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Abstract

Intrinsic image decomposition is the process of recover-
ing the image formation components (reflectance and shad-
ing) from an image. Previous methods employ either ex-
plicit priors to constrain the problem or implicit constraints
as formulated by their losses (deep learning). These meth-
ods can be negatively influenced by strong illumination con-
ditions causing shading-reflectance leakages.

Therefore, in this paper, an end-to-end edge-driven hy-
brid CNN approach is proposed for intrinsic image decom-
position. Edges correspond to illumination invariant gra-
dients. To handle hard negative illumination transitions, a
hierarchical approach is taken including global and local
refinement layers. We make use of attention layers to fur-
ther strengthen the learning process.

An extensive ablation study and large scale experiments
are conducted showing that it is beneficial for edge-driven
hybrid IID networks to make use of illumination invariant
descriptors and that separating global and local cues helps
in improving the performance of the network. Finally, it
is shown that the proposed method obtains state of the art
performance and is able to generalise well to real world im-
ages. The project page with pretrained and finetuned mod-
els and network code can be found here.

1. Introduction
Intrinsic Image Decomposition (IID) is the process of

recovering the image formation components such as re-
flectance (albedo) and shading (illumination) from an im-
age. The reflectance image can be used for albedo texture
edits [7, 33, 50], fabric recolouring [48] or semantic seg-
mentation [4]. As for shading, the illumination image can
be used for relighting [43] or shape-from-shading i.e. esti-
mating the shape/geometry of objects or scenes [21, 45].

The problem of IID is inherently ill-defined. There-

fore, previous IID approaches employ priors to constrain
the problem. Retinex [24] is based on gradient informa-
tion derived from images where shading variations corre-
spond to small (soft) gradients and reflectance transitions
to larger (stronger) ones. Other constraints are explored
by [2], like piece-wise constancy, parsimony of reflectance,
shading smoothness, etc. Other approaches include global
sparsity priors on the palette of colours (albedo’s) and mod-
elling the problem as latent variable Random Fields by [18].
However, these explicitly imposed constraints (i.e. assump-
tions about the world) may limit the applicability of these
methods. Recently, deep learning based methods are pro-
posed [34, 42]. These methods are based on implicit con-
straints as formulated by losses, and multiple datasets or
image sequences [28, 46]. However, these approaches are
purely data-driven and therefore they may be limited in
their generalisation abilities (dataset bias). Traditional con-
straints and deep learning approaches are combined by [16]
by means of image edge guidance. However, edge-driven
hybrid methods can be influenced by strong illumination
conditions. For example, in case of strong shadows, the net-
work may classify shadows as being reflectance edges. This
happens when the gradient assumption is violated: illumi-
nation changes correspond to soft gradients and reflectance
transitions to hard ones. This leads to the well-known prob-
lem of shading-reflectance leakage i.e. illumination (strong
shadow/shading) transitions which are interpreted/classified
as albedo transitions also called hard negative illumination
transitions, or simply hard (illumination) negatives.

Therefore, in this paper, an edge-driven hybrid CNN ap-
proach is proposed using gradients based on illumination
invariant descriptors i.e. Cross Color Ratios (CCR) [19].
CCR are illumination (including shadows and shading pat-
terns) invariant gradients and hence only dependent on
albedo changes. To solve for hard negative illumination
transitions, a hierarchical CNN is proposed including global
and local refinement layers. The global layer ensures a
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Figure 1. Overview of the proposed Network. The architecture consists of 4 sub-modules denoted by dotted boxes. Inputs to the network
are (a) a RGB image and (b) a CCR image. The CCR image is computed from (a). The outputs of the networks are: (c) the reflectance
edge, (d) the shading edge, (e) the unrefined reflectance prediction, (f) the unrefined shading prediction, (g) the final refined reflectance,
(h) the final refined shading, and (i) the scaled edge outputs @(64, 128).

smooth image decomposition eliminating (soft) negative il-
lumination transitions and therefore minimising shading-
reflectance misclassification. The local refinement will
eliminate the hard (illumination) negatives. A two-staged
approach is beneficial because by adding an incremental
parameter space that is conditioned on the previous step,
the network is no longer required to model both strong and
soft illumination patterns in a single process, but rather a
refinement elimination process to remove the hard nega-
tives. The proposed method implicitly encodes the image
intrinsics within the network without the need of manual
thresholding. Since intrinsic components are spatially de-
pendent, spatial attention layers are included. This allows
the network to focus on image areas containing hard nega-
tives. Fig. 1 provides an overview of the proposed network.

