University of Amsfterdam
Theory of Computer Science

Composition in the Function-Behaviour-
Structure Framaork

B. Diertens

Report TCS1501 April 2015



B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series



Composition in the Function-Behaviour-Structure Framewor k
Bob Diertens

section Theory of Computer Science, Faculty of Scienceetitly of Amsterdam

ABSTRACT

We introduce composition in the function-betaur-structure frameork for design, as
described by John Gero, in order to deal with corifyle We do his by connecting the
frameaworks for the design of seral models, in which one is constrained by the others.
The result is a frameork for the design of an object that supports modularithis
frameawork can easily be extended for the design of an object with more than one layer of
modularity.

Kewords:design model, composition, constraining, software design

1. Introduction

In software engineering, dealing with complexity is a major issue and it is the ground fosoftarare
development methodologies. Most of these methodologiegehe do not take into account the nature and
process of design. Each methodology has its success stotiesicbcan seldom relate it to a more abstract
framawork for design. A well-known method for dealing with complexity in other engineering disciplines

is modelling. By making a model one canveawut some detail and concentrate on the bigger picture.
Even a model can be too complicated. In previous work [1] we introduced refinement to deal with this
complexity In this article we deal with complexity through composition. This results in a design
consisting of seeral components that interact with each aotlaed in which each component has a separate
framework for design.

Although modularity is applied in software engineering, the problem remains that the desigglis lar
focused on a too W leve of abstraction. Thiss caused by the fact that software is build cheaply can

be done wer and over again. Thismakes it possible to test on the lowestdeand often results in a race to
the lowest lgel to start testing early in the design processstead of introducing modularity on a high
level, modules are introduced on amdevd first. Development of software is done with a focus on
building on these v levd modules. Inthat process, the highenkt design is discarded and complexity is
taken into the lower ie=ls instead of dealing with it on the highevéls of design.

In our view it is better to incorporate methodologies that fallthe nature and process of design, and start
on a high lgel. An important factor in this is to kmowhat design really is. John Gero has described a
general frameork for design [2] that is based on function, bebar, and structure of the object to be
designed. Thidramevork, havever, omits composition xplicitly. For a thorough understanding and
execution of the design process it is better to enadkmposition explicit in the design process.

In section 2 we g an overview of the function-behaour-structure frameork for design. We introduce
composition in this franweork in section 3 in order to support modularity explicitly.

2. The Function-Behaviour-Structure Framewor k

In [2] Gero describes a framverk for design that has sufficient power to capture the nature of the concepts
that support design processes. This fraork, that irvolves the relation between function, belbar, and
structure of a design, can be applied tg angineering discipline.Together with Kannengiesse®ero
describes the framark in [3] in relation with the environment in which designing takes place, accounting
for the dynamic character of the cortteWe gve an oserview of the elements and processes that form the
function-behaviour-structure (FBS) framark.



The FBS frameork elements has the following elements.

function ) The set of functions expressing the requirements and olgedtat must
be realized by the object.

structure §) Describes the components of the object and their relationships.
expected behaviouB;) The set of expected behaviours to fulfill the functian
structure behavioul;) The set of behaviours the struct@exhibits.

description D) The description of the design, giving all the informationuidathe object,
and what more there is to km@bout the design.

These elements are connected in the freorie by processes (Figure 1).

m
= ﬂ_\;s_»D

Be =<+—» B

Figurel. The FBS fram&ork
An outline of the process of the FBS framoek is given below.

formulation & - Bg) Transforming the functior into behaviour that is expected from the

object.

synthesisB, —» S) Transforming the expected behaviour into a solution intendedHibit
this behaviour.

analysis § - By) Deriving of the actual behaviour from the synthesized structure.

evduation B, « By) Comparing the beléour derived from the structure with thexpected
behaviour.

documentation§ -~ D) Producing the design description for the constructing or nzentwfing of
the object.

