
PIE-Net: Photometric Invariant Edge Guided Network for Intrinsic Image
Decomposition - Supplementary

1. Image Formation

In this section we briefly introduce the image formation
model. We follow this with the physics-based descriptors.

1.1. Image Formation

The process of image formation can be modelled as the
combination of an object’s material and geometric property
under a light source. Under the Lambertian assumption [5],
it is:

I = m(n⃗, l⃗)

∫
ω

ρb(λ) e(λ) f(λ) dλ , (1)

where, I is the final observed image. λ is the incoming
wavelength of the light integrated over the entire visible
spectrum ω. n⃗ denotes the surface normal while l⃗ denotes
the incident light direction. m is a function denoting the
interaction of n⃗ & l⃗. f indicates the spectral camera sen-
sitivity. e describes the spectral power distribution of the
illuminant. While ρ denotes the reflectance of the object.

Discretising the model, we obtain:

Cp1
= m(n⃗, l⃗) eCp1 (λ) ρCp1 (λ) , (2)

where Cp1 is colour channel C for pixel p1 for a RGB im-
age.

Assuming a white light source, a narrow band filter and
linear sensor response of the device, Eq (2) can be further
simplified as:

I = S ×R , (3)

where the m(n⃗, l⃗) component is denoted as S and eCp1 (λ)
& ρCp1 (λ) components as R, respectively. Consecutively,
S is the shading component associated with only the geom-
etry and illuminant of the scene. While R is the reflectance
(albedo) image, corresponding to the (true) colour of the ob-
ject, independent of any geometric or lighting information.
Thus, the simplified image formation becomes the pixel-
wise multiplication of the reflectance and the shading im-
ages.

1.2. Cross Color Ratios: Proof of Invariance

The detailed steps of deriving the CCR is shown. Given
the CCR (MRG for the channel RG pair for pixels p1 and
p2:

MRG =
Rp1

Gp2

Rp2
Gp1

, (4)

Taking logarithm on both sides of the equation, we get:

log(MRG) = log(Rp1 Gp2) − log(Rp2 Gp1) , (5)

Combining Eq (2) and Eq (5):

log(MRG) = log(Rp1
Gp2

) − log(Rp2
Gp1

) ,

log(MRG) = log(Rp1
) + log(Gp2

)

− log(Rp2
) − log(Gp1

) ,

log(MRG) = log(m(n⃗p1
l⃗p1

)) + log(eRp1 (λ))

+ log(ρRp1 (λ)) + log(m(n⃗p2
l⃗p2

))

+ log(eGp2 (λ)) + log(ρGp2 (λ))

− log(m(n⃗p2
l⃗p2

)) − log(eRp2 (λ))

− log(ρRp2 (λ)) − log(m(n⃗p1
l⃗p1

))

− log(eGp1 (λ)) − log(ρGp1 (λ)) ,

(6)

Recall from the main paper:

eCp1 = eCp2 , (7)

Even for a curved surfaces, this holds true, since they are
very close to each other. However, for curved surfaces, the
geometry might not be the same, i.e.:

n⃗p1
̸= n⃗p2

, (8)

Incorporating Eq (7) in Eq (6), we have:

1



log(MRG) = log(m(n⃗p1 l⃗p1)) + log(eRp1 (λ))

+ log(ρRp1 (λ)) + log(m(n⃗p2
l⃗p2

))

+ log(eGp2 (λ)) + log(ρGp2 (λ))

− log(m(n⃗p2
l⃗p2

)) − log(eRp2 (λ))

− log(ρRp2 (λ)) − log(m(n⃗p1 l⃗p1))

− log(eGp1 (λ)) − log(ρGp1 (λ)) ,

log(MRG) = log(m(n⃗p1
l⃗p1

)) + log(eRp2 (λ))

+ log(ρRp1 (λ)) + log(m(n⃗p2
l⃗p2

))

+ log(eGp2 (λ)) + log(ρGp2 (λ))

− log(m(n⃗p2
l⃗p2

)) − log(eRp2 (λ))

− log(ρRp2 (λ)) − log(m(n⃗p1
l⃗p1

))

− log(eGp2 (λ)) − log(ρGp1 (λ)) ,

(9)

