
Univer sity of Amsterdam

Theor y of Computer Science

From Software Crisis to Informational
Money

J.A. Bergstra

Report TCS1414 December 2014



J.A. Bergstra

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7591
e-mail: J.A.Bergstra@uva.nl

Theory of Computer Science Electronic Report Series



From Software Crisis to Informational Money

Jan A. Bergstra

Informatics Institute, University of Amsterdam

email: j.a.bergstra@uva.nl

1 Introduction

I met Hans van Vliet in 1982 when I moved from Leiden to the Mathematical Centre (now
CWI).1 Together with the late Jaco de Bakker, Paul Klint, and Jan Heering we constituted a
fairly heterogeneous community worried about computer software, each in our own particular
manner and style. In those years it became increasingly popular to think in terms of a software
crisis and scientific style research was assumed to be a critical ingredient on the path towards
the solution of that crisis. These five individuals maintained entirely different approaches, and
each of us thought that “he got it right”, alas for the other four, so to say. Apart from this
ideological fragmentation our coexistence was entirely peaceful and often amusing.

2 Different styles and approaches

Paul Klint’s approach was, and still is, to act as a software architect and (chief) programmer
and to perform research and engineering in a co-evolutionary style. In his view research needs
an application, and new software (applications, nowadays simply app’s) needs research, and
software tools for software construction allow that marriage in an ideal way. Jan Heering was
fairly skeptical, interested in all forms of research, and very supportive and instrumental for
that research as well, but he believed that practice always moves its own ways and that the
influence of research is fairly limited.

Jaco de Bakker maintained that one must know precisely what those programs mean in
order to deal with the chaos that surrounds this so-called software crisis. He turned that view
into a reputable brach of research almost singlehandedly. I thought myself that specification
and formalization are key to the solution of programming problems, and years later I am still
working along such lines.2

1This text was printed on pages 9–13 in “Software Engineering Tales”, the Liber Amicorum for Hans van
Vliet edited by Patricia Lago and Remco de Boer for the occasion of Hans’ retirement on November 28 of 2014.

2For instance, adapting [7] by working with an error value as is usual in Abstract Datatypes, in [6] we
use algebraic specifications in order to formalize equational reasoning in elementary mathematics. The the
teaching of elementary mathematics (“rekenen-wiskunde”) shows signs of having its own crisis world wide, and
in [3] we suggest “rekenen-informatica” (formalization and specification in disguise) as a potential way out.

1



Hans, however, felt that logical theory is not the core of the problem, neither is the mean-
ing of programs, nor the underdevelopment of programming skills. He maintained and still
maintains the following views (as expressed in my own words):

• A software crisis manifests itself as a crisis of products with problems and that measuring
these problems, or their absence in quantitative terms for instance with software metrics,
is critical, however problematic and even unrewarding the theory of that sort of thing
may appear to be.

• If products have problems these problems arise from production processes which are
problematic as well. A top down approach to the structure of software production
processes is useful. That approach must necessarily be far more general than what can
be concluded or observed from one’s own hands on programming experience.

• Software production admits a classification in terms of product categories. Once a
product class has been taken in focus dedicated software architectures become accessible.
There is no way around a systematic though “application dependent” investigation of
software architecture and the systematic application of the results of that investigation.

It seems that history has proven Hans right, at least to the extent that the directions that
he has been following are at this moment still very active and lively. When looking at the
research output of Hans van Vliet as diplayed by Google Scholar I noticed that by far the most
visible part of his work has been written in this millennium. He was consistently very active,
writing a remarkable sequence of well-cited papers throughout the last 15 years: I mention for
instance [1, 9, 10].

3 The power of software

What we failed to see so clearly back in 1982 is how critically important software would become
for almost all aspects of economic and scientific life. Nowadays the software crisis has different
forms and shapes. Security problems abound and most of those are software problems. The
ability to deal with security issues has become a decisive factor for obtaining and maintaining a
competitive edge in software manufacturing. Software projects are still running out of budget
at an alarming rate but this is now seen as a problem for local government. As software
companies have proven to be extremely profitable the idea that “software is in crisis” at large
has proven mistaken. Software legacy issues are still al over the place and geological layers of
technically outdated but steadily operating software accumulate.