In summary, our contributions are as follows:

• An end-to-end edge-driven hybrid approach is pro-
posed for intrinsic image decomposition using gradi-
ents based on illumination invariant descriptors.

• To solve for hard negative illumination transitions, a
hierarchical approach is taken including global and lo-
cal refinement layers.

• It is shown that separating the parameter space in a
global and local space, rather than a unified parameter
space, outperforms single parameter space learning.

• It is shown that the proposed algorithm is able to
achieve state of the art performance and is able to gen-
eralise well to real world images.

2. Related Work

Earlier methods on intrinsic image decomposition are
mainly focused on exploring hand-crafted priors to reduce
the solution space. [24] argues that sharp gradient changes
belong to reflectance changes, while soft transitions corre-
spond to illumination patterns. [19] proposes the Cross
Color Ratios (CCR). CCR are illumination (including shad-
ows and shading patterns) invariant gradients and hence
only dependent on albedo transitions. Surprisingly, they
have not been employed in the domain of IID.

Other methods, like [40] explore texture cues where
image areas having the same reflectance values should
also have the same intensity values. [2, 18] adds multiple
constraints like piece-wise consistency for reflectance and
smoothness priors for shading. Other constraints include
textures [18, 41], depth cues [1, 25], infrared priors [15]
and surface normals [23]. Shading is also decomposed into
geometry and illumination by regularising them individu-
ally [13]. Different optimisation frameworks are explored
by [8], where Conditional Random Fields are used to opti-
mise pairwise reflectances. More implicit reflectance con-
straints like multiple frames are explored by [32, 46]. User
annotated priors are explored by [8, 10, 11, 35]. For these
methods, the application domains are often limited to sin-
gle objects.

[34] is the first to represent the problem of IID us-
ing a CNN. [42] expands this by introducing skip connec-
tions and inter-component connections to enforce compo-
nent inter-dependence. [3, 22, 54] explore decomposing the
shading component further into shadows, direct and am-



bient lighting cues. Furthermore, [5] introduces RetiNet
by parameterising the Retinex algorithm as an end-to-end
learnable framework. Other approaches include Laplacian
pyramids based on scale space learning [14], adversarial
residual networks [26], inverse rendering [38] and image
edge guidance [16]. Finally, [28] combines multiple con-
straints as loss functions and trains an end-to-end system
using 4 different datasets simultaneously. [27] models the
problem as differentiable rendering layers and trains it in an
end-to-end manner with supervision on reflectance, rough-
ness, normals, depths, etc. Apart from the supervised meth-
ods, unsupervised learning approaches for IID are also ex-
plored in [28, 30, 49, 51]. Although the results of these ap-
proaches are promising, these methods are not always able
to fully disentangle (strong) shading and reflectance transi-
tions i.e shading-reflectance leakage problem.

3. Methodology
3.1. Illumination Invariant Gradients

Given an RGB image and two neighbouring pixels p1 &
p2. Then, the Cross Color Ratios are defined by:

MRG =
Rp1

Gp2

Rp2
Gp1

,MRB =
Rp1

Bp2

Rp2
Bp1

,MGB =
Gp1

Bp2

Gp2
Bp1

,

(1)
where MRG,MRB ,MGB are the CCR for the (R, G),
(R, B) & (G, B) channel pairs, respectively. Taking the
logarithm on both sides of the equation, we obtain:

log(MRG) = log(Rp1 Gp2) − log(Rp2 Gp1) ,

log(MRB) = log(Rp1 Bp2) − log(Rx2 Bx1) ,

log(MGB) = log(Gp1 Bp2) − log(Gp2 Bp1) .

(2)

Let the image formation process be modelled by [39]:

I = m(n⃗, l⃗)

∫
ω

e(λ) ρb(λ) f(λ) dλ , (3)

where, I is the captured image; λ is the incoming light
wavelength within the visible spectrum ω; m is a func-
tion depending on the object geometry and light sources;
n⃗ denotes the surface normal and l⃗ corresponds to the light
source direction. f indicates the spectral camera sensitivity
and e describes the spectral power distribution of the light
source. Reflectance is denoted by ρ and is related to the
albedo/colour of the object. Discretising the model, we ob-
tain:

Cp1
= m(n⃗, l⃗) eCp1 (λ) ρCp1 (λ) , (4)

where Cp1 is colour channel C for pixel p1 for a RGB im-
age.

