, July 28, 2005.

ExampleExample

Relation schema:
cust_banker_branch = (customer_id, employee_id, branch_name, type)

The functional dependencies for this relation schema are:
customer_id, employee_id → branch_name, type
employee_id → branch_name

The for loop generates:
(customer_id, employee_id, branch_name, type)

It then generates
(employee_id, branch_name)

but does not include it in the decomposition because it is a subset of the
first schema.

©Silberschatz, Korth and Sudarshan7.56Database System Concepts - 5th Edition, July 28, 2005.

Comparison of BCNF and 3NFComparison of BCNF and 3NF

It is always possible to decompose a relation into a set of relations
that are in 3NF such that:

the decomposition is lossless
the dependencies are preserved

It is always possible to decompose a relation into a set of relations
that are in BCNF such that:

the decomposition is lossless
it may not be possible to preserve dependencies.

©Silberschatz, Korth and Sudarshan7.57Database System Concepts - 5th Edition, July 28, 2005.

Design GoalsDesign Goals

Goal for a relational database design is:
BCNF.
Lossless join.
Dependency preservation.

If we cannot achieve this, we accept one of
Lack of dependency preservation
Redundancy due to use of 3NF

Interestingly, SQL does not provide a direct way of specifying
functional dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test
Even if we had a dependency preserving decomposition, using SQL
we would not be able to efficiently test a functional dependency whose
left hand side is not a key.

©Silberschatz, Korth and Sudarshan7.58Database System Concepts - 5th Edition, July 28, 2005.

Multivalued Dependencies (Multivalued Dependencies (MVDsMVDs))

Let R be a relation schema and let α ⊆ R and β ⊆ R. The
multivalued dependency

α →→ β

holds on R if in any legal relation r(R), for all pairs for tuples t1
and t2 in r such that t1[α] = t2 [α], there exist tuples t3 and t4 in
r such that:

t1[α] = t2 [α] = t3 [α] = t4 [α]
t3[β] = t1 [β]
t3[R – β] = t2[R – β]
t4 [β] = t2[β]
t4[R – β] = t1[R – β]

©Silberschatz, Korth and Sudarshan7.59Database System Concepts - 5th Edition, July 28, 2005.

MVD (Cont.)MVD (Cont.)

Tabular representation of α →→ β

©Silberschatz, Korth and Sudarshan7.60Database System Concepts - 5th Edition, July 28, 2005.

ExampleExample

Let R be a relation schema with a set of attributes that are partitioned
into 3 nonempty subsets.

Y, Z, W
We say that Y →→ Z (Y multidetermines Z)
if and only if for all possible relations r (R)

< y1, z1, w1 > ∈ r and < y2, z2, w2 > ∈ r
then

< y1, z1, w2 > ∈ r and < y2, z2, w1 > ∈ r
Note that since the behavior of Z and W are identical it follows that
Y →→ Z if Y →→ W

©Silberschatz, Korth and Sudarshan7.61Database System Concepts - 5th Edition, July 28, 2005.

Example (Cont.)Example (Cont.)

In our example:
course →→ teacher
course →→ book

The above formal definition is supposed to formalize the
notion that given a particular value of Y (course) it has
associated with it a set of values of Z (teacher) and a set of
values of W (book), and these two sets are in some sense
independent of each other.
Note:

If Y → Z then Y →→ Z
Indeed we have (in above notation) Z1 = Z2
The claim follows.

©Silberschatz, Korth and Sudarshan7.62Database System Concepts - 5th Edition, July 28, 2005.

Use of Multivalued DependenciesUse of Multivalued Dependencies

We use multivalued dependencies in two ways:
1. To test relations to determine whether they are legal under a

given set of functional and multivalued dependencies
2. To specify constraints on the set of legal relations. We shall

thus concern ourselves only with relations that satisfy a
given set of functional and multivalued dependencies.

If a relation r fails to satisfy a given multivalued dependency, we
can construct a relations r′ that does satisfy the multivalued
dependency by adding tuples to r.

©Silberschatz, Korth and Sudarshan7.63Database System Concepts - 5th Edition, July 28, 2005.