The revolution of these years is the phantastic increase in data storage capacity. The idea
of a database management system carefully designed to collect, store, and process precisely
the data that an organizations needs seems to have become outdated. Instead software is
written that helps an organization to find its way in “big” amounts of data. This data
analytics technology constitutes the software side of data science, which is the friendly face
of an upcoming data crisis. indeed the impact of outdated legacy data may be even more
problematic than that of legacy software.

2



An important manifestation of the power of software is open source software. By being a
descendant of Linux, Android proves beyond any possible doubt that open source software
production processes cannot be neglected by commercial software manufacturing companies
anymore. Now one might think that open source impact is somehow confined to operating
systems, compilers and other systems software but I believe that that is not true and that the
real force of open source software production has yet to emerge.

4 Informational money

An interesting case of open source software development is the Bitcoin system. Since the
(still) anonymous software authoring agent Satoshi Nakamoto wrote about Bitcoin in [11]
and released the first open source implementation of it, the development of Bitcoin has been
amazingly fast. There is no doubt that Bitcoin is primarily an achievement in terms of
software architecture. Today’s commenters are unanimous in the verdict that Bitcoin may
disappear (and so Bitcoin holders with high expectations may become deeply disappointed),
but blockchain technology has come to stay. Bitcoin uses the blockchain idea in its simplest
form, but much more of that sort is to come. Blockchain technology may become vital for the
solution of the data crisis by combining universal accessibility with best possible security in
flexible degrees of anonymity.

The open source background of Bitcoin strengthens its acceptance in certain milieus. On the
one hand that is seen as a weakness, as those circles are remote from the world of international
banking. On the other hand that forces a communal effort to produce, maintain, and use
competitive software for distributed financial (or other) transactions. It is questionable that a
Bitcoin-like system could have emerged as the outcome of conventional commercial software
production. This sort of question merits further research.

It seems that via Bitcoin open source software may influence our perception of money.
In [4, 8] we proposed the notion of informational money, and, with Bitcoin in mind, the
more extreme notion of exclusively informational money which does away with conventional
concepts of ownership. In [2] I argue that Bitcoin provides a remarkable platform for the
implementation of Islamic Finance.

However remote Islamic Finance many seem from a conventional point of view, in [5] we
have argued that as a design option for a money, its built-in limitations may be somehow
understood by comparing it with the development of new program notations. A programming
style is often characterized by the features it does not favor which a corresponding program
notation for that reason does not (or only reluctantly) offer on purpose.

5 Conclusion

Software and in in particular software architecture, the primary focus of the research of Hans,
are much more important than merely by having practical and instrumental value, these are
conceptual tools for the future. The concept of money is only one of many classical concepts
that may be in need of revision with novel software architectures in mind.

3



References

[1] Per Olof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. Architecture-level
modifiability analysis (ALMA), J. of Ssystems and Software vol. 69 (1-2), pages 129-147
(2004).

[2] Jan A. Bergstra. Bitcoin and Islamic Finance.
University of Amsterdam, Informatics Institute, Report TCS1406, April 2014, http://
www.science.uva.nl/pub/programming-research/tcsreports/TCS1406.pdf (2014).

[3] Jan A. Bergstra, Inge Bethke, and Alban Ponse Rekenen-Informatica.
University of Amsterdam, Section Theory of Computer Science, Report TCS1412.
https://ivi.fnwi.uva.nl/tcs/pub/tcsreports/TCS1412.pdf (2014).

[4] Jan A. Bergstra and Karl de Leeuw. Bitcoin and Beyond: Exclusively Informational
Money. arXiv:1304.4758v2 [cs.CY] (2013).