We can factor out the terms log(eRp2 (λ)) and
log(eGp2 (λ)):

log(MRG) = log(m(n⃗p1
l⃗p1

)) + log(ρRp1 (λ))

+ log(m(n⃗p2 l⃗p2)) + log(ρGp2 (λ))

− log(m(n⃗p2
l⃗p2

)) − log(ρRp2 (λ))

− log(m(n⃗p1 l⃗p1)) − log(ρGp1 (λ)) ,
(10)

from Eq (10), the terms log(m(n⃗p1 l⃗p1)) and
log(m(n⃗p2

l⃗p2
)) are factored out, even though for a

curved surface, n⃗p1
̸= n⃗p2

. Therefore, we have:

log(MRG) = log(ρRp1 (λ)) + log(ρGp2 (λ))

− log(ρRp2 (λ)) − log(ρGp1 (λ)) .
(11)

which is the illuminant invariant CCR descriptor for the R
& G channels even with curved surfaces. The other channel
R & B and G & B pairs can be similarly verified.

2. Network Configuration Details
Before we provide the details of the module’s techni-

cal configuration, we describe the basic building blocks.
The network consists of three major structures: an encoder
block, an attention layer and a decoder block.

2.1. Basic Blocks

Encoder: The basic building block of the encoder con-
sists of a 2D convolution layer, a Batch Normalization
Layer and a ReLU layer, repeated twice. These 6 layers to-
gether create a single block. Fig. 1 visualises such a block.

Conv2d BatchNorm ReLU

Figure 1. A basic encoder block

σ

X
+ Output

Guidance
Input

Guidance
Target

Figure 2. Basic configuration of an attention layer.

Transpose
Conv2d BatchNorm ReLU

Figure 3. A basic decoder block.

Attention layer: The attention layer can be defined as:

Fint = σ(Fi) · Ft

Fattn = Fint + Ft

(12)

where, Fi is the guidance input to the layer, for example, the
edge maps. Ft is target values that are to be guided through
the attention, for example, the unrefined outputs. Fint is the
intermediate output in the attention layer. And Fattn is the
final attention guided output. A visual representation can be
found in Fig. 2. All the operations are done element-wise.

Decoder: The basic building block of the decoder con-
sists of a 2D Transposed Convolution layer, a Batch Nor-
malization Layer and a ReLU layer. Fig. 3 visualises a sin-
gle block.



Name Layer Kernel Size, Stride, Padding Output Size
Input conv1 3x3x64, 1, 1 256x256x64

conv1 3x3x64, 1, 1 256x256x64
conv2 3x3x64, 2, 1 128x128x64
conv2 3x3x128, 1, 1 128x128x128
conv3 3x3x128, 2, 1 64x64x128
conv3 3x3x256, 1, 1 64x64x256
conv4 3x3x256, 2, 1 32x32x256
conv4 3x3x512, 1, 1 32x32x512
conv5 3x3x512, 2, 1 16x16x512

Bottleneck conv5 3x3x512, 1, 1 16x16x512

Table 1. Overview of our encoder configuration, used for both the
image and ccr encoders.

Name Layer Kernel Size, Stride, Padding Output Size
BottleNeck deconv1 4x4x(512 * 2), 2, 1 32x32x512

deconv2 4x4x(512 * 2 + 512 + 512), 2, 1 64x64x512
deconv3 4x4x(512 * 2 + 256 + 256), 2, 1 128x128x256
deconv4 4x4x(256 * 2 + 128 + 128), 2, 1 256x256x128
conv6 3x3x(128 * 2 + 64 + 64), 1, 1 256x256x64

Output conv6 3x3x3, 1, 1 256x256x3

Table 2. Overview of the configuration for the edge decoders. The
summations represent the skip connections, while the product rep-
resents the interconnections between the decoders, i.e., reflectance
edge and shading edge decoders.

In the following section, we list the details of each of the
modules. We list the feed forward configuration in a tabular
form. Each of the convolutions and transposed convolutions
are always followed by a batch norm and ReLU layer. For
brevity, the latter two layers are omitted from the tables.

2.1.1 Shared Image & CCR Encoder:

The configuration details for the image and CCR encoder is
provided in table 1. The same configuration is used for both
the image and CCR encoder.

