
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 5: Other Relational Languages Chapter 5: Other Relational Languages

©Silberschatz, Korth and Sudarshan5.2Database System Concepts - 5th Edition, July 8, 2005

Chapter 5: Other Relational LanguagesChapter 5: Other Relational Languages

Tuple Relational Calculus
Domain Relational Calculus
Query-by-Example (QBE)
Datalog

©Silberschatz, Korth and Sudarshan5.3Database System Concepts - 5th Edition, July 8, 2005

Tuple Relational CalculusTuple Relational Calculus

A nonprocedural query language, where each query is of the form
{t | P (t) }

It is the set of all tuples t such that predicate P is true for t
t is a tuple variable, t [A] denotes the value of tuple t on attribute A
t ∈ r denotes that tuple t is in relation r
P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan5.4Database System Concepts - 5th Edition, July 8, 2005

Predicate Calculus FormulaPredicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., <, ≤, =, ≠, >, ≥)
3. Set of connectives: and (∧), or (v)‚ not (¬)
4. Implication (⇒): x ⇒ y, if x if true, then y is true

x ⇒ y ≡ ¬x v y
5. Set of quantifiers:

∃ t ∈ r (Q (t)) ≡ ”there exists” a tuple in t in relation r
such that predicate Q (t) is true

∀t ∈ r (Q (t)) ≡ Q is true “for all” tuples t in relation r

©Silberschatz, Korth and Sudarshan5.5Database System Concepts - 5th Edition, July 8, 2005

Banking ExampleBanking Example

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

©Silberschatz, Korth and Sudarshan5.6Database System Concepts - 5th Edition, July 8, 2005

Example QueriesExample Queries

Find the loan_number, branch_name, and amount for loans of over
$1200

Find the loan number for each loan of an amount greater than $1200

{t | ∃ s ∈ loan (t [loan_number] = s [loan_number] ∧ s [amount] > 1200)}

Notice that a relation on schema [loan_number] is implicitly defined by
the query

{t | t ∈ loan ∧ t [amount] > 1200}

©Silberschatz, Korth and Sudarshan5.7Database System Concepts - 5th Edition, July 8, 2005

Example QueriesExample Queries

Find the names of all customers having a loan, an account, or both at
the bank

{t | ∃s ∈ borrower (t [customer_name] = s [customer_name])
∧ ∃u ∈ depositor (t [customer_name] = u [customer_name])

Find the names of all customers who have a loan and an account
at the bank

{t | ∃s ∈ borrower (t [customer_name] = s [customer_name])
∨ ∃u ∈ depositor (t [customer_name] = u [customer_name])

©Silberschatz, Korth and Sudarshan5.8Database System Concepts - 5th Edition, July 8, 2005

Example QueriesExample Queries

Find the names of all customers having a loan at the Perryridge branch

{t | ∃s ∈ borrower (t [customer_name] = s [customer_name]
∧ ∃u ∈ loan (u [branch_name] = “Perryridge”

∧ u [loan_number] = s [loan_number]))
∧ not ∃v ∈ depositor (v [customer_name] =

t [customer_name])}

Find the names of all customers who have a loan at the
Perryridge branch, but no account at any branch of the bank

{t | ∃s ∈ borrower (t [customer_name] = s [customer_name]
∧ ∃u ∈ loan (u [branch_name] = “Perryridge”

∧ u [loan_number] = s [loan_number]))}

©Silberschatz, Korth and Sudarshan5.9Database System Concepts - 5th Edition, July 8, 2005

Example QueriesExample Queries

Find the names of all customers having a loan from the Perryridge
branch, and the cities in which they live

{t | ∃s ∈ loan (s [branch_name] = “Perryridge”
∧ ∃u ∈ borrower (u [loan_number] = s [loan_number]

∧ t [customer_name] = u [customer_name])
∧ ∃ v ∈ customer (u [customer_name] = v [customer_name]

∧ t [customer_city] = v [customer_city])))}

©Silberschatz, Korth and Sudarshan5.10Database System Concepts - 5th Edition, July 8, 2005

Example QueriesExample Queries

Find the names of all customers who have an account at all branches
located in Brooklyn:

{t | ∃ r ∈ customer (t [customer_name] = r [customer_name]) ∧
(∀ u ∈ branch (u [branch_city] = “Brooklyn” ⇒

∃ s ∈ depositor (t [customer_name] = s [customer_name]
∧ ∃ w ∈ account (w[account_number] = s [account_number]
∧ (w [branch_name] = u [branch_name]))))}

©Silberschatz, Korth and Sudarshan5.11Database System Concepts - 5th Edition, July 8, 2005

Safety of ExpressionsSafety of Expressions

It is possible to write tuple calculus expressions that generate infinite
relations.
For example, { t | ¬ t ∈ r } results in an infinite relation if the domain of
any attribute of relation r is infinite
To guard against the problem, we restrict the set of allowable
expressions to safe expressions.
An expression {t | P (t)} in the tuple relational calculus is safe if every
component of t appears in one of the relations, tuples, or constants that
appear in P

NOTE: this is more than just a syntax condition.

