University of Amsfterdam
Theory of Computer Science

Molecular Scripting Primities with Functies

B. Diertens

Report TCS1504 June 2015

B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series

Molecular Scripting Primitiveswith Functions
Bob Diertens

section Theory of Computer Science, Faculty of Sciencejetitly of Amsterdam

ABSTRACT

We etend the basic instruction set MSPea (Molecular Scripting Priesitevith
evd/apply complex) with functions. The functions are compiled and encoded as
molecules, which can bevauated in a stepwise mannerhe implementation allows for
recursve functions calls as well as the concurrexdcaition of functions. The purpose is

to aid in further study of functions and thexeeutions and in education.

Keywords: program algebra, simulationyatuation, functions

1. Introduction

In [1], Program Algebra (PGA) is introduced. Here, simple program notationsvanevgiich are build up

from primitive instructions with as parameter a set of basic instructions that perform some operation on a
ervironment. In[3] the derelopment of a toolset for PGA is described. This toolset contains among others
a dmulator and sets of primite instructions and sets of basic instructions. A particular set of basic
instruction are the Molecular Programming Privasi (MPP) described in [2] and operate on an
environment called Molecular Dynamics.

In [4] we introduced the basic instructions set MSP (Molecular Scripting Res)itihat is based on MPP
This basic instruction set is an attempt to endle task of programming in the PGA setting a little bit
easier In the same report we also introduced the basic instruction MSPea (MSRakighaapply) as an
extension of MSP This variant contains instructions to compile a program contained in a string to a
molecule and tovaluate the molecule.

In [5] we described the implementation for the simulation of tha iestruction from MSPea.This
implementation allavs for stepwise simulation of theauation of molecular structures. In this report we
describe the>dension of MSP with functions (MSPfunc). The implementation is based owdhetion
instruction from MSPea. It folles the commonly used computational model by compilers for imperati
programming languages.

2. PGA Toolset

In this section we ge a $ort description of parts of the PGA Toolset that are essential for this report.

2.1 Simulator

The modular structure of the simulator is shown in Figurdt s a generic simulator in that the terms
Primitive and Basic are parameters of the system and represent thevieimitd basic instruction sets the
simulator must be gen as aguments at startup. In this modular structure the module Kernel takes care of
the actual simulation.The module Primitie mntains all operations on an instruction of the prirmaiti
instruction set.This module use the module Basic for operations on an instruction of the basic instruction
set. Themodule Basic uses the module Basiccore faction of the basic instructions his splitting of

the modules Basic and Basiccore is necessary for the parallel simulator of thedeGét. T Seeral
programs can be loaded into the simulaorage and switching between them is taken care of by the

Basiccore

Input Basic TUI

D

Primitive ProgramBas

Kernel

simulator

Figure 1. Model of the simulator

module ProgramBase.

2.2 MSla

We gve an orerview of the instructions in the basic instruction set MSPea.

conpi |l e extfocus
Compiles the string selected byt f ocus into a molecule and assigns itéat f ocus. Itis
capable of compiling strings representing programs in the premiistruction set PGLA with
MSP as basic instruction set. Retufred se when there are errors detected.

apply extfocus
If ext f ocus is a string, it is wecuted as a basic instruction and returns the value returned by the
basic instruction. And otherwise it fails.

eval extfocus
If extfocus is a string, it compiles the string into a molecule, after which the molecule is

evduated. Ifextfocus is an atom, it is\@luated. Andotherwise ealuation fails. It does no
assignment of the molecule éxt f ocus like conpi | e does. Theeturned value oéval is
the returned value of the lastaluated basic instruction.

Compilation results in a molecule that represents a null-terminated list of instructions connewoted by
fields. Theinstructions are represented by an atom with additional fi&dsow follows a list of possible

instructions.
end
This instruction consists of an atom witheamd field, and stops thevaluation.

goto
Consists of an atom withgot o field which selects the next instruction to beleated.

test
Consists of an atom with the fieldgst , basi ¢, T, and F. On the returned value of the basic
instruction, selected by th®asi c field, either theT (t r ue) field or theF (f al se) field selects
the next instruction to bevaluated.

basic
Consists of an atom with the figbéhsi ¢ which selects a basic instruction to aleated. Inthe

case the basic instruction is arald nstruction, the filed basic points to an atom that has a field

evd that points to a string containing what has to\muated. Inthe other cases, the field basic
points to a string containing the basic instructi@valuation continues with the next instruction
in the list.

The basic instructions are represented by a string, or in the casevaf arsguction the basic field points

to an atom that has a fieldiak that points to a stringFor compilation the basic instruction may be
arything, but for galuation it has to be a MSPea instruction. Valeation, if a string is not recognized as a
MSPea instructiofi al se is returned as the result of this instruction.

Consider the following program, that counts until 10 and then stops:

x = 0;
incr Xx;
+ x == 10;
'.

\\#3
We a@an put this program in a string with the instruction (note the escaping of the backslashes):
count = "x = 0; incr x; + x == 10; !; \\\\#3"

Compilation ofcount gives the molecule in Figure 2.