2.1.2 Linked Edge Decoder

Table 2 lists the configuration for the edge decoder. The
∗ represents the incoming interconnection from the paral-
lel decoder, while + represents the incoming connections
through skip connections. All the incoming features are
concatenated depth wise before being passed onto the con-
volution blocks.

To add additional feature and scale space supervision to
the edges, we also add a multi-scale supervision. For this
we transform the intemediate features directly to an output
image of size 64 & 128 and add a supervision of the cor-
responding scaled ground truths. Since we want to have
an implicit supervision on the features themselves, we need
to minimise the influence of the parameters of this trans-
form. To enforce this, we propose to use the same “side
output” convolution for both the reflectance edge and shad-

Name Layer Kernel Size, Stride, Padding Output Size
64x64 Output conv1 3x3x512, 1, 1 64x64x3
128x128 Output conv2 3x3x256, 1, 1 128x128x3

Table 3. Overview of our side output configuration, used for both
the reflectance edge and shading edge decoder features.

Name Layer Kernel Size, Stride, Padding Output Size
BottleNeck deconv1 4x4x(512 * 1), 2, 1 32x32x512

Attention
reflect edge (re) deconv1
& shading edge (se) deconv1 32x32x512

deconv2 4x4x(512 * 2 + 512), 2, 1 64x64x512
Attention re deconv2 & se deconv2 64x64x512
deconv3 4x4x(512 * 2 + 256), 2, 1 128x128x256
Attention re deconv3 & se deconv3 128x128x256
deconv4 4x4x(256 * 2 + 128), 2, 1 256x256x128
Attention re deconv4 & se decovn4 256x256x128
conv6 3x3x(128 * 2 + 64), 1, 1 256x256x64
conv6 3x3x3, 1, 1 256x256x3

Output Attention re output & se output 256x256x3

Table 4. Overview of the configuration for the unrefined decoders.
The summations represent the skip connections, while the product
represents the interconnections between the decoders, i.e., unre-
fined reflectance and shading decoders. The attention layers take
two inputs from the edge decoders.

ing edges. This makes the convolution only learn a common
transformation from feature space to image space. The con-
figuration for side outputs are detailed in table 3.

2.1.3 Unrefined Decoder:

Table 4 shows the configuration for the unrefined decoder.
The decoder takes the corresponding edge decoder outputs
as the guidance. Skip connections from the image encoder
is also provided for colour information. The input to the
decoder is the bottleneck from the image encoder. The de-
coder outputs unrefined reflectance and unrefined shadings,
which are globally consistent, but contains local artefacts
and physical inconsistencies.

2.1.4 Local Refinement Module:

The configuration for our feature calibration layer is shown
in table 5. Fig. 4 shows the refinement module overview.
The Reflectance input is the concatenation of the unrefined
reflectance (3 channels) and the reflectance edges (3 chan-
nels). Similarly, the Shading input is unrefined shading (1
channel) and shading edges (3 channels). We pass it through
a 1x1 convolution to obtain 16 channels each, allowing the
network to select and expand the regions that needs most
corrections. The transformation does not have any spatial
dimension change.

The calibrated features are then fed into the refiner en-
coder to prepare for the refined decoder. The configuration
is detailed in table 6.



Name Layer Kernel Size, Stride, Padding Output Size
Reflectance

Input reflec conv1 1x1x(3 + 3), 1, 0 256x256x8

Reflectance
Bottleneck reflec conv1 1x1x16, 1, 0 256x256x16

Shading
Input shd conv1 1x1x(1 + 3), 1, 0 256x256x8

Shading
Bottleneck shd conv1 1x1x16, 1, 0 256x256x16

Table 5. Overview of the feature calibrator. It has two separate
1x1 convolutions for the reflectance and shading paths. The re-
spective inputs are the concatenated unrefined reflectance & re-
flectance edge and unrefined shading & shading edges.

Name Layer Kernel Size, Stride, Padding Output Size
Input conv1 3x3x32, 1, 1 256x256x64

conv1 3x3x64, 1, 1 256x256x64
conv2 3x3x64, 2, 1 128x128x64
conv2 3x3x64, 1, 1 128x128x128
conv3 3x3x128, 2, 1 64x64x128
conv3 3x3x128, 1, 1 64x64x256
conv4 3x3x256, 2, 1 32x32x256
conv4 3x3x256, 1, 1 32x32x512
conv5 3x3x512, 2, 1 16x16x512

Bottleneck conv5 3x3x512, 1, 1 16x16x512

Table 6. Overview of the refiner encoder. It takes the calibrated
unrefined reflectance and shading as the inputs.