E.g. { t | t [A] = 5 ∨ true } is not safe --- it defines an infinite set
with attribute values that do not appear in any relation or tuples
or constants in P.

©Silberschatz, Korth and Sudarshan5.12Database System Concepts - 5th Edition, July 8, 2005

Domain Relational CalculusDomain Relational Calculus

A nonprocedural query language equivalent in power to the tuple
relational calculus
Each query is an expression of the form:

{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

x1, x2, …, xn represent domain variables
P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan5.13Database System Concepts - 5th Edition, July 8, 2005

Example QueriesExample Queries

Find the loan_number, branch_name, and amount for loans of over
$1200

Find the names of all customers who have a loan from the Perryridge branch
and the loan amount:

{< c, a > | ∃ l (< c, l > ∈ borrower ∧ ∃b (< l, b, a > ∈ loan ∧

b = “Perryridge”))}
{< c, a > | ∃ l (< c, l > ∈ borrower ∧ < l, “ Perryridge”, a > ∈ loan)}

{< c > | ∃ l, b, a (< c, l > ∈ borrower ∧ < l, b, a > ∈ loan ∧ a > 1200)}

Find the names of all customers who have a loan of over $1200

{< l, b, a > | < l, b, a > ∈ loan ∧ a > 1200}

©Silberschatz, Korth and Sudarshan5.14Database System Concepts - 5th Edition, July 8, 2005

Example QueriesExample Queries

Find the names of all customers having a loan, an account, or both at
the Perryridge branch:

{< c > | ∃ s,n (< c, s, n > ∈ customer) ∧
∀ x,y,z (< x, y, z > ∈ branch ∧ y = “Brooklyn”) ⇒

∃ a,b (< x, y, z > ∈ account ∧ < c,a > ∈ depositor)}

Find the names of all customers who have an account at all
branches located in Brooklyn:

{< c > | ∃ l (< c, l > ∈ borrower
∧ ∃ b,a (< l, b, a > ∈ loan ∧ b = “Perryridge”))

∨ ∃ a (< c, a > ∈ depositor
∧ ∃ b,n (< a, b, n > ∈ account ∧ b = “Perryridge”))}

©Silberschatz, Korth and Sudarshan5.15Database System Concepts - 5th Edition, July 8, 2005

Safety of ExpressionsSafety of Expressions

The expression:
{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

is safe if all of the following hold:
1. All values that appear in tuples of the expression are values

from dom (P) (that is, the values appear either in P or in a tuple of a
relation mentioned in P).

2. For every “there exists” subformula of the form ∃ x (P1(x)), the
subformula is true if and only if there is a value of x in dom (P1)
such that P1(x) is true.

3. For every “for all” subformula of the form ∀x (P1 (x)), the subformula is
true if and only if P1(x) is true for all values x from dom (P1).

©Silberschatz, Korth and Sudarshan5.16Database System Concepts - 5th Edition, July 8, 2005

QueryQuery--byby--Example (QBE)Example (QBE)

Basic Structure
Queries on One Relation
Queries on Several Relations
The Condition Box
The Result Relation
Ordering the Display of Tuples
Aggregate Operations
Modification of the Database

©Silberschatz, Korth and Sudarshan5.17Database System Concepts - 5th Edition, July 8, 2005

QBE QBE —— Basic StructureBasic Structure

A graphical query language which is based (roughly) on the domain
relational calculus
Two dimensional syntax – system creates templates of relations that
are requested by users
Queries are expressed “by example”

©Silberschatz, Korth and Sudarshan5.18Database System Concepts - 5th Edition, July 8, 2005

QBE Skeleton Tables for the Bank ExampleQBE Skeleton Tables for the Bank Example

©Silberschatz, Korth and Sudarshan5.19Database System Concepts - 5th Edition, July 8, 2005

QBE Skeleton Tables (Cont.)QBE Skeleton Tables (Cont.)

©Silberschatz, Korth and Sudarshan5.20Database System Concepts - 5th Edition, July 8, 2005

Queries on One RelationQueries on One Relation

Find all loan numbers at the Perryridge branch.

_x is a variable (optional; can be omitted in above query)
P. means print (display)
duplicates are removed by default
To retain duplicates use P.ALL

©Silberschatz, Korth and Sudarshan5.21Database System Concepts - 5th Edition, July 8, 2005

Queries on One Relation (Cont.)Queries on One Relation (Cont.)