Theory of Theory of MVDsMVDs

From the definition of multivalued dependency, we can derive the
following rule:

If α → β, then α →→ β

That is, every functional dependency is also a multivalued
dependency
The closure D+ of D is the set of all functional and multivalued
dependencies logically implied by D.

We can compute D+ from D, using the formal definitions of
functional dependencies and multivalued dependencies.
We can manage with such reasoning for very simple multivalued
dependencies, which seem to be most common in practice
For complex dependencies, it is better to reason about sets of
dependencies using a system of inference rules (see Appendix C).

©Silberschatz, Korth and Sudarshan7.64Database System Concepts - 5th Edition, July 28, 2005.

Fourth Normal FormFourth Normal Form

A relation schema R is in 4NF with respect to a set D of functional and
multivalued dependencies if for all multivalued dependencies in D+ of
the form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following
hold:

α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)
α is a superkey for schema R

If a relation is in 4NF it is in BCNF

©Silberschatz, Korth and Sudarshan7.65Database System Concepts - 5th Edition, July 28, 2005.

Restriction of Restriction of MultivaluedMultivalued DependenciesDependencies

The restriction of D to Ri is the set Di consisting of
All functional dependencies in D+ that include only attributes of Ri

All multivalued dependencies of the form

α →→ (β ∩ Ri)
where α ⊆ Ri and α →→ β is in D+

©Silberschatz, Korth and Sudarshan7.66Database System Concepts - 5th Edition, July 28, 2005.

4NF Decomposition Algorithm4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

while (not done)
if (there is a schema Ri in result that is not in 4NF) then

begin
let α →→ β be a nontrivial multivalued dependency that holds

on Ri such that α → Ri is not in Di, and α∩β=φ;
result := (result - Ri) ∪ (Ri - β) ∪ (α, β);

end
else done:= true;

Note: each Ri is in 4NF, and decomposition is lossless-join

©Silberschatz, Korth and Sudarshan7.67Database System Concepts - 5th Edition, July 28, 2005.

ExampleExample

R =(A, B, C, G, H, I)

F ={ A →→ B
B →→ HI
CG →→ H }

R is not in 4NF since A →→ B and A is not a superkey for R
Decomposition
a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I) (R2 is not in 4NF)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I) (R4 is not in 4NF)
Since A →→ B and B →→ HI, A →→ HI, A →→ I
e) R5 = (A, I) (R5 is in 4NF)
f)R6 = (A, C, G) (R6 is in 4NF)

©Silberschatz, Korth and Sudarshan7.68Database System Concepts - 5th Edition, July 28, 2005.

Further Normal FormsFurther Normal Forms
Join dependencies generalize multivalued dependencies

lead to project-join normal form (PJNF) (also called fifth normal
form)

A class of even more general constraints, leads to a normal form
called domain-key normal form.
Problem with these generalized constraints: are hard to reason with,
and no set of sound and complete set of inference rules exists.
Hence rarely used

©Silberschatz, Korth and Sudarshan7.69Database System Concepts - 5th Edition, July 28, 2005.

Overall Database Design ProcessOverall Database Design Process

We have assumed schema R is given
R could have been generated when converting E-R diagram to a set of
tables.
R could have been a single relation containing all attributes that are of
interest (called universal relation).
Normalization breaks R into smaller relations.
R could have been the result of some ad hoc design of relations, which
we then test/convert to normal form.

©Silberschatz, Korth and Sudarshan7.70Database System Concepts - 5th Edition, July 28, 2005.

ER Model and NormalizationER Model and Normalization

When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not need
further normalization.
However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other attributes of
the entity

Example: an employee entity with attributes department_number
and department_address, and a functional dependency
department_number → department_address
Good design would have made department an entity

Functional dependencies from non-key attributes of a relationship set
possible, but rare --- most relationships are binary

©Silberschatz, Korth and Sudarshan7.71Database System Concepts - 5th Edition, July 28, 2005.