The bottleneck from the refiner encoder is then passed
onto the local refinement decoder, as shown in table 7. The
output of this decoder is the final IID outputs. The decoder
gets skip connections from the refiner encoder. In addition,
the skip connections from the first image and CCR encoders
are passed through the attention layer before being added to
the decoder. Both the image and CCR encoders are sepa-
rately used as a guidance for the corresponding refiner en-
coders before being passed to the decoder. This enforces a
local level correction, where the feature corresponding CCR
and image features are used for the local unrefined outputs.

3. Loss Functions

To train the network we add explicit supervision to the
outputs. For each type of losses, except for the edge,
DSSIM and perceptual lossses, we use a combination of
scale invariant MSE [4] and the standard MSE loss, as fol-
lows:

L(I, Î) = λsmse × LSMSE(I, Î) + λmse × LMSE(I, Î)
(13)

where, Î is the ground-truth intrinsic image and I is the cor-
responding predicted image. We empirically set the λSMSE

and λMSE to 0.95 and 0.05, respectively.
An overview of the losses can be seen in Fig. 5.

Name Layer Kernel Size, Stride, Padding Output Size
BottleNeck deconv1 4x4x512, 2, 1 32x32x512

Attention
img enc conv4
& unref enc conv4 32x32x512

Attention
ccr enc conv4
& unref enc conv4 32x32x512

deconv2 4x4x(512 * 2 + 512 + 512 + 512), 2, 1 64x64x512

Attention
img enc conv3
& unref enc conv3 64x64x512

Attention
ccr enc conv4
& unref enc conv4 32x32x512

deconv3 4x4x(512 * 2 + 256 + 256 + 256), 2, 1 128x128x256

Attention
img enc conv2
& unref enc conv2 128x128x256

Attention
ccr enc conv4
& unref enc conv4 32x32x512

deconv4 4x4x(256 * 2 + 128 + 128 + 128), 2, 1 256x256x128

Attention
img enc conv1
& unref enc conv1 256x256x128

Attention
ccr enc conv4
& unref enc conv4 32x32x512

conv6 3x3x(128 * 2 + 64 + 64 + 64), 1, 1 256x256x64
Output conv6 3x3x3, 1, 1 256x256x3

Table 7. Overview of the configuration for the local refinement de-
coders. The summations represent the skip connections (from the
unrefined encoder, the image encoder and the ccr encoder), while
the product represents the interconnections between the decoders,
i.e., the refined reflectance and shading decoders.

Reflectance Shading
MSE LMSE DSSIM MSE LMSE DSSIM

w/o SSIM
Loss 0.0020 0.0328 0.1766 0.0030 0.0847 0.2314

w/o Edge
Loss 0.0018 0.0344 0.0846 0.0048 0.1128 0.1973

w/o Perceptual
Loss 0.0019 0.0341 0.0902 0.0022 0.0500 0.0791

with All losses 0.0015 0.0289 0.0688 0.0018 0.0489 0.1005

Table 8. Ablation study on the various losses. It is shown that
removing the losses degrades the performance across the metrics.
The drop in performance for the DSSIM metric on the shading
component is an acceptable trade-off since that loss improves the
convergence of the network from 60 epochs to 15 epochs.

The DSSIM is derived from the Structural Similarity In-
dex [6] (SSIM) as follows:

Ldssim(I, Î) =
1− SSIM(I, Î)

2
(14)

where, Î is the ground-truth intrinsic image and I is the
corresponding predicted image.

The reconstruction loss is as follows:

Lrec = L(R⊙ S,RGB) (15)

where R is the final reflectance output and S is the final
shading output of the network. RGB is the input image to
the network.

In order to show the influence of the various loss func-
tions, we provide an ablation study on the losses in table 8.



Feature Calibration

Unified Encoder

Refined Reflectance
Decoder

Refined Shading
Decoder

Cat

Local Refinement
Module

Reflectance Edge

Shading Edge Unrefined
Shading

Unrefined
Reflectance

Reflectance

Shading

Figure 4. Overview of the local refinement module.