Display full details of all loans

P._x P._y P._z

Method 1:

Method 2: Shorthand notation

©Silberschatz, Korth and Sudarshan5.22Database System Concepts - 5th Edition, July 8, 2005

Queries on One Relation (Cont.)Queries on One Relation (Cont.)

Find names of all branches that are not located in Brooklyn

Find the loan number of all loans with a loan amount of more than $700

©Silberschatz, Korth and Sudarshan5.23Database System Concepts - 5th Edition, July 8, 2005

Queries on One Relation (Cont.)Queries on One Relation (Cont.)

Find the loan numbers of all loans made jointly to Smith and
Jones.

Find all customers who live in the same city as Jones

©Silberschatz, Korth and Sudarshan5.24Database System Concepts - 5th Edition, July 8, 2005

Queries on Several RelationsQueries on Several Relations

Find the names of all customers who have a loan from the
Perryridge branch.

©Silberschatz, Korth and Sudarshan5.25Database System Concepts - 5th Edition, July 8, 2005

Queries on Several Relations (Cont.)Queries on Several Relations (Cont.)

Find the names of all customers who have both an account and a loan
at the bank.

©Silberschatz, Korth and Sudarshan5.26Database System Concepts - 5th Edition, July 8, 2005

Negation in QBENegation in QBE

Find the names of all customers who have an account at the bank,
but do not have a loan from the bank.

¬ means “there does not exist”

©Silberschatz, Korth and Sudarshan5.27Database System Concepts - 5th Edition, July 8, 2005

Negation in QBE (Cont.)Negation in QBE (Cont.)

Find all customers who have at least two accounts.

¬ means “not equal to”

©Silberschatz, Korth and Sudarshan5.28Database System Concepts - 5th Edition, July 8, 2005

The Condition BoxThe Condition Box

Allows the expression of constraints on domain variables that are
either inconvenient or impossible to express within the skeleton
tables.
Complex conditions can be used in condition boxes
Example: Find the loan numbers of all loans made to Smith, to
Jones, or to both jointly

©Silberschatz, Korth and Sudarshan5.29Database System Concepts - 5th Edition, July 8, 2005

Condition Box (Cont.)Condition Box (Cont.)

QBE supports an interesting syntax for expressing alternative values

©Silberschatz, Korth and Sudarshan5.30Database System Concepts - 5th Edition, July 8, 2005

Condition Box (Cont.)Condition Box (Cont.)
Find all account numbers with a balance greater than $1,300 and less than
$1,500

Find all account numbers with a balance greater than $1,300 and less
than $2,000 but not exactly $1,500.

©Silberschatz, Korth and Sudarshan5.31Database System Concepts - 5th Edition, July 8, 2005

Condition Box (Cont.)Condition Box (Cont.)

Find all branches that have assets greater than those of at least one
branch located in Brooklyn

©Silberschatz, Korth and Sudarshan5.32Database System Concepts - 5th Edition, July 8, 2005

The Result RelationThe Result Relation

Find the customer_name, account_number, and balance for all
customers who have an account at the Perryridge branch.

We need to:
Join depositor and account.
Project customer_name, account_number and balance.

To accomplish this we:
Create a skeleton table, called result, with attributes
customer_name, account_number, and balance.
Write the query.

©Silberschatz, Korth and Sudarshan5.33Database System Concepts - 5th Edition, July 8, 2005

The Result Relation (Cont.)The Result Relation (Cont.)

The resulting query is:

©Silberschatz, Korth and Sudarshan5.34Database System Concepts - 5th Edition, July 8, 2005

Ordering the Display of TuplesOrdering the Display of Tuples

AO = ascending order; DO = descending order.
Example: list in ascending alphabetical order all customers who have an
account at the bank

When sorting on multiple attributes, the sorting order is specified by
including with each sort operator (AO or DO) an integer surrounded by
parentheses.
Example: List all account numbers at the Perryridge branch in ascending
alphabetic order with their respective account balances in descending order.

©Silberschatz, Korth and Sudarshan5.35Database System Concepts - 5th Edition, July 8, 2005

Aggregate OperationsAggregate Operations

The aggregate operators are AVG, MAX, MIN, SUM, and CNT
The above operators must be postfixed with “ALL” (e.g., SUM.ALL.
or AVG.ALL._x) to ensure that duplicates are not eliminated.
Example: Find the total balance of all the accounts maintained at
the Perryridge branch.

©Silberschatz, Korth and Sudarshan5.36Database System Concepts - 5th Edition, July 8, 2005

Aggregate Operations (Cont.)Aggregate Operations (Cont.)