For two neighbouring pixels p1 and p2, the same illumi-
nation conditions can be assumed since they are very close
to each other. Hence:

eCp1 = eCp2 , (5)

Combining Eq. (2) and Eq (4) results in:

log(MRG) = log(Rp1 Gp2) − log(Rp2 Gp1) ,

log(MRG) = log(Rp1) + log(Gp2)

− log(Rp2) − log(Gp1) ,

log(MRG) = log(ρRp1 (λ)) + log(ρGp2 (λ))

− log(ρRp2 (λ)) − log(ρGp1 (λ)) .

(6)

Hence, CCR are illumination invariant differences and they
are only dependent on the reflectance transitions. To recon-
struct the intrinsic (shading and reflectance) images from
these edges, a CNN is proposed.

Figure 2. The CCR value becomes 1 where the reflectance is con-
stant. CCR changes correspond to reflectance changes. CCR are
illuminantion invariant. Images are gamma corrected for visuali-
sation purposes.

Fig. 2 shows that CCR, computed for two images, cor-
respond to reflectance changes. They are not dependent on
illumination changes. However, noisy regions and strong il-
lumination may introduce shading-reflectance leakage tran-
sitions. Therefore, we propose a hierarchical CNN includ-
ing global and local refinement layers. The refinement lay-
ers are used to cope with hard negative illumination tran-
sitions. To this end, CCR are integrated in the network to
steer the learning process through the use of encoded fea-
tures in: 1) global refinement through edge prediction, and
2) local patch-wise consistent refinement.

3.2. Network Architecture & Details

The network architecture is composed of four sub-
components: 1) A Shared Image & CCR Encoder, 2)
Linked Edge Decoder, 3) Unrefined Decoder and 4) Local
Refinement Module. The entire network is trained end-to-
end.
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Figure 3. Overview of the shared encoder. The input RGB im-
ages and the corresponding CCR are generated by independent
encoders. These encoded features are then passed on to the rest of
the network as a guidance for the global and local layers.

Shared Image & CCR Encoder: Fig. 3 shows the pro-
posed image and CCR encoders. The input and correspond-
ing CCR image are encoded through two separate encoders.
This allows the CCR Encoder to learn illumination invariant
reflectance transition feature (FCCR), while the image en-
coder learns an entangled feature composed of illumination
and reflectance cues (Fimg), independently. These encod-
ings are reused in the later parts of the architecture, (Fig. 1),
allowing independent feature usage for both global and lo-
cal layers.

Linked Edge Decoder: FCCR & Fimg , are passed on to
the linked edge decoders (Fig. 4). Interconnections within
the decoders enable to learn a relational representation of
the cues. Thus, the decoder can learn both reflectance edges
(d) and illumination edges (e) jointly. Apart from the stan-
dard supervision on the output, a feature space scale su-
pervision [47] is also added. To facilitate this, two scales
(64 × 64 and 128 × 128) are obtained. These scales are
transformed directly from the intermediate CNN features
through a common convolution. This allows the convolu-
tion to learn a transformation from feature to image space.
This supervision ensures that the decoder produces edges
that are consistent across scales and feature spaces.

Unrefined Decoder: The unrefined decoder consists of a
similar set of decoders as the edge decoder set as illustrated
in Fig. 4. For every block in the decoder of the Linked
edge decoder, the output is fed through an attention layer
before being convolved through the respective block in the
unrefined decoder. Skip connections (not shown in the fig-
ure, for brevity), are also added to the decoders of Fimg to
provide additional cues. The attention enhanced edge guid-
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Figure 4. Overview of the linked edge decoder and the linked un-
refined decoder. The encoded features from the CCR and the im-
age are used to decode the reflectance (d) and illumination edges
(e). Scale space side outputs (a) - (c), used to enforce scale consis-
tency, are also added. The edge features are passed on through the
attention layers to the unrefined decoder, which outputs the glob-
ally consistent unrefined reflectance (f) and shading (g).

ance allows the network to focus on global consistencies for
the intrinsic images, like segment wise reflectance consis-
tency and smooth gradient changes for illumination. How-
ever, these intrinsics are not necessarily locally consistent,
but may still contain local imperfections such as shading-
reflectance leakage transitions caused by hard negative illu-
mination transitions.