Linked
Unrefined
Decoder

Linked Edge
Decoder

Attention Layers Refinement
Module

CCR
Encoder

Image
Encoder

(a)

(b)

(i)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5. Overview of the supervision enforced on the network. The red arrows show the components on which the corresponding losses
are applied. The blue arrows show the dataflow and the green arrows show the outputs of the network.

Here we test the performance of the network by remov-
ing the DSSIM, the scale space Edge and the Perceptual
loss, respectively. We observe that removing the respec-
tive losses degrades the performance of the network across
all metrics, apart from the Perceptual Loss on the shading
DSSIM metric. This is expected since we add the percep-
tual loss for only the reflectance, since shading for our case
is under a white light and hence grayscale. Perceptual loss
helps us obtain a better colour as well as structural consis-
tency. Due to the interconnected nature of the components
in the network, the perceptual loss would act as a noise

source to the shading. Hence, we see a small drop of per-
formance in the structural metric for the shading only, while
all the reflectance metrics show an improvement. However,
even with the degradation, the performance is still better
than the baselines algorithms from the literature, validating
the network design choices. Additionally, removing the per-
ceptual loss increases the convergence time from 15 epochs
to about 60 epochs. Thus, we reason that this loss of perfor-
mance on one metric is an acceptable trade-off.



4. Influence of the type of Attention
In this section we study the influence of the type of atten-

tion. The objective of the network is to learn a transforma-
tion of the input image into the intrinsic components. The
attention layers are introduced for the network to be able to
choose the incoming information. Hence, for our purpose
there can be two types of attention: Channel-wise (allow-
ing for cross channel attention, but on a more global con-
texts) or pixel-wise (spatial attention, allowing for a more
finer-grained attention). For the channel wise attention we
use the Squeeze and Excitation Network [1]. All the hyper-
parameters and losses are kept constant as our proposed full
pipeline. A numerical comparison is shown in table 9.

Reflectance Shading
MSE LMSE DSSIM MSE LMSE DSSIM

w/o Attention Layers 0.0019 0.0330 0.0776 0.0026 0.0704 0.1301
w Channel Attention 0.0019 0.0335 0.0758 0.0024 0.0638 0.1299
w Spatial Attention 0.0015 0.0289 0.0688 0.0018 0.0489 0.1005

Table 9. We present an ablation study on types of attention lay-
ers for our network. From the results, we can see that the spatial
attention is better able to model the transformation function. This
validates our hypothesis about the need for a finer-grained atten-
tion mechanism.

From the table we can see that the channel attention does
not offer much improvement. In fact, the very small number
of improvements are negligible, compared to without any
attention layers. The reflectance component performance is
almost like the configuration without any attention layers.
Compare this to the spatial attention configuration, which
we argue is because there is no single uniform transforma-
tion for all the pixels to arrive at the intrinsic components.
Having a finer grained attention allows the network to learn
a more flexible attentive transformation to arrive at a better
decomposition. The numerical results, especially the local
metrics (LMSE and DSSIM) that show the most significant
improvements, validates this hypothesis.

5. Note on the performance on the Sintel
Dataset

We observe that the network predictions for the shading
is a bit darker than the ground truth. However, the outputs
look structurally correct. This leads to the lower numbers
on the shading MSE and LMSE metrics. Both the metrics
measure the euclidean distance between the pixel values and
are sensitive to outliers. DSSIM on the other hand consid-
ers spatial information and structures, in which we perform
better. This is visualised in Fig. 6.

From the histogram, we can see that the distribution of
the colours is similar, only varying on the scale of the value.
From the standard evaluation metrics, the only metric that
is sensitive to structures and spatial relationship, is DSSIM.

Figure 6. We show the histogram of the predicted shading and the
ground truth shading image. It is shown that the predicted shading
is of a different scale even though they are structurally similar.

As such, our outputs, even though colour wise and struc-
turally correct, is not an exact match with the GT value pixel
wise, resulting in the discrepancy.

Furthermore, our network, by nature is trained on scale
invariant, perceptual and SSIM losses. These concentrates
more on the perceived colour accuracy and structure than
absolute pixel values. For the reflectance, it is not much
of a problem since colours are ratios of the RGB channels.
Hence, we can see that we are the best performing on the
MSE metric and are the second best on the LMSE metric.
For the latter metric, this can be explained by the local er-
rors accumulating. However, in case of a grayscale shading
(with our white light assumption), the shading is entirely
defined as a scaling term. Hence all the scale mismatches
amplify the problem, even though structurally the predic-
tions are closer to the ground truth (as shown by the DSSIM
metrics).