[5] J.A. Bergstra and C.A. Middelburg. Preliminaries to an investigation of reduced product
set finance. JKAU: Islamic Economics, 24(1):175–210 (2011).

[6] Jan A. Bergstra and Alban Ponse Division by zero in common meadows
arXiv:1406.6878 [math.RA] (2014).

[7] J.A. Bergstra and J.V. Tucker. The rational numbers as an abstract data type. Journal

of the ACM, 54 (2), Article 7 (2007).

[8] Jan A. Bergstra and Peter Weijland. Bitcoin: a money-like informational commodity.
arXiv:1402.4778, (2014).

[9] Jaap Gordijn, Hans Akkermans, and Hans van Vliet, Business modelling is not process
modelling. In: Conceptual modeling for e-business and the web, pages 40–51, Springer,
(2000).

[10] Philippe Kruchten, Patricia Lago, and Hans van Vliet, Building up and reasoning about
architectural knowledge. QoSA 2006, LNCS 4214, pages 43-58 (2006).

[11] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system. http://Bitcoin.

org/Bitcoin.pdf (2008).

4



Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1413] J.A. Bergstra and I. Bethke, Note on Paraconsistency on the Logic of Fractions, section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1412] J.A. Bergstra, I. Bethke, and A. Ponse, Rekenen-Informatica,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1411] J.A. Bergstra, Bitcoin: not a Currency-like Informational Commodity, section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1409v2] J.A. Bergstra and A. Ponse, Three Datatype Defining Rewrite Systems for Datatypes of Integers each
extending a Datatype of Naturals (version 2),section Theory of Computer Science - University of
Amsterdam, 2014.

[TCS1410] J.A. Bergstra and A. Ponse, Division by Zero in Common Meadows,section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1407v3] J.A. Bergstra, Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers (version 3),section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1409] J.A. Bergstra and A. Ponse, Three Datatype Defining Rewrite Systems for Datatypes of Integers each
extending a Datatype of Naturals, section Theory of Computer Science - University of Amsterdam,
2014.

[TCS1406v3] J.A. Bergstra, Bitcoin and Islamic Finance (version 3),section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1407v2] J.A. Bergstra, Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers (version 2),section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1408] J.A. Bergstra, Bitcoin: Informational Money en het Einde van Gewoon Geld,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1407] J.A. Bergstra, Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers,section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1406v2] J.A. Bergstra, Bitcoin and Islamic Finance (version 2),section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1406] J.A. Bergstra, Bitcoin and Islamic Finance, section Theory of Computer Science - University of
Amsterdam, 2014.

[TCS1405] J.A. Bergstra, Rekenen in een Conservatieve Schrapwet Weide,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1404] J.A. Bergstra, Division by Zero and Abstract Data Types,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1403] J.A. Bergstra, I. Bethke, and A. Ponse, Equations for Formally Real Meadows,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1402] J.A. Bergstra and W.P. Weijland, Bitcoin, a Money-like Informational Commodity, section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1401] J.A. Bergstra, Bitcoin, een "money-like informational commodity",section Theory of Computer
Science - University of Amsterdam, 2014.



[TCS1301] B. Diertens, The Refined Function-Behaviour-Structure Framework, section Theory of Computer
Science - University of Amsterdam, 2013.

[TCS1202] B. Diertens, Fr om Functions to Object-Orientation by Abstraction, section Theory of Computer
Science - University of Amsterdam, 2012.

[TCS1201] B. Diertens, Concurrent Models for Object Execution,section Theory of Computer Science -
University of Amsterdam, 2012.

[TCS1102] B. Diertens, Communicating Concurrent Functions,section Theory of Computer Science - University
of Amsterdam, 2011.

[TCS1101] B. Diertens, Concurrent Models for Function Execution,section Theory of Computer Science -
University of Amsterdam, 2011.