UNQ is used to specify that we want to eliminate duplicates
Find the total number of customers having an account at the bank.

©Silberschatz, Korth and Sudarshan5.37Database System Concepts - 5th Edition, July 8, 2005

Query ExamplesQuery Examples

Find the average balance at each branch.

The “G” in “P.G” is analogous to SQL’s group by construct
The “ALL” in the “P.AVG.ALL” entry in the balance column ensures that
all balances are considered
To find the average account balance at only those branches where the
average account balance is more than $1,200, we simply add the
condition box:

©Silberschatz, Korth and Sudarshan5.38Database System Concepts - 5th Edition, July 8, 2005

Query ExampleQuery Example

Find all customers who have an account at all branches located in
Brooklyn.

Approach: for each customer, find the number of branches in
Brooklyn at which they have accounts, and compare with total
number of branches in Brooklyn
QBE does not provide subquery functionality, so both above tasks
have to be combined in a single query.

Can be done for this query, but there are queries that require
subqueries and cannot always be expressed in QBE.

In the query on the next page
CNT.UNQ.ALL._w specifies the number of distinct branches in
Brooklyn. Note: The variable _w is not connected to other variables
in the query
CNT.UNQ.ALL._z specifies the number of distinct branches in
Brooklyn at which customer x has an account.

©Silberschatz, Korth and Sudarshan5.39Database System Concepts - 5th Edition, July 8, 2005

Query Example (Cont.)Query Example (Cont.)

©Silberschatz, Korth and Sudarshan5.40Database System Concepts - 5th Edition, July 8, 2005

Modification of the Database Modification of the Database –– DeletionDeletion

Deletion of tuples from a relation is expressed by use of a D. command.
In the case where we delete information in only some of the columns,
null values, specified by –, are inserted.
Delete customer Smith

Delete the branch_city value of the branch whose name is “Perryridge”.

©Silberschatz, Korth and Sudarshan5.41Database System Concepts - 5th Edition, July 8, 2005

Deletion Query ExamplesDeletion Query Examples

Delete all loans with a loan amount greater than $1300 and less than
$1500.

For consistency, we have to delete information from loan and
borrower tables

©Silberschatz, Korth and Sudarshan5.42Database System Concepts - 5th Edition, July 8, 2005

Deletion Query Examples (Cont.)Deletion Query Examples (Cont.)

Delete all accounts at branches located in Brooklyn.

©Silberschatz, Korth and Sudarshan5.43Database System Concepts - 5th Edition, July 8, 2005

Modification of the Database Modification of the Database –– InsertionInsertion

Insertion is done by placing the I. operator in the query
expression.
Insert the fact that account A-9732 at the Perryridge branch has
a balance of $700.

©Silberschatz, Korth and Sudarshan5.44Database System Concepts - 5th Edition, July 8, 2005

Modification of the Database Modification of the Database –– Insertion (Cont.)Insertion (Cont.)

Provide as a gift for all loan customers of the Perryridge branch, a new
$200 savings account for every loan account they have, with the loan
number serving as the account number for the new savings account.

©Silberschatz, Korth and Sudarshan5.45Database System Concepts - 5th Edition, July 8, 2005

Modification of the Database Modification of the Database –– UpdatesUpdates

Use the U. operator to change a value in a tuple without changing all
values in the tuple. QBE does not allow users to update the primary key
fields.
Update the asset value of the Perryridge branch to $10,000,000.

Increase all balances by 5 percent.

©Silberschatz, Korth and Sudarshan5.46Database System Concepts - 5th Edition, July 8, 2005

Microsoft Access QBEMicrosoft Access QBE

Microsoft Access supports a variant of QBE called Graphical Query By
Example (GQBE)
GQBE differs from QBE in the following ways

Attributes of relations are listed vertically, one below the other,
instead of horizontally
Instead of using variables, lines (links) between attributes are used
to specify that their values should be the same.

Links are added automatically on the basis of attribute name,
and the user can then add or delete links
By default, a link specifies an inner join, but can be modified to
specify outer joins.