Local Refinement Module: To cope with hard illumina-
tion negatives, the output from the previous decoders are
passed on to the refinement module. Fig. 5 illustrates this
strategy. The reflectance and shading edges, unrefined re-
flectance and shading pairs are concatenated and convolved
through a feature calibration layer. The calibrated features
are then passed through an encoder-decoder to obtain the
final output. Additional local patch-wise guidance is pro-
vided through skip connections from FCCR & Fimg , which
are also passed through attention layers to selectively focus
on hard negative areas (not shown in the figure for brevity).

The shading is computed through a separate decoder.
The proposed configuration allows the decoder to use the
shading cues as an additional source of information to cor-
rect the reflectance and vice versa.

3.3. Loss Functions

To train the network, supervision is added to each of the
output channels of the network. These are: 1) the edge loss



Feature Calibration

Unified Encoder

Refined Reflectance
Decoder

Refined Shading
Decoder

Cat

Local Refinement
Module

Reflectance Edge

Shading Edge Unrefined
Shading

Unrefined
Reflectance

Reflectance

Shading
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(Le), 2) the unrefined loss (Lu), and 3) the refined loss (Lr).
For each of these outputs, a combination of scale invariant
MSE [34] and standard MSE loss is used.

1) Edge Losses: The edge decoder outputs reflectance
and shading edges, together with their scaled versions of
64 × 64 and 128 × 128. In total, there are 3 outputs for
reflectance and shading. The total edge loss is defined by:

Le = LAE + LAE64 + LAE128

+ LSE + LSE64 + LSE128,
(7)

where LAE & LSE are the losses on the full scale of
reflectance and shading edges; LAE64 & LSE64 are the
losses on reflectance and shading feature outputs at scale
64× 64; LAE128 & LSE128 are the losses on the 128× 128
scale. The ground truth for the edges is calculated using a
Canny Edge operator. The reflectance edge is calculated
from the reflectance ground truth. The NED [4] dataset
(described in more detail in the experimental section) pro-
vides fine grained shading decompositions (shadow maps
and ambient/inter-reflections). The shadow map is used for
the shading edge calculation. For datasets without such
ground truth decompositions, the shadow edges are simu-
lated by subtracting the reflectance edges from the shading
ground truth edges. Under the Lambertian model, it can be
assumed that an image is the multiplication of reflectance
and shading. Hence, the subtraction provides an approxi-
mation for shading edges.

2) Unrefined Losses: The unrefined decoder is con-
strained by the following loss:

Lu = LuA + LuS , (8)

where LuA is the loss on the unrefined decoder’s reflectance
output and LuS on the unrefined decoder’s shading output.

3) Refined Loss: Finally, the following loss is applied on
the outputs generated by the refined decoder:

Lr = LA + LS , (9)

where LA is the loss on the final reflectance output and LS

on the final shading output.
To enforce component dependence as a supervision, the

outputs from the network are recombined and compared
with the input image for the reconstruction loss Lrec. Since
this decoder focuses on localised correction of the outputs, a
Structural Dissimilarity (DSSIM) loss is added to regularise
the network:

Ldssim = LδA + LδS , (10)
where LδA and LδS are the losses on the dissimilarity mea-
sure of the reflectance and shading respectively. DSSIM
measures the divergence of structural changes. This allows
the final reflectance and shading, after both global and local
corrections, to be closer to the ground truth.

Finally, to make the network explicitly focus on the per-
ceived quality of the decomposition, a perceptual loss is
added. The features of a VGG16 [44] network trained on
ImageNet are used. This is defined as follows:

LP (A, Â) =
∑
i

||FV GGi
(A)−FV GGi

(Â)||1. (11)

where LP is the perceptual loss; FV GG is the feature space
transform function; A is the predicted reflectance; Â is
the corresponding ground truth; i is the layer index of the
VGG16 network (set to the last 4 for all the experiments).
Combining all the losses, the total training objective for the
network is defined by:

L = Lr + λu Lu + λe Le + λp Lp

+λd Ldssim + Lrec.
(12)

where, the component specific hyper-parameters λu, λd, λe

and λp are empirically set to be 0.5, 0.4, 0.4 and 0.05 re-
spectively. For more details please see the supplementary
material.

4. Experiments and Results
Datasets Quantitative experiments are conducted on four
datasets: NED [4], MIT [20], Sintel [12] and IIW [8]. The
train/test splits, as provided by the original papers, are used.
The proposed network is trained on the NED dataset and
finetuned on the other datasets. In addition, qualitative re-
sults are provided on the Trimbot dataset [37], which con-
sists of real-world garden dataset. This dataset does not
come with ground truth annotations.