6. Extra Visualisations

6.1. NED

We provide visualisations for the NED test set in Figs. 7
and 8. It is shown that our network can disentangle cast
shadows from the reflectance, while also preserving the
proper reflectance colour smoothness and textures. The
shading is similarly shown to only contain shadows and ge-
ometric details only, free from textures.



Figure 7. Visuals from the NED test set. It is shown that the network is robust enough to handle cast shadows. In rows 1, 3, 5 and 7, the
heavy cast shadows on the ground are completely removed and the predictions are closer to the ground truth images. While IntrinsicNet
can also remove the cast shadows, it leaves behind a discolouration in place of the shadows. The other algorithms fail at handling the cast
shadows. Input images are gamma corrected for visualisation.

6.2. MPI Sintel

We visualise some of the predictions of our network from
the test set. The results are visualised in the Figs. 9 and 10.



Figure 8. Additional visuals on the NED test set. It is shown that our network, in addition to handling the cast shadow problem, is also
capable of preventing texture leakages. Rows 1 and 3 shows a tree trunk that has textures, which is preserved in our prediction, like the
ground truth. The other baselines, however, transfer it to the shading images. Additionally, row 5 shows heavy discolouration on the
bush, where there was a cast shadow, while our method can recover the reflectance with minimal discolouration. Input images are gamma
corrected for visualisation.

It is shown that the predicted outputs are close to the ground
truths, robustly handling the cast shadows and textures in
the shading and reflectance respectively.

6.3. MIT Intrinsics

We present some visualisations of the predictions com-
pared with various baselines on the MIT Intrinsic test set.
The visuals are provided in Figs. 11 and 12. It is shown in
the figure that our predictions are much closer to the ground
truth compared to the other baselines. IntrinsicNet is shown
to have comparatively worse performance, missing shadows
(on the raccoon) and often transferring textures in the shad-

ings. In comparison, our method is robust against both leak-
ages, showing the effectiveness of the physics-based guid-
ance.

6.4. IIW

We present visualisations from the IIW test set in
Figs. 13 and 14. It is shown that our network can predict re-
flectances that are consistent with the flatness assumptions.
The structural details are correctly transferred to the shad-
ings. CGIntrinsics [3] and [2] on the other hand, misses
the reflectance reflectance boundaries. They are also shown
to miss finer details like tiles, while also often generating a



R
eflectance

Shading

OursInput GT [16]

R
eflectance

Shading
R

eflectance
Shading

Figure 9. We show visuals on the MPI Sintel test set. It is shown that our network can remove the cast shadows, even from complex scenes
like a forest (row 1). On row 5 it is shown that the reflectance is free from the cast shadows on the wall, while the shading image is free
from the textures on the wooden box.



OursInput GT [16]

R
eflectance

Shading
R

eflectance
Shading

R
eflectance

Shading

Figure 10. Additional visualisations on the MPI Sintel test set. It is shown that our network is able to handle complex scenes with
complicated object interactions and cast shadows.



Figure 11. Visuals from the MIT Intrinsic test set. It is shown that the proposed algorithm predictions are closer to the ground truth IID
components. IntrinsicNet, on the other hand, completely misses the shadow on the racoon and the paper (rows 2 & 4), while the proposed
algorithm can transfer it to the shading image correctly. The deer and turtle (rows 5 & 7) show the proposed algorithm able to properly
disentangle geometric patterns from reflectance, which are much flatter.



Figure 12. Additional visualisations for the MIT Intrinsic test set. The shadow from the inside of the frog’s mouth (row 3) is removed.
IntrinsicNet completely misses that (row 4), while other baselines predict it as part of the reflectance. For the cups and sun statue (rows 5
& 6 and 7 & 8) the edges with shadow influence (red box) is much flatter for the proposed algorithm, while the baselines have noticeable
artefacts due to shadow and reflectance changes.

blurrier shading. The proposed method is able to preserve
the tiles and also predict a sharper details, even though it
was not trained in the same domain exclusively.