Conditions, values to be printed, as well as group by attributes are all
specified together in a box called the design grid

©Silberschatz, Korth and Sudarshan5.47Database System Concepts - 5th Edition, July 8, 2005

An Example Query in Microsoft Access QBEAn Example Query in Microsoft Access QBE

Example query: Find the customer_name, account_number and balance
for all accounts at the Perryridge branch

©Silberschatz, Korth and Sudarshan5.48Database System Concepts - 5th Edition, July 8, 2005

An Aggregation Query in Access QBEAn Aggregation Query in Access QBE

Find the name, street and city of all customers who have more than one
account at the bank

©Silberschatz, Korth and Sudarshan5.49Database System Concepts - 5th Edition, July 8, 2005

Aggregation in Access QBEAggregation in Access QBE

The row labeled Total specifies
which attributes are group by attributes
which attributes are to be aggregated upon (and the aggregate
function).
For attributes that are neither group by nor aggregated, we can
still specify conditions by selecting where in the Total row and
listing the conditions below

As in SQL, if group by is used, only group by attributes and aggregate
results can be output

©Silberschatz, Korth and Sudarshan5.50Database System Concepts - 5th Edition, July 8, 2005

DatalogDatalog

Basic Structure
Syntax of Datalog Rules
Semantics of Nonrecursive Datalog
Safety
Relational Operations in Datalog
Recursion in Datalog
The Power of Recursion

©Silberschatz, Korth and Sudarshan5.51Database System Concepts - 5th Edition, July 8, 2005

Basic StructureBasic Structure

Prolog-like logic-based language that allows recursive queries; based
on first-order logic.
A Datalog program consists of a set of rules that define views.
Example: define a view relation v1 containing account numbers and
balances for accounts at the Perryridge branch with a balance of over
$700.

v1 (A, B) :– account (A, “Perryridge”, B), B > 700.
Retrieve the balance of account number “A-217” in the view relation v1.

? v1 (“A-217”, B).
To find account number and balance of all accounts in v1 that have a
balance greater than 800

? v1 (A,B), B > 800

©Silberschatz, Korth and Sudarshan5.52Database System Concepts - 5th Edition, July 8, 2005

Example QueriesExample Queries

Each rule defines a set of tuples that a view relation must contain.

E.g. v1 (A, B) :– account (A, “ Perryridge”, B), B > 700 is
read as

for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

The set of tuples in a view relation is then defined as the union of all the
sets of tuples defined by the rules for the view relation.
Example:

interest_rate (A, 5) :– account (A, N, B) , B < 10000
interest_rate (A, 6) :– account (A, N, B), B >= 10000

©Silberschatz, Korth and Sudarshan5.53Database System Concepts - 5th Edition, July 8, 2005

Negation in DatalogNegation in Datalog

Define a view relation c that contains the names of all customers who
have a deposit but no loan at the bank:

c(N) :– depositor (N, A), not is_borrower (N).
is_borrower (N) :–borrower (N,L).

NOTE: using not borrower (N, L) in the first rule results in a different
meaning, namely there is some loan L for which N is not a borrower.

To prevent such confusion, we require all variables in negated
“predicate” to also be present in non-negated predicates

©Silberschatz, Korth and Sudarshan5.54Database System Concepts - 5th Edition, July 8, 2005

Named Attribute NotationNamed Attribute Notation

Datalog rules use a positional notation that is convenient for relations with a
small number of attributes
It is easy to extend Datalog to support named attributes.

E.g., v1 can be defined using named attributes as
v1 (account_number A, balance B) :–

account (account_number A, branch_name “ Perryridge”, balance B),
B > 700.

©Silberschatz, Korth and Sudarshan5.55Database System Concepts - 5th Edition, July 8, 2005

Formal Syntax and Semantics of DatalogFormal Syntax and Semantics of Datalog

We formally define the syntax and semantics (meaning) of Datalog
programs, in the following steps
1. We define the syntax of predicates, and then the syntax of rules
2. We define the semantics of individual rules
3. We define the semantics of non-recursive programs, based on a

layering of rules
4. It is possible to write rules that can generate an infinite number of

tuples in the view relation. To prevent this, we define what rules
are “safe”. Non-recursive programs containing only safe rules
can only generate a finite number of answers.

5. It is possible to write recursive programs whose meaning is
unclear. We define what recursive programs are acceptable, and
define their meaning.

©Silberschatz, Korth and Sudarshan5.56Database System Concepts - 5th Edition, July 8, 2005

Syntax of Datalog RulesSyntax of Datalog Rules

A positive literal has the form
p (t1, t2 ..., tn)

p is the name of a relation with n attributes
each ti is either a constant or variable

A negative literal has the form
not p (t1, t2 ..., tn)

Comparison operations are treated as positive predicates
E.g. X > Y is treated as a predicate >(X,Y)
“>” is conceptually an (infinite) relation that contains all pairs of
values such that the first value is greater than the second value

Arithmetic operations are also treated as predicates
E.g. A = B + C is treated as +(B, C, A), where the relation “+”
contains all triples such that the third value is the
sum of the first two

©Silberschatz, Korth and Sudarshan5.57Database System Concepts - 5th Edition, July 8, 2005

Syntax of Datalog Rules (Cont.)Syntax of Datalog Rules (Cont.)