Evaluation Metric. Following the literature, the standard
MSE error metric, the LMSE metric [20], (with a windows
size of 20) and the structural dissimilarity metric (DSSIM)
are used. Finally, for IIW, the WHDR metric [8] is used.
For all the datasets, the same train and test splits are used
for all methods.



4.1. Ablation Study

Influence of Illumination Invariants: In this experi-
ment, the influence of the CCR to steer the global-local
process is studied by removing the CCR encoder from the
network. In this way, the edge decoder is completely de-
pendent on the RGB image cues given by the input. Tab. 1
shows the results of this experiment.

Reflectance Shading
MSE LMSE DSSIM MSE LMSE DSSIM

w/o Physics Priors 0.0039 0.0449 0.2590 0.0032 0.0812 0.2356
w/o Edge Guidance 0.0033 0.0415 0.2411 0.0029 0.0782 0.2543

w Canny Edge Guidance 0.0061 0.0566 0.2721 0.0034 0.0879 0.2538
w/o Local Refinement 0.0020 0.0361 0.1192 0.0031 0.0768 0.2651
w/o Attention Layers 0.0019 0.0330 0.0776 0.0026 0.0704 0.1301

Proposed 0.0015 0.0289 0.0688 0.0018 0.0489 0.1005

Table 1. An ablation study on the various parts of our network.
From the results, the proposed component does indeed have a pos-
itive influence on the performance of the network. w - with, w/o -
without

From Tab. 1, it is shown that the removal of the CCR
(w/o Physics Priors) degrades the performance of the pro-
posed network. This is because the modified network now
only relies on the RGB edges of the input image. These
edges include strong illumination transitions and therefore
the network is sensitive to hard negatives. As a result, all the
metrics show a decrease in performance. In conclusion, it is
beneficial for edge-driven hybrid IID networks to make use
of illumination invariant descriptors, rather than learning a
data-distribution.

Influence of Reflectance and Shading Edges: (1) The
influence of edges as a source of guidance is analysed. The
edge decoder part is removed from the unrefined decoder.
The CCR features are maintained in the local refinement
module. (2) It is tested whether learning the reflectance and
shading edges computed directly from the image edges can
replace the CCR to the edge translation subnet. Therefore,
the input to the CCR encoder in Fig. 1 is replaced by Canny
edges calculated directly from the images. This setup cor-
responds to [16].

For the setup described in (1), results for removing the
edge guidance, (w/o Edge Guidance) in Tab. 1 shows that
the performance decreases. However, it is still an improve-
ment over the previous experiment (w/o Physics Priors) in
the table. This shows that even if the global edge guidance
is removed, the local physics prior is still able to help.

In setup (2), using only Canny edges is shown to degrade
the performance. This is because the edge-to-edge transi-
tion is lacking any guidance. This subsequently makes the
local correction fail. Thus, this experiment shows the im-
portance of consistent global guidance for intrinsic image
decomposition.

Figure 6. Comparison of the proposed network with sota methods.
In the image, the tree trunk has textures and has a hard negative il-
lumination transition on the base. It is shown that the proposed
method can both recover from hard negatives and also prevent
shadow-reflectance misclassifications in the shading component.

Influence of Local Refinement: The last refinement
module is removed and only the edge guided module is
kept. This makes the decoder module to handle both global
and local consistencies in the same parameter space. The re-
sult for this experiment is shown in Tab. 1. The results show
that there is an improvement for the explicit global & local
parameter disentanglement. This shows that the global and
local context separation is an integral part of the proposed
network architecture.

Influence of Attention Layers: In this experiment, all the
attention layers are removed from the network and replaced
by direct connections. The result of this experiment is also
shown in Tab. 1.

The results (w/o Attention Layers compared to Pro-
posed) show that the inclusion of the attention mechanism
improves the performance. The metrics (LMSE & DSSIM)
demonstrate improvements indicating that the attention lay-
ers are beneficial for local corrections. This means that
there is no single uniform transformation to be applied to
all pixels in an image to recover the intrinsic components.
A detailed study supporting this hypothesis can be found in
the supplementary material.

4.2. Evaluations & Results

Comparison on NED Dataset: In this experiment, the
proposed network is compared to state-of-the-art (sota)
methods. All presented methods are re-trained using the
NED dataset. For a fair comparison, the same train and test
split are used as well as the optimum parameters as men-
tioned in the respective papers. Recent unsupervised meth-
ods of [30], [29] and [51] are also included for comparison.
The numerical results are shown in Tab. 2 and the visual
results in Fig. 6.