DenormalizationDenormalization for Performancefor Performance

May want to use non-normalized schema for performance
For example, displaying customer_name along with account_number and
balance requires join of account with depositor
Alternative 1: Use denormalized relation containing attributes of account
as well as depositor with all above attributes

faster lookup
extra space and extra execution time for updates
extra coding work for programmer and possibility of error in extra code

Alternative 2: use a materialized view defined as
account depositor

Benefits and drawbacks same as above, except no extra coding work
for programmer and avoids possible errors

©Silberschatz, Korth and Sudarshan7.72Database System Concepts - 5th Edition, July 28, 2005.

Other Design IssuesOther Design Issues

Some aspects of database design are not caught by normalization
Examples of bad database design, to be avoided:
Instead of earnings (company_id, year, amount), use

earnings_2000, earnings_2001, earnings_2002, etc., all on the
schema (company_id, earnings).

Above are in BCNF, but make querying across years difficult
and needs new table each year

company_year(company_id, earnings_2000, earnings_2001,

earnings_2002)
Also in BCNF, but also makes querying across years difficult
and requires new attribute each year.
Is an example of a crosstab, where values for one attribute
become column names
Used in spreadsheets, and in data analysis tools

©Silberschatz, Korth and Sudarshan7.73Database System Concepts - 5th Edition, July 28, 2005.

Modeling Temporal DataModeling Temporal Data

Temporal data have an association time interval during which the data
are valid.
A snapshot is the value of the data at a particular point in time.
Adding a temporal component results in functional dependencies like

customer_id → customer_street, customer_city
not to hold, because the address varies over time
A temporal functional dependency holds on schema R if the
corresponding functional dependency holds on all snapshots for all
legal instances r (R)

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of ChapterEnd of Chapter

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Proof of Correctness of 3NF Proof of Correctness of 3NF
Decomposition AlgorithmDecomposition Algorithm

©Silberschatz, Korth and Sudarshan7.76Database System Concepts - 5th Edition, July 28, 2005.

Correctness of 3NF Decomposition Correctness of 3NF Decomposition
AlgorithmAlgorithm

3NF decomposition algorithm is dependency preserving (since there is a
relation for every FD in Fc)
Decomposition is lossless

A candidate key (C) is in one of the relations Ri in decomposition
Closure of candidate key under Fc must contain all attributes in R.
Follow the steps of attribute closure algorithm to show there is only
one tuple in the join result for each tuple in Ri

©Silberschatz, Korth and Sudarshan7.77Database System Concepts - 5th Edition, July 28, 2005.

Correctness of 3NF Decomposition Correctness of 3NF Decomposition
Algorithm (ContAlgorithm (Cont’’d.)d.)

Claim: if a relation Ri is in the decomposition generated by the
above algorithm, then Ri satisfies 3NF.

Let Ri be generated from the dependency α → β

Let γ → B be any non-trivial functional dependency on Ri. (We need only
consider FDs whose right-hand side is a single attribute.)
Now, B can be in either β or α but not in both. Consider each case
separately.

©Silberschatz, Korth and Sudarshan7.78Database System Concepts - 5th Edition, July 28, 2005.

Correctness of 3NF Decomposition Correctness of 3NF Decomposition
(Cont(Cont’’d.)d.)

Case 1: If B in β:
If γ is a superkey, the 2nd condition of 3NF is satisfied
Otherwise α must contain some attribute not in γ
Since γ → B is in F+ it must be derivable from Fc, by using attribute
closure on γ.
Attribute closure not have used α →β. If it had been used, α must
be contained in the attribute closure of γ, which is not possible, since
we assumed γ is not a superkey.
Now, using α→ (β- {B}) and γ → B, we can derive α →B
(since γ ⊆ α β, and B ∉ γ since γ → B is non-trivial)
Then, B is extraneous in the right-hand side of α →β; which is not
possible since α →β is in Fc.
Thus, if B is in β then γ must be a superkey, and the second
condition of 3NF must be satisfied.

©Silberschatz, Korth and Sudarshan7.79Database System Concepts - 5th Edition, July 28, 2005.

Correctness of 3NF Decomposition Correctness of 3NF Decomposition
(Cont(Cont’’d.)d.)

Case 2: B is in α.
Since α is a candidate key, the third alternative in the definition of
3NF is trivially satisfied.
In fact, we cannot show that γ is a superkey.
This shows exactly why the third alternative is present in the
definition of 3NF.