Rules are built out of literals and have the form:
p (t1, t2, ..., tn) :– L1, L2, ..., Lm.

head body
each Li is a literal
head – the literal p (t1, t2, ..., tn)
body – the rest of the literals

A fact is a rule with an empty body, written in the form:
p (v1, v2, ..., vn).

indicates tuple (v1, v2, ..., vn) is in relation p
A Datalog program is a set of rules

©Silberschatz, Korth and Sudarshan5.58Database System Concepts - 5th Edition, July 8, 2005

Semantics of a RuleSemantics of a Rule

A ground instantiation of a rule (or simply instantiation) is the result
of replacing each variable in the rule by some constant.

Eg. Rule defining v1
v1(A,B) :– account (A,“Perryridge”, B), B > 700.

An instantiation above rule:
v1 (“A-217”, 750) :–account (“A-217”, “Perryridge”, 750),

750 > 700.

The body of rule instantiation R’ is satisfied in a set of facts (database
instance) l if
1. For each positive literal qi (vi,1, ..., vi,ni) in the body of R’, l contains

the fact qi (vi,1, ..., vi,ni).
2. For each negative literal not qj (vj,1, ..., vj,nj) in the body of R’, l

does not contain the fact qj (vj,1, ..., vj,nj).

©Silberschatz, Korth and Sudarshan5.59Database System Concepts - 5th Edition, July 8, 2005

Semantics of a Rule (Cont.)Semantics of a Rule (Cont.)

We define the set of facts that can be inferred from a given set of facts l
using rule R as:

infer(R, l) = { p (t1, ..., tn) | there is a ground instantiation R’ of R
where p (t1, ..., tn) is the head of R’, and
the body of R’ is satisfied in l }

Given an set of rules ℜ = {R1, R2, ..., Rn}, we define
infer(ℜ, l) = infer (R1, l) ∪ infer (R2, l) ∪ ... ∪ infer (Rn, l)

©Silberschatz, Korth and Sudarshan5.60Database System Concepts - 5th Edition, July 8, 2005

Layering of RulesLayering of Rules

Define the interest on each account in Perryridge

interest(A, l) :– perryridge_account (A,B),
interest_rate(A,R), l = B * R/100.

perryridge_account(A,B) :– account (A, “Perryridge”, B).
interest_rate (A,5) :– account (N, A, B), B < 10000.
interest_rate (A,6) :– account (N, A, B), B >= 10000.

Layering of the view relations

©Silberschatz, Korth and Sudarshan5.61Database System Concepts - 5th Edition, July 8, 2005

Layering Rules (Cont.)Layering Rules (Cont.)

A relation is a layer 1 if all relations used in the bodies of rules defining
it are stored in the database.
A relation is a layer 2 if all relations used in the bodies of rules defining
it are either stored in the database, or are in layer 1.
A relation p is in layer i + 1 if

it is not in layers 1, 2, ..., i
all relations used in the bodies of rules defining a p are either
stored in the database, or are in layers 1, 2, ..., i

Formally:

©Silberschatz, Korth and Sudarshan5.62Database System Concepts - 5th Edition, July 8, 2005

Semantics of a ProgramSemantics of a Program

Define I0 = set of facts stored in the database.
Recursively define li+1 = li ∪ infer (ℜi+1, li)
The set of facts in the view relations defined by the program
(also called the semantics of the program) is given by the set
of facts ln corresponding to the highest layer n.

Let the layers in a given program be 1, 2, ..., n. Let ℜi denote the
set of all rules defining view relations in layer i.

Note: Can instead define semantics using view expansion like
in relational algebra, but above definition is better for handling
extensions such as recursion.

©Silberschatz, Korth and Sudarshan5.63Database System Concepts - 5th Edition, July 8, 2005

SafetySafety

It is possible to write rules that generate an infinite number of
answers.

gt(X, Y) :– X > Y
not_in_loan (B, L) :– not loan (B, L)

To avoid this possibility Datalog rules must satisfy the following
conditions.

Every variable that appears in the head of the rule also appears in
a non-arithmetic positive literal in the body of the rule.

This condition can be weakened in special cases based on the
semantics of arithmetic predicates, for example to permit the
rule

p (A) :- q (B), A = B + 1
Every variable appearing in a negative literal in the body of the
rule also appears in some positive literal in the body of the rule.

©Silberschatz, Korth and Sudarshan5.64Database System Concepts - 5th Edition, July 8, 2005

Relational Operations in DatalogRelational Operations in Datalog

Project out attribute account_name from account.
query (A) :–account (A, N, B).