"x == 10"

basic:str
basic:str "x=0"

M;

Figure 2. Result of compilation of ount

3. M SP with functions

In this section we describe thetension of MSP with functions and its implementation in the PG@{SEt.

The functions are based on thesleation of molecular structures from MSPeWe wnsider such a
molecular structure a function without parameters, loaaiables, and returnalue. Therecursve
evduation of molecular structures is implemented using a sta@ibis stack is located in the fluid together
with the molecular structurede an use the stack in the implementation of environments in which the
functions are xecuted.

3.1 Instructions

To define functions in a program MSPfunc has the following instructions.

function nane(paraneters) body

function nane(paraneters):type body
Defines the functionane with optionalpar anet er s and optional returbhype. In the case of
no return type or when the return type is of type atoype is left out (including the '’). The
body must be string denoting the body of the function in the programming language PGLA with
MSPfunc. Thebody is compiled into a molecule and assigned to the fatase. The
parameters are added to this moleculée par anet er s must be a comma separated list in
which each parameter is denoted as eitltent i fi er ori dentifi er:type. Returns &lse
when there are errors detected in the compilation of the function.

return object

return val ue
Sets the value for the function to be returned in a funcation Tadr et ur n statement does not

end the recution of the function. Returns false when a value of the wrong type is returned.

In the body of a function a parameter can be references>bydenti fi er. Local variables can be
added with<>. +i denti fi er and<>.identifier:type, and referenced in the same way as the
parameters. The> indicates the environment in which the functionxsceited. Theparameters as well
as the arguments are fields in this environment.

A function can be called with one of the following instructions.

nane(ar gunent s)
Executes the functionanme by binding thear gunent s to the parameters andauating the
molecule in the focus:ane. Returns false when an error occurred in the binding of the
arguments to the parameters, and otherwise returns the return value of thellegee@ basic
instruction.

obj ect =nane(ar gunment s)
Executes the functionane by binding thear gunent s to the parameters andauating the
molecule in the focusmane. After execution the value in the return statement is assigned to
obj ect. Returns &lse when an error occurred in the binding of the arguments to the
parameters, and returns false when the return value of thevdhgtted basic instruction isise,
and otherwise it returns the returslwe of the assignment of the returned value by the function to
obj ect.

3.2 Implementation

The implementation for MSPfuncs consists ofwa égtensions of the implementation for MSPea.

3.2.1 Compilation

The compiler has the possibility to hook in a routine for adding basic instrucBoia$. a routine can mek
different settings for the basic fields that normally contain the basic instructions as a&tendiferent
settings are necessary for th@leation routine. For MSPfunc the follaving settings for the field basic are
made.

function call
The field basic points to an atom that has a field call that points to an atom containing the fields

func of the type string and args of the type string.

function call with return value
The same as afse, but the field call has an extra field ret of the type string.

return
The basic field points to an atom which ahs a field return of type string.

Consider the following program that defines the function add3.

function add3(x:int, y:int, z:int):int
<> +t:int; <>t = add(<>.x, <>.X);
<>t = add(<>.t, <>.z); return <>.t;

Execution of this program results in the molecule shown in Figure 3.

3.2.2 Evaluation

The evaluation lernel has the possibility to hook in a routine fealeating basic instructionsWe wse this
construction to hook in a routine that égkcare ofveluating the instructions from the our basic instruction
set MSPfunc.To support this galuation the following instructions are added to the core.

func:str "add”
<>t func:str "add”
basic:str <> +tint”
args:str . .
add3 <>.X,<>.X ret:str "> "
) next
par:str args:str
<> <> 2"

"x:int,y:int,z:int" next
return:str Anty:nt,z:

basic ° return:str

"es

Figure 3. Result of the definition of functiondd3

ADDTYPEPAR <focus:function> <string:type> <list:parameters>
Adds type and parameters to the molecule of the compiled function.

BINDPAR <focus:environment> <focus:function> <list:arguments>
Binds arguments for the function to the parameters and making theitabal in the
environment.

BINDPARSTR <focus:environment> <focus:function> <extfocus:arguments:string>
As abwe, but nov the arguments are taking from a string.

SETFUNCRETURN <focus:environment> <extfocus:value>
Sets the return value for a function.

GETFUNCRETURN <focus:environment> <extfocus:variable>
Gets the return value for a function.

The abee instructions tak& care of the necessary replacement of '<>’ occurences with a reference to the
current environment in which the function iseuted.

4. Conclusions

We have described the basic instruction set MSPfunc and its implementation in the &dgetT The
functions can be simulated in a stepwise manner by the simulators in the B@getT The
implementation allows for recux& functions calls and for the concurremeeution of functions. As the
implementation follows the commonly used computational model by the compilers for iwgerati
programming languages, it can be used for the further study of functions ancéhetiom as well as for
educational purposes.

References

[1] J.A.Bemgstra and M.E. Loots, “Program algebra for sequential tatteiyrnal of Logic and Algbraic
Programming vol. 51, no. 2, pp. 125-156, 2002.