Q.E.D.

©Silberschatz, Korth and Sudarshan7.80Database System Concepts - 5th Edition, July 28, 2005.

Figure 7.5: Sample Relation Figure 7.5: Sample Relation rr

©Silberschatz, Korth and Sudarshan7.81Database System Concepts - 5th Edition, July 28, 2005.

Figure 7.6Figure 7.6

©Silberschatz, Korth and Sudarshan7.82Database System Concepts - 5th Edition, July 28, 2005.

Figure 7.7Figure 7.7

©Silberschatz, Korth and Sudarshan7.83Database System Concepts - 5th Edition, July 28, 2005.

Figure 7.15: An Example of Figure 7.15: An Example of
Redundancy in a BCNF RelationRedundancy in a BCNF Relation

©Silberschatz, Korth and Sudarshan7.84Database System Concepts - 5th Edition, July 28, 2005.

Figure 7.16: An Illegal Figure 7.16: An Illegal RR22 RelationRelation

©Silberschatz, Korth and Sudarshan7.85Database System Concepts - 5th Edition, July 28, 2005.

Figure 7.18: Relation of Practice Figure 7.18: Relation of Practice
Exercise 7.2Exercise 7.2

	Chapter 7: Relational Database Design
	Chapter 7: Relational Database Design
	The Banking Schema
	Combine Schemas?
	A Combined Schema Without Repetition
	What About Smaller Schemas?
	A Lossy Decomposition
	First Normal Form
	First Normal Form (Cont’d)
	Goal — Devise a Theory for the Following
	Functional Dependencies
	Functional Dependencies (Cont.)
	Functional Dependencies (Cont.)
	Use of Functional Dependencies
	Functional Dependencies (Cont.)
	Closure of a Set of Functional Dependencies
	Boyce-Codd Normal Form
	Decomposing a Schema into BCNF
	BCNF and Dependency Preservation
	Third Normal Form
	Goals of Normalization
	How good is BCNF?
	How good is BCNF? (Cont.)
	How good is BCNF? (Cont.)
	Functional-Dependency Theory
	Closure of a Set of Functional Dependencies
	Example
	Procedure for Computing F+
	Closure of Functional Dependencies (Cont.)
	Closure of Attribute Sets
	Example of Attribute Set Closure
	Uses of Attribute Closure
	Canonical Cover
	Extraneous Attributes
	Testing if an Attribute is Extraneous
	Canonical Cover
	Computing a Canonical Cover
	Lossless-join Decomposition
	Example
	Dependency Preservation
	Testing for Dependency Preservation
	Example
	Testing for BCNF
	Testing Decomposition for BCNF
	BCNF Decomposition Algorithm
	Example of BCNF Decomposition
	Example of BCNF Decomposition
	BCNF and Dependency Preservation
	Third Normal Form: Motivation
	3NF Example
	Redundancy in 3NF
	Testing for 3NF
	3NF Decomposition Algorithm
	3NF Decomposition Algorithm (Cont.)
	Example
	Comparison of BCNF and 3NF
	Design Goals
	Multivalued Dependencies (MVDs)
	MVD (Cont.)
	Example
	Example (Cont.)
	Use of Multivalued Dependencies
	Theory of MVDs
	Fourth Normal Form
	Restriction of Multivalued Dependencies
	4NF Decomposition Algorithm
	Example
	Further Normal Forms
	Overall Database Design Process
	ER Model and Normalization
	Denormalization for Performance
	Other Design Issues
	Modeling Temporal Data
	End of Chapter
	Proof of Correctness of 3NF Decomposition Algorithm
	Correctness of 3NF Decomposition Algorithm
	Correctness of 3NF Decomposition Algorithm (Cont’d.)
	Correctness of 3NF Decomposition (Cont’d.)
	Correctness of 3NF Decomposition (Cont’d.)
	Figure 7.5: Sample Relation r
	Figure 7.6
	Figure 7.7
	Figure 7.15: An Example of �Redundancy in a BCNF Relation
	Figure 7.16: An Illegal R2 Relation
	Figure 7.18: Relation of Practice Exercise 7.2