The results show that the proposed method outperforms
the baselines for all metrics. As illustrated in Fig. 6, the pro-
posed method recovers the intrinsics more robustly. For ex-
ample, the proposed method is able to disentangle the shad-
ows at the base of the tree, while other methods suffer from



Reflectance Shading
MSE LMSE DSSIM MSE LMSE DSSIM

Supervised methods
Color Retinex [20] 0.0114 0.1204 0.3280 0.0193 0.2334 0.3515

IIW [8] 0.0095 0.1343 0.2098 0.0111 0.1861 0.3511
Direct Intrinsics [34] 0.0073 0.1205 0.3756 0.0065 0.1798 0.3843

IntrinsicNet [5] 0.0035 0.0449 0.2367 0.0037 0.0791 0.2110
ShapeNet [42] 0.0053 0.0597 0.2516 0.0050 0.0910 0.2186

Unsupervised methods
USI3D [30] 0.0081 0.0360 0.1886 0.0143 0.0608 0.2140
IIDWW [29] 0.0149 0.0447 0.2229 0.0175 0.0698 0.2346

InverseRenderNet [51] 0.0478 0.0642 0.2751 0.0505 0.2597 0.3382
Ours 0.0015 0.0289 0.0688 0.0018 0.0489 0.1005

Table 2. Numerical evaluation comparison between the proposed
architecture and sota baselines on the NED dataset. The first group
are supervised methods, second group are unsupervised methods
and the final group is the our proposed methods.

hard negatives resulting in discoloured reflectances.

MIT Intrinsics Dataset: The proposed network is fine-
tuned on the MIT Intrinsics dataset. The quantitative num-
bers are shown in Tab. 3, while visuals are shown in Fig. 7

Figure 7. Qualitative evaluation of the proposed network on the
MIT dataset. The proposed method is the only method able to
disentangle shadows from reflectance cues.

The results show that the proposed method outperforms
other baseline methods for all the metrics. The method is
able to recover the intrinsic components robustly. For ex-
ample, the shading map obtained by IntrinsicNet on the rac-
coon completely misses the shadow. For our method, the
reflectance of the paper is much smoother.

MPI Sintel Dataset: The results on the MPI Sintel
Dataset are given in Tab. 4.

The proposed method generally outperforms, on aver-
age, all other methods except for the LMSE metric. Partic-
ularly, the proposed method outperforms other methods for
the DSSIM metric for both components and hence robustly

Reflectance Shading
MSE LMSE DSSIM MSE LMSE DSSIM

Supervised methods
SIRFS [2] 0.0129 0.0572 - 0.0066 0.0309 -

Gehler et al. [18] 0.0065 0.0393 - 0.0051 0.0282 -
Zhou et al. [55] 0.0252 - - 0.0229 - -

Color Retinex [20] 0.0084 0.0447 - 0.076 0.0343 -
Direct Intrinsics [34] 0.0277 0.0585 0.1526 0.0154 0.0295 0.1328

ShapeNet [42] 0.0278 0.0503 0.1465 0.0126 0.0240 0.1200
CGIntrinsics [28] 0.0221 0.0349 0.1739 0.0186 0.0259 0.1652
CGIntrinsics [28]
(MIT Finetuned) 0.0167 0.0319 0.1287 0.0127 0.0211 0.1376

ParCNN [52] 0.0109 0.0462 0.0929 0.0086 0.0537 0.0999
CasQNet [31] 0.0091 0.0212 0.0730 0.0081 0.0192 0.0659

IntrinsicNet [5] 0.0104 0.0854 - 0.0304 0.2038 -
Baslamisli et al. [6] 0.0060 0.0438 - 0.0069 0.0418 -

Unsupervised methods
STAR [49] 0.0137 0.0614 0.1196 0.0114 0.0672 0.0825
USI3D [30] 0.0156 0.0640 0.1158 0.0102 0.0474 0.1310
IIDWW [28] 0.0126 0.0591 0.1049 0.0105 0.0457 0.1159

InverseRenderNet [51] 0.0234 0.0573 0.1148 0.0186 0.0765 0.1276
Ours 0.0028 0.0136 0.0340 0.0035 0.0183 0.0493

Table 3. Quantitative evaluation comparison of the proposed ar-
chitecture on the MIT Intrinsic Dataset [20].