[2] J.A.Bemstra and I. Bethk “Molecular dynamics, Journal of Logic and Algbraic Programming
vol. 51, no. 2, pp. 193-214, 2002.

[3] B. Diertens, ‘A Toolset for PGA, report PRG0302, Programming Research Group vesity of
Amsterdam, 2003.

[4] B. Diertens, “Molecular Scripting Primites;” report PRG0401, Programming Research Group -
University of Amsterdam, 2004.

[5] B. Diertens, “Simulation of the Eval Instruction from MSPeegport TCS1503, section Theory of
Computer Science - Urndrsity of Amsterdam, 2015.

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

I

[TCS1502] J.A.Bergstra,Architectural Adequacy and Evolutionary Adequacy as @btarics of a Candidate
Informational Mong, section Theory of Computer Science - nsity of Amsterdam, 2015.

[TCS1501] B. Diertens, Composition in the Function-Behavie8tructue Famework, section Theory of
Computer Science - Urnrsity of Amsterdam, 2015.

[TCS1301v2] B.Diertens,Refinement in the Function-Behavigbtructue Framewnork (version 2)section Theory
of Computer Science - Urersity of Amsterdam, 2015.

[TCS1410v2] J.ABemgstra and A. Ponsdivision by Zeo in Common Meadows (version Zection Theory of
Computer Science - Urndrsity of Amsterdam, 2014.

[TCS1414] J.A.Bergstra,From Sftwae Crisis to Informational Moggsection Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1413] J.A.Bemgstra and |. Bethk Note on Rraconsistency on the Logic ofa€tions, section Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

[TCS1412] J.ABemstra, I. Bethk, and A. PonseRekenen-Informaticasection Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1411] J.A.Bergstra,Bitcoin: not a Curency-lile Informational Commoditysection Theory of Computer
Science - Uniersity of Amsterdam, 2014.

[TCS1409v2] J.ABemgstra and A. Ponsdhree Datatype Defining Rewrite Systems for Datatypes afdateach
exending a Datatype of Natals (version 2)section Theory of Computer Science - \unsity of
Amsterdam, 2014.

[TCS1410] J.A.Bemstra and A. Ponsdivision by Zeo in Common Meadowssection Theory of Computer
Science - Uniersity of Amsterdam, 2014.

[TCS1407v3] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numbes (version 3) section Theory of Computer Science - nsity of Amsterdam, 2014.

[TCS1409] J.ABemgstra and A. Ponsdhree Datatype Defining Rewrite Systems for Datatypes afdateach
exending a Datatype of Natals, section Theory of Computer Science - insity of Amsterdam,
2014.

[TCS1406v3] J.A.Bergstra, Bitcoin and Islamic Fance (version 3)section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1407v2] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numbes (version 2) section Theory of Computer Science - nsity of Amsterdam, 2014.

[TCS1408] J.A.Bergstra,Bitcoin: Informational Mong en tet Einde van Gewoon Geldgction Theory of
Computer Science - Urndrsity of Amsterdam, 2014.

[TCS1407] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numberssection Theory of Computer Science - insity of Amsterdam, 2014.

[TCS1406v2] J.A.Bergstra, Bitcoin and Islamic Fance (version 2)section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1406] J.A.Bergstra,Bitcoin and Islamic bance, section Theory of Computer Science - \émnsity of
Amsterdam, 2014.

[TCS1405]

[TCS1404]

[TCS1403]

[TCS1402]

[TCS1401]

[TCS1301]

[TCS1202]

[TCS1201]

[TCS1102]

[TCS1101]

[TCS1001]

J.ABergstraRelenen in een ConservatievehBpwet Wide,section Theory of Computer Science -
University of Amsterdam, 2014.

J.A.Bergstra,Division by Zeo and Abstract Data Vipes,section Theory of Computer Science -
University of Amsterdam, 2014.

J.A.Bemgstra, |. Bethk, and A. Ponsd-quations for Formally Real Meadowsection Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

J.ABemstra and WP. Weijland, Bitcoin, a Mong-like Informational Commaoditysection Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

J.A.Bergstra, Bitcoin, een "monelike informational commodity"section Theory of Computer
Science - Uniersity of Amsterdam, 2014.

B. Diertens, The Refined Function-Behavie8tructue Framework, section Theory of Computer
Science - Uniersity of Amsterdam, 2013.

B. Diertens, From Functions to Object-Orientation by Abattion, section Theory of Computer
Science - Uniersity of Amsterdam, 2012.

B. Diertens, Concurent Models for Object Executiorsection Theory of Computer Science -
University of Amsterdam, 2012.

B.Diertens,Communicating Concurrent Functiorsgction Theory of Computer Science - \énsity
of Amsterdam, 2011.

B. Diertens, Concurient Models for Function Executiosgction Theory of Computer Science -
University of Amsterdam, 2011.

B.Diertens,On Object-Orientationsection Theory of Computer Science - nsity of Amsterdam,
2010.

The abee reports and more arealable through the website: ivi.fnwi.uva.nl/tcs/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XG Amsterdam
the Netherlands

ivi.fnwi.uva.nl/tcs/