Cartesian product of relations r1 and r2.
query (X1, X2, ..., Xn, Y1, Y1, Y2, ..., Ym) :–

r1 (X1, X2, ..., Xn), r2 (Y1, Y2, ..., Ym).
Union of relations r1 and r2.

query (X1, X2, ..., Xn) :–r1 (X1, X2, ..., Xn),
query (X1, X2, ..., Xn) :–r2 (X1, X2, ..., Xn),

Set difference of r1 and r2.
query (X1, X2, ..., Xn) :–r1(X1, X2, ..., Xn),

not r2 (X1, X2, ..., Xn),

©Silberschatz, Korth and Sudarshan5.65Database System Concepts - 5th Edition, July 8, 2005

Recursion in DatalogRecursion in Datalog

Suppose we are given a relation
manager (X, Y)

containing pairs of names X, Y such that Y is a manager of X (or
equivalently, X is a direct employee of Y).
Each manager may have direct employees, as well as indirect
employees

Indirect employees of a manager, say Jones, are employees of
people who are direct employees of Jones, or recursively,
employees of people who are indirect employees of Jones

Suppose we wish to find all (direct and indirect) employees of manager
Jones. We can write a recursive Datalog program.

empl_jones (X) :- manager (X, Jones).
empl_jones (X) :- manager (X, Y), empl_jones (Y).

©Silberschatz, Korth and Sudarshan5.66Database System Concepts - 5th Edition, July 8, 2005

Semantics of Recursion in DatalogSemantics of Recursion in Datalog

Assumption (for now): program contains no negative literals
The view relations of a recursive program containing a set of rules ℜ are
defined to contain exactly the set of facts l
computed by the iterative procedure Datalog-Fixpoint

procedure Datalog-Fixpoint
l = set of facts in the database
repeat

Old_l = l
l = l ∪ infer (ℜ, l)

until l = Old_l
At the end of the procedure, infer (ℜ, l) ⊆ l

Infer (ℜ, l) = l if we consider the database to be a set of facts that
are part of the program

l is called a fixed point of the program.

©Silberschatz, Korth and Sudarshan5.67Database System Concepts - 5th Edition, July 8, 2005

Example of Example of DatalogDatalog--FixPointFixPoint IterationIteration

©Silberschatz, Korth and Sudarshan5.68Database System Concepts - 5th Edition, July 8, 2005

A More General ViewA More General View

Create a view relation empl that contains every tuple (X, Y) such
that X is directly or indirectly managed by Y.

empl (X, Y) :– manager (X, Y).
empl (X, Y) :– manager (X, Z), empl (Z, Y)

Find the direct and indirect employees of Jones.
? empl (X, “Jones”).

Can define the view empl in another way too:
empl (X, Y) :– manager (X, Y).
empl (X, Y) :– empl (X, Z), manager (Z, Y).

©Silberschatz, Korth and Sudarshan5.69Database System Concepts - 5th Edition, July 8, 2005

The Power of RecursionThe Power of Recursion

Recursive views make it possible to write queries, such as transitive
closure queries, that cannot be written without recursion or iteration.

Intuition: Without recursion, a non-recursive non-iterative program
can perform only a fixed number of joins of manager with itself

This can give only a fixed number of levels of managers
Given a program we can construct a database with a greater
number of levels of managers on which the program will not work

©Silberschatz, Korth and Sudarshan5.70Database System Concepts - 5th Edition, July 8, 2005

Recursion in SQLRecursion in SQL

Starting with SQL:1999, SQL permits recursive view definition
E.g. query to find all employee-manager pairs

with recursive empl (emp, mgr) as (
select emp, mgr
from manager

union
select manager.emp, empl.mgr
from manager, empl
where manager.mgr = empl.emp)

select *
from empl

©Silberschatz, Korth and Sudarshan5.71Database System Concepts - 5th Edition, July 8, 2005

MonotonicityMonotonicity

A view V is said to be monotonic if given any two sets of facts
I1 and I2 such that l1 ⊆ I2, then Ev (I1) ⊆ Ev (I2), where Ev is the
expression used to define V.
A set of rules R is said to be monotonic if

l1 ⊆ I2 implies infer (R, I1) ⊆ infer (R, I2),

Relational algebra views defined using only the operations: ∏, σ, ×, ∪,
|X|, ∩, and ρ (as well as operations like natural join defined in terms of
these operations) are monotonic.
Relational algebra views defined using set difference (–) may not be
monotonic.
Similarly, Datalog programs without negation are monotonic, but
Datalog programs with negation may not be monotonic.

©Silberschatz, Korth and Sudarshan5.72Database System Concepts - 5th Edition, July 8, 2005

NonNon--MonotonicityMonotonicity

Procedure Datalog-Fixpoint is sound provided the rules in the program
are monotonic.