6.5. Trimbot

To test the effectiveness of our network on real world
scenes, we provide outputs on the Trimbot dataset, which



Input Ours CGIntrinsics Li et	al.

R
e�lectance

Shading
R

e�lectance
Shading

Figure 13. Visuals from the IIW test set. It is shown that our network can predict comparatively better reflectance, which is able to
distinguish reflectance boundaries. The proposed network is able to separate the wall from the sofa (first row). Similarly, the competing
method classifies the seat of the chair (third row) differently, even though it is part of the same reflectance. The fireplace mantle (fifth
row), should be uniform, but the competing methods have uneven reflectance, while our method is able to predict comparatively flatter and
uniform reflectance.

are relatively close to our synthetic data settings. The visu-
als are provided in the Fig. 15. It is shown in the figure that
our network can distinguish not only between the shadows
and reflectance, but also between the finer objects and shad-
ings. For example, in our outputs, the ground in the shad-
ing is flat owing to the flat geometry, while the reflectance
shows the reflectance boundary between the grass, thus giv-
ing it a rough texture.

6.6. Real world images

To further test our method, we take a few random internet
images. We show the outputs in Fig. 16. It is shown that the
network can recover the reflectance, even though it was only
trained/fine-tuned on synthetic images. The shadow of the
tree on the ground in the first image is separated properly

into the reflectance. While in the shading image, the ground
is smooth and flat, since the texture is from the reflectance
side, while geometrically, the ground is flat and free from
variations. Small shadows in the treetops are removed in the
reflectance and only preserved in the shading image. Hence,
it is shown that the network does not just learn a grayscale
transformation for the shading, but also a physics guided
IID.



R
e�lectance

Shading
R

e�lectance
Shading

Input Ours CGIntrinsics Li et	al.

Figure 14. Additional visuals for the IIW test set. It is shown that the predicted network is able to preserve finer details like the individual
tiles on the bathroom walls (first row) and floor (third row), while predicting a sharper shading image too. The competing method often
predicts a flatter reflectance for all of it, with a blurrier shading image.



Figure 15. Visuals on the Trimbot dataset. It is shown the proposed algorithm can remove the influence of the cast shadows from the
reflectance. In the shading image (row 4), it is shown that the ground is flat and free from textures, due to the flatter geometry of the
ground. On the last row, it is shown that the reflectance of the bush also lacks the finer shadows, which show up only in the shading image.



Figure 16. It is shown that the proposed algorithm can model a physics-based formation model, even though it is trained and fine-tuned
on purely synthetic data. The shadows on the ground and even among the leaves are removed (rows 1 and 2), while the shading is flat and
smooth on the ground, while preserving the small shadows and geometry in the treetops. On the 3rd row, the shadows are mostly removed,
while structural details on the woman’s shirt is completely flattened in the reflectance.



References
[1] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks.

In CVPR, 2018. 6
[2] Zhengqin Li, Mohammad Shafiei, R. Ramamoorthi, Kalyan

Sunkavalli, and Manmohan Chandraker. Inverse rendering for
complex indoor scenes: Shape, spatially-varying lighting and
svbrdf from a single image. CVPR, pages 2472–2481, 2020.
8

[3] Z. Li and N. Snavely. Cgintrinsics: Better intrinsic image
decomposition through physically-based rendering. In ECCV,
2018. 8

[4] T. Narihira, M. Maire, and S. X. Yu. Direct intrinsics: Learn-
ing albedo-shading decomposition by convolutional regres-
sion. In ICCV, 2015. 4

[5] S. Shafer. Using color to separate reflection components.
Color Research and App., pages 210–218, 1985. 1

[6] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: From error visibility to structural
similarity. IEEE TIP, pages 600–612, 2004. 4


	. Image Formation
	. Image Formation
	. Cross Color Ratios: Proof of Invariance

	. Network Configuration Details
	. Basic Blocks
	Shared Image & CCR Encoder:
	Linked Edge Decoder
	Unrefined Decoder:
	Local Refinement Module:


	. Loss Functions
	. Influence of the type of Attention
	. Note on the performance on the Sintel Dataset
	. Extra Visualisations
	. NED
	. MPI Sintel
	. MIT Intrinsics
	. IIW
	. Trimbot
	. Real world images