Reflectance Shading
MSE LMSE DSSIM MSE LMSE DSSIM

Color Retinex [20] 0.0606 0.0366 0.2270 0.0727 0.0419 0.2400
Lee et al. [25] 0.0463 0.0224 0.1990 0.0507 0.0192 0.1770

SIRFS [1] 0.0420 0.0298 0.2100 0.0436 0.0264 0.2060
Chen et al. [13] 0.0307 0.0185 0.1960 0.0277 0.0190 0.1650

Direct Intrinsics [34] 0.0100 0.0083 0.2014 0.0092 0.0085 0.1505
Fan et al. [16] 0.0069 0.0044 0.1194 0.0059 0.0042 0.0822

Ours 0.0015 0.0080 0.0399 0.0105 0.0507 0.0508

Table 4. Standard numerical evaluation comparison of the pro-
posed method on the MPI Sintel Dataset [12] (scene split).

preserves global and local structural components. From
the outputs (included in the supplementary material), it is
shown that the shading computed by the proposed method
has a lower pixel scale but is structurally consistent. This
explains the lower performance on other metrics compared
to the DSSIM metric (for shading). The MSE and LMSE
metrics are more sensitive to outliers and optimise to a
smaller Euclidean distance. Additional details can be found
in the supplementary material.

IIW Dataset: For this experiment, the proposed network
is finetuned on the IIW dataset. The results for the network
are given in Tab. 5. Visuals are shown in Fig. 8.

Due to the nature of the ground truth provided by this
dataset, the proposed method can only use the ordinal
loss [8] for finetuning on the train set. The original pro-
posed network is trained on the MSE and perceptual losses
only. However, it is still able to perform comparatively.
GLoSH [54] is the best performing method. However, it
needs both the normal and lighting ground truth for super-
vision. Fig. 8 shows flatter reflectance cues (on the wall
and bed), insensitive to illumination patterns (i.e. shadows
and shading). [27] needs supervision on normals, depth,



Methods WHDR (mean) WHDR (Outdoors only)
Direct Intrinsics [34] 37.3 -
Color Retinex [20] 26.9 -
Garces et al. [17] 25.5 -
Zhao et al. [53] 23.2 -

IIW [8] 20.6 21.7
Nestmeyer et al. [36] 19.5 -

Bi et al. [9] 17.7 -
Sengupta et al. [38] 16.7 -

Li et al. [27] 15.9 21.3
CGIntrinsics [28] 15.5 23.1

GLoSH [54] 15.2 -
Fan et al. [16] 15.4 21.6

Ours 21.3 20.8
Fan et al. * [16] 14.45 20.2

Our* 18.5 18.4

Table 5. Performance in terms of the WHDR metric. The pro-
posed method is trained with general image learning losses. When
testing it only on outdoor images, the proposed method shows
competitive performance. * denotes outputs post-processed with a
guided filter.

Figure 8. Results of the proposed method compared with CGIn-
trinsics [28] and [27]. The proposed method shows comparable
performance with other methods, despite being trained primarily
on outdoor garden images.

roughness and lighting, in addition to the reflectance and
shading and has 7 separate training stages. The reflectance
cues are missing details, while the shading cues are quite
blurry. The proposed network is trained only on outdoor
images (domain difference). To test the domain related per-
formance, the WHDR metric is applied to only the outdoor
images in the test set. It is shown that the proposed method
performs best.

Trimbot Dataset: To test the generalisation of the pro-
posed method to real world scenarios, results on the Trim-

bot Dataset [37] are shown in Fig. 9.
R
e�lectance
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Ours [51] [29]Input

R
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Shading
R
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Figure 9. Results of the proposed method on the Trimbot dataset.
The proposed method is trained and finetuned on a fully synthetic
dataset, yet it can recover proper reflectance by removing both soft
and hard illumination patterns. The supplementary materials con-
tain additional results on in-the-wild images.

5. Conclusion

In this paper, an end-to-end edge-driven hybrid ap-
proach has been proposed for intrinsic image decomposi-
tion. Edges are based on illumination invariant descriptors.
To handle hard negative illumination transitions, a hierar-
chical approach has been taken including global and lo-
cal refinement layers. The global guidance was integrated
through a reflectance and shading edge formulation. For
the local guidance, the encoded CCR features were used as
a prior to the local refinement module.