In addition the framgork contains reformulation processes that are carried out, based on the outcome of
the evaluation of behaviours.

structure reformulationy - S)
Changing of the structure in order to obtain a behaviour that is more in line
with the expected behaviour.

behaviour reformulation - By)
Adjusting of the expected behaviour that fits the required function and is
more in line with the behaviour of the structure.

function reformulation$ — F)
Changing of the function due to a better insight in the problem.

3. Composition of FBS frameworks

To capture modularity in design (modular design) we compose a\rark€C—-FBS) out of several FBS
framavorks. We cnsider the design of the modds, M* and M2, where the latter tw are models for
components of modeé¥l. All models hae their own design procesEBS, FBS', and FBS’, each of which



can be described by the functions-behaviour-structure frarkdor design, see Figure 2.

In the figure the relations between the framks are indicated. The function of the components is
determined by the description for the mobiel and the structures for the components are to be part of the
structure for modeM.

F S
\ / / v
B. «<—— B

P
FL 4 . ol > D! > D2

~ \(Bz/

Bel <+ B!

Figure 2. Relations between design frawarks for three models

We like to integrate the three design processes so that the processes that play a role in the composition
become clear and that immidiate feedback cae f@#ce between the particular fraweks. In the
following sections we describe the processes that integrate the threevdramimto one.

3.1 Decomposition

Once an acceptable structueis determined, the design forveeal of the components can be done
separately For the design of the components, the functions for each of the componeatd hae
determined.

function decomposition{ €, D} — F')
As the structures consists of the components and their interaction for medeghe description
D contains the functionality for the componenEurthermoreF may contain functionality not
contained inD, but that is to be taken into account in the design of the components.

This decomposition of the functions is indicated in Figure 3.

F > S
NP

Fl - St » D! > D?

~N \H/BZ/

B! «—— B!

Figure 3. Decomposition processes in the design fraonk



3.2 Reformulation

Each FBS framework in the C-FBS framewvork contains the normal reformulation processeswéer,
reformulations in the frameorks FBS' andFBS® have © be sich that the elements stay in accordance with
the functionF and descriptiorD of the FBSframewnork. Whenthat is not possible gmore, the design for
the component has to be rejected and one of the following reformulation processes leaddodak

structure reformulation§ — S)
When reformulation ofS is not possible anymore to obtain an acceptable structure for the
component, reformulation & has to tak pgace.

function reformulationk' - F) .
When a reformulation of the part &f that originates fronF is necessarthis has to be done
through reformulation oF directly in order to keep a consistent description of the functionality
throughout th&€-FBSframenork.

This reformulation processes are indicated in Figure 4.

/\Q

%
C /\Q
N

1/\ )
T~

! e— le Be2 -— Bs2

Figure 4. Reformulation processes in the design framr&

3.3 Intgyratation

Once the design of a component is complete it has to lrated with the eerall design. The follwing
processes describe the integration of designs.

documentation integration[{} — D)
The description for each of the components is integrated with the description for the whole
object.

These integration processes are indicated in Figure 5.

4. Conclusions

We introduced composition in the FBS framak by connecting franweorks for the design of seral
models. Theresulting composite framerk can be used for the further decomposition of the design
framework, resulting in more hels of modularity in the desigriwe an turn the composite framverk into

the original framevork by considering the decomposition processes as reformulations and abstract from the
details of the decomposition processes. In the compositionvirata¢he modularity in the design is made
explicit.



/\Q

Mif?k
C/ /\x
S > D F\ ’//\/S > D

1/\
T~

Bel «— B! Be2 -— BS2

Figureb5. Integration processes in the design freuork
Acknowledgements

Many thanks to Alban ponse for his proofreading and feedback.

References

[1] B. Diertens,Refinement in the Function-Behaviggructue Framework (version 2)section Theory
of Computer Science - Urersity of Amsterdam, 2015.

[2] J.S.Gero, “Design Prototypes: A Knowledge Representation Scheme for DesigMagazine vol.
11, no. 4, pp. 26-36, 1990.

[3] J.S.Gero and N. KannengiesséiThe Situated Function-Belimr-Structure Framegork,” Design
Studiesvol. 25, no. 4, pp. 373-391, 2004.






Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1301v2] B.Diertens,Refinement in the Function-Behavigbtructue Framework (version 2)section Theory
of Computer Science - Urersity of Amsterdam, 2015.

[TCS1410v2] J.ABemgstra and A. Ponsdivision by Zeo in Common Meadows (version Zection Theory of
Computer Science - Urndrsity of Amsterdam, 2014.

[TCS1414] J.A.Bergstra,From Sftwae Crisis to Informational Moggsection Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1413] J.A.Bemstra and |. Bethk Note on Rraconsistency on the Logic ofa€tions, section Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

[TCS1412] J.ABemstra, I. Bethk, and A. PonseRekenen-Informaticasection Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1411] J.A.Bergstra,Bitcoin: not a Curency-lile Informational Commoditysection Theory of Computer
Science - Uniersity of Amsterdam, 2014.

[TCS1409v2] J.ABemgstra and A. Ponsdhree Datatype Defining Rewrite Systems for Datatypes afdateach
exending a Datatype of Natals (version 2)section Theory of Computer Science - \unsity of
Amsterdam, 2014.

[TCS1410] J.A.Bemstra and A. Ponsdivision by Zeo in Common Meadowssection Theory of Computer
Science - Uniersity of Amsterdam, 2014.

[TCS1407v3] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numbes (version 3) section Theory of Computer Science - nsity of Amsterdam, 2014.

[TCS1409] J.ABemgstra and A. Ponsdhree Datatype Defining Rewrite Systems for Datatypes afdateach
exending a Datatype of Natals, section Theory of Computer Science - insity of Amsterdam,
2014.

[TCS1406v3] J.A.Bergstra, Bitcoin and Islamic Fance (version 3)section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1407v2] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numbes (version 2) section Theory of Computer Science - nsity of Amsterdam, 2014.

[TCS1408] J.A.Bergstra,Bitcoin: Informational Mong en tet Einde van Gewoon Geldgction Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

[TCS1407] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numberssection Theory of Computer Science - insity of Amsterdam, 2014.

[TCS1406v2] J.A.Bergstra, Bitcoin and Islamic Fance (version 2)section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1406] J.A.Bergstra,Bitcoin and Islamic bance, section Theory of Computer Science - \émnsity of
Amsterdam, 2014.

[TCS1405] J.ABergstraRelenen in een ConservatievehBpwet Wide,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1404] J.A.Bergstra,Division by Zeo and Abstract Data yipes,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1403] J.A.Bemstra, |. Bethke, and A. Ponsd;quations for Formally Real Meadowsection Theory of
Computer Science - Urdrsity of Amsterdam, 2014.



[TCS1402] J.ABemstra and WP. Weijland, Bitcoin, a Mong-like Informational Commaoditysection Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

[TCS1401] J.A.Bergstra,Bitcoin, een "monelike informational commodity”section Theory of Computer
Science - Uniersity of Amsterdam, 2014.

[TCS1301] B.Diertens, The Refined Function-Behavie8tructue Famework, section Theory of Computer
Science - Uniersity of Amsterdam, 2013.

[TCS1202] B.Diertens, From Functions to Object-Orientation by Abattion, section Theory of Computer
Science - Uniersity of Amsterdam, 2012.

[TCS1201] B. Diertens, Concurent Models for Object Executiorsection Theory of Computer Science -
University of Amsterdam, 2012.

[TCS1102] B.Diertens,Communicating Concurrent Functiorsection Theory of Computer Science - \nsity
of Amsterdam, 2011.

[TCS1101] B.Diertens,Concurent Models for Function Executiosection Theory of Computer Science -
University of Amsterdam, 2011.

[TCS1001] B.Diertens,On Object-Orientationsection Theory of Computer Science - nsity of Amsterdam,
2010.

The abee reports and more arealable through the website: ivi.fnwi.uva.nl/tcs/






Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XG Amsterdam
the Netherlands

ivi.fnwi.uva.nl/tcs/