Otherwise, it may make some inferences in an iteration that
cannot be made in a later iteration. E.g. given the rules

a :- not b.
b :- c.
c.

Then a can be inferred initially, before b is inferred, but not later.
We can extend the procedure to handle negation so long as the
program is “stratified”: intuitively, so long as negation is not mixed
with recursion

©Silberschatz, Korth and Sudarshan5.73Database System Concepts - 5th Edition, July 8, 2005

NonNon--MonotonicityMonotonicity (Cont.)(Cont.)

There are useful queries that cannot be expressed by a stratified
program

Example: given information about the number of each subpart in
each part, in a part-subpart hierarchy, find the total number of
subparts of each part.
A program to compute the above query would have to mix
aggregation with recursion
However, so long as the underlying data (part-subpart) has no
cycles, it is possible to write a program that mixes aggregation
with recursion, yet has a clear meaning
There are ways to evaluate some such classes of non-stratified
programs

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 5End of Chapter 5

©Silberschatz, Korth and Sudarshan5.75Database System Concepts - 5th Edition, July 8, 2005

Figure 5.1Figure 5.1

©Silberschatz, Korth and Sudarshan5.76Database System Concepts - 5th Edition, July 8, 2005

Figure 5.2Figure 5.2

©Silberschatz, Korth and Sudarshan5.77Database System Concepts - 5th Edition, July 8, 2005

Figure 5.5Figure 5.5

©Silberschatz, Korth and Sudarshan5.78Database System Concepts - 5th Edition, July 8, 2005

Figure 5.6Figure 5.6

©Silberschatz, Korth and Sudarshan5.79Database System Concepts - 5th Edition, July 8, 2005

Figure 5.9Figure 5.9

©Silberschatz, Korth and Sudarshan5.80Database System Concepts - 5th Edition, July 8, 2005

Figure inFigure in--5.25.2

©Silberschatz, Korth and Sudarshan5.81Database System Concepts - 5th Edition, July 8, 2005

Figure inFigure in--5.155.15

©Silberschatz, Korth and Sudarshan5.82Database System Concepts - 5th Edition, July 8, 2005

Figure inFigure in--5.185.18

©Silberschatz, Korth and Sudarshan5.83Database System Concepts - 5th Edition, July 8, 2005

Figure inFigure in--55--3131

©Silberschatz, Korth and Sudarshan5.84Database System Concepts - 5th Edition, July 8, 2005

Figure inFigure in--5.365.36

	Chapter 5: Other Relational Languages
	Chapter 5: Other Relational Languages
	Tuple Relational Calculus
	Predicate Calculus Formula
	Banking Example
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Safety of Expressions
	Domain Relational Calculus
	Example Queries
	Example Queries
	Safety of Expressions
	Query-by-Example (QBE)
	QBE — Basic Structure
	QBE Skeleton Tables (Cont.)
	Queries on One Relation
	Queries on One Relation (Cont.)
	Queries on One Relation (Cont.)
	Queries on One Relation (Cont.)
	Queries on Several Relations
	Queries on Several Relations (Cont.)
	Negation in QBE
	Negation in QBE (Cont.)
	The Condition Box
	Condition Box (Cont.)
	Condition Box (Cont.)
	Condition Box (Cont.)
	The Result Relation
	The Result Relation (Cont.)
	Ordering the Display of Tuples
	Aggregate Operations
	Aggregate Operations (Cont.)
	Query Examples
	Query Example
	Query Example (Cont.)
	Modification of the Database – Deletion
	Deletion Query Examples
	Deletion Query Examples (Cont.)
	Modification of the Database – Insertion
	Modification of the Database – Insertion (Cont.)
	Modification of the Database – Updates
	Microsoft Access QBE
	Aggregation in Access QBE
	Datalog
	Basic Structure
	Example Queries
	Negation in Datalog
	Named Attribute Notation
	Formal Syntax and Semantics of Datalog
	Syntax of Datalog Rules
	Syntax of Datalog Rules (Cont.)
	Semantics of a Rule
	Semantics of a Rule (Cont.)
	Layering of Rules
	Layering Rules (Cont.)
	Semantics of a Program
	Safety
	Relational Operations in Datalog
	Recursion in Datalog
	Semantics of Recursion in Datalog
	Example of Datalog-FixPoint Iteration
	A More General View
	The Power of Recursion
	Recursion in SQL
	Monotonicity
	Non-Monotonicity
	Non-Monotonicity (Cont.)
	End of Chapter 5
	Figure 5.1
	Figure 5.2
	Figure 5.5
	Figure 5.6
	Figure 5.9
	Figure in-5.2
	Figure in-5.15
	Figure in-5.18
	Figure in-5-31
	Figure in-5.36