Based on extensive ablation study and large scale ex-
periments, is has been shown that (1) it is beneficial for
edge-driven hybrid IID networks to make use of illumina-
tion invariant descriptors, (2) separating global and local
cues into different modules indeed helps in improving the
performance of the network both qualitatively and quantita-
tively, (3) the proposed method obtains sota performance in
recovering the intrinsics, and (4) it is able to generalise well
to real world images.
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[33] A. Meka, M. Zollhöfer, C. Richardt, and C. Theobalt. Live
intrinsic video. ACM TOG, 2016. 1

[34] T. Narihira, M. Maire, and S. X. Yu. Direct intrinsics: Learn-
ing albedo-shading decomposition by convolutional regres-
sion. In ICCV, 2015. 1, 2, 5, 7, 8

[35] T. Narihira, M. Maire, and S. X. Yu. Learning lightness from
human judgement on relative reflectance. In CVPR, pages
2965–2973, June 2015. 2

[36] Thomas Nestmeyer and Peter V. Gehler. Reflectance adap-
tive filtering improves intrinsic image estimation. CoRR,
abs/1612.05062, 2016. 8



[37] T. Sattler, R. Tylecek, T. Brox, M. Pollefeys, and R. B.
Fisher. 3d reconstruction meets semantics - reconstruction
challange 2017. In Int. Conf. Comput. Vis. Workshop, 2017.
5, 8

[38] Soumyadip Sengupta, Jinwei Gu, Kihwan Kim, Guilin Liu,
David W. Jacobs, and Jan Kautz. Neural inverse rendering of
an indoor scene from a single image. CoRR, abs/1901.02453,
2019. 3, 8

[39] S. Shafer. Using color to separate reflection components.
Color Research and App., pages 210–218, 1985. 3

[40] L. Shen, P. Tan, and S. Lin. Intrinsic image decomposition
with non-local texture cues. In CVPR, 2008. 2

[41] L. Shen and C. Yeo. Intrinsic images decomposition using
a local and global sparse representation of reflectance. In
CVPR, 2011. 2

[42] J. Shi, Y. Dong, H. Su, and S. X. Yu. Learning non-
lambertian object intrinsics across shapenet categories. In
CVPR, 2017. 1, 2, 7

[43] Zhixin Shu, Ersin Yumer, Sunil Hadap, Kalyan Sunkavalli,
Eli Shechtman, and Dimitris Samaras. Neural face editing
with intrinsic image disentangling. CoRR, abs/1704.04131,
2017. 1

[44] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
5

[45] T. Wada, H. Ukida, and T. Matsuyama. Shape from shading
with interreflections under proximal light source-3d shape
reconstruction of unfolded book surface from a scanner im-
age. In ICCV, 1995. 1

[46] Y. Weiss. Deriving intrinsic images from image sequences.
In ICCV, 2001. 1, 2

[47] Saining ”Xie and Zhuowen” Tu. Holistically-nested edge
detection. In ICCV, 2015. 4

[48] Chen Xu, Yu Han, George Baciu, and Min Li. Fabric im-
age recolorization based on intrinsic image decomposition.
Textile Research J., 89(17):3617–3631, 2019. 1

[49] J. Xu, Y. Hou, D. Ren, L. Liu, F. Zhu, M. Yu, H. Wang, and
L. Shao. Star: A structure and texture aware retinex model.
IEEE TIP, pages 5022–5037, 2020. 3, 7

[50] G. Ye, E. Garces, Y. Liu, Q. Dai, and D. Gutierrez. Intrinsic
video and applications. ACM TOG, 2014. 1

[51] Y. Yu and W. A. P. Smith. Inverserendernet: Learning single
image inverse rendering. In CVPR, 2019. 3, 6, 7

[52] Y. Yuan, B. Sheng, P. Li, L. Bi, J. Kim, and E. Wu. Deep
intrinsic image decomposition using joint parallel learning.
In Comput. Graph. Int. Conf., 2019. 7

[53] Q. Zhao, P. Tan, Q. Dai, L. Shen, E. Wu, and S. Lin. A
closed-form solution to retinex with nonlocal texture con-
straints. IEEE TPAMI, 34(7):1437–1444, July 2012. 8

[54] Hao Zhou, Xiang Yu, and David W. Jacobs. Glosh: Global-
local spherical harmonics for intrinsic image decomposition.
In ICCV, October 2019. 2, 7, 8

[55] Tinghui Zhou, Philipp Krähenbühl, and Alexei A. Efros.
Learning data-driven reflectance priors for intrinsic image
decomposition. CoRR, abs/1510.02413, 2015. 7


	. Introduction
	. Related Work
	. Methodology
	. Illumination Invariant Gradients
	. Network Architecture & Details
	. Loss Functions

	. Experiments and Results
	. Ablation Study
	. Evaluations & Results

	. Conclusion