[TCS1001] B. Diertens, On Object-Orientation,section Theory of Computer Science - University of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914] J.A. Bergstra and C.A. Middelburg, Autosolvability of Halting Problem Instances for Instruction
Sequences,Programming Research Group - University of Amsterdam, 2009.

[PRG0913] J.A. Bergstra and C.A. Middelburg, Functional Units for Natural Numbers, Programming Research
Group - University of Amsterdam, 2009.

[PRG0912] J.A. Bergstra and C.A. Middelburg, Instruction Sequence Processing Operators, Programming
Research Group - University of Amsterdam, 2009.

[PRG0911] J.A. Bergstra and C.A. Middelburg, Partial Komori Fields and Imperative Komori Fields,
Programming Research Group - University of Amsterdam, 2009.

[PRG0910] J.A. Bergstra and C.A. Middelburg, Indirect Jumps Improve Instruction Sequence Performance,
Programming Research Group - University of Amsterdam, 2009.

[PRG0909] J.A. Bergstra and C.A. Middelburg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

[PRG0908] B. Diertens, Software Engineering with Process Algebra: Modelling Client / Server Architecures,
Programming Research Group - University of Amsterdam, 2009.

[PRG0907] J.A. Bergstra and C.A. Middelburg, Inversive Meadows and Divisive Meadows,Programming
Research Group - University of Amsterdam, 2009.

[PRG0906] J.A. Bergstra and C.A. Middelburg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - University of Amsterdam, 2009.

[PRG0905] J.A. Bergstra and C.A. Middelburg, A Protocol for Instruction Stream Processing,Programming
Research Group - University of Amsterdam, 2009.

[PRG0904] J.A. Bergstra and C.A. Middelburg, A Process Calculus with Finitary Comprehended Terms,
Programming Research Group - University of Amsterdam, 2009.

[PRG0903] J.A. Bergstra and C.A. Middelburg, Tr ansmission Protocols for Instruction Streams,Programming
Research Group - University of Amsterdam, 2009.

[PRG0902] J.A. Bergstra and C.A. Middelburg, Meadow Enriched ACP Process Algebras, Programming
Research Group - University of Amsterdam, 2009.

[PRG0901] J.A. Bergstra and C.A. Middelburg, Timed Tuplix Calculus and the Wesseling and van den Berg
Equation,Programming Research Group - University of Amsterdam, 2009.

[PRG0814] J.A. Bergstra and C.A. Middelburg, Instruction Sequences for the Production of Processes,
Programming Research Group - University of Amsterdam, 2008.

[PRG0813] J.A. Bergstra and C.A. Middelburg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.



[PRG0812] J.A. Bergstra and C.A. Middelburg, Instruction Sequences and Non-uniform Complexity Theory,
Programming Research Group - University of Amsterdam, 2008.

[PRG0811] D. Staudt, A Case Study in Software Engineering with PSF: A Domotics Application,Programming
Research Group - University of Amsterdam, 2008.

[PRG0810] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Poly-Threading,Programming Research
Group - University of Amsterdam, 2008.

[PRG0809] J.A. Bergstra and C.A. Middelburg, Data Linkage Dynamics with Shedding, Programming Research
Group - University of Amsterdam, 2008.

[PRG0808] B. Diertens, A Process Algebra Software Engineering Environment,Programming Research Group -
University of Amsterdam, 2008.

[PRG0807] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Tuplix Calculus Specifications of Financial
Tr ansfer Networks,Programming Research Group - University of Amsterdam, 2008.

[PRG0806] J.A. Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting,Programming Research Group - University of Amsterdam, 2008.

[PRG0805] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, UvA Budget Allocatie Model,Programming
Research Group - University of Amsterdam, 2008.

[PRG0804] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading,Programming
Research Group - University of Amsterdam, 2008.

[PRG0803] J.A. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0802] A. Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A. Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

The above reports and more are available through the website: ivi.fnwi.uva.nl/tcs/



Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XG Amsterdam
the Netherlands

ivi.fnwi.uva.nl/tcs/


